Photosynthetic Responses of Peat Moss (Sphagnum spp.) and Bog Cranberry (Vaccinium oxycoccos L.) to Spring Warming
Abstract
:1. Introduction
2. Results
2.1. Thermal Conditions of Experimental Plots
2.2. Energy Partitioning at Photosystem II (PSII)
2.3. The Fluorescence Transient Kinetics
3. Discussion
4. Material and Methods
4.1. Study Site
4.2. Chlorophyll a Fluorescence Measurements
4.3. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Calvin, K.; Dasgupta, D.; Krinner, G.; Mukherji, A.; Thorne, P.W.; Trisos, C.; Romero, J.; Aldunce, P.; Barrett, K.; Blanco, G.; et al. Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Arias, P., Bustamante, M., Elgizouli, I., Flato, G., Howden, M., Méndez-Vallejo, C., Pereira, J.J., Pichs-Madruga, R., Rose, S.K., Saheb, Y., et al., Eds.; Intergovernmental Panel on Climate Change (IPCC): Geneva, Switzerland, 2023. [Google Scholar]
- Tripati, A.K.; Roberts, C.D.; Eagle, R.A. Coupling of CO2 and Ice Sheet Stability over Major Climate Transitions of the Last 20 Million Years. Science 2009, 326, 1394–1397. [Google Scholar] [CrossRef] [PubMed]
- NOAA. National Centers for Environmental Information, Monthly Global Climate Report for May 2024. Available online: https://www.ncei.noaa.gov/access/monitoring/monthly-report/global/202405 (accessed on 1 September 2024).
- Qiu, C.; Zhu, D.; Ciais, P.; Guenet, B.; Peng, S. The Role of Northern Peatlands in the Global Carbon Cycle for the 21st Century. Glob. Ecol. Biogeogr. 2020, 29, 956–973. [Google Scholar] [CrossRef]
- Xu, J.; Morris, P.J.; Liu, J.; Holden, J. PEATMAP: Refining Estimates of Global Peatland Distribution Based on a Meta-Analysis. Catena 2018, 160, 134–140. [Google Scholar] [CrossRef]
- Antala, M.; Juszczak, R.; van der Tol, C.; Rastogi, A. Impact of Climate Change-Induced Alterations in Peatland Vegetation Phenology and Composition on Carbon Balance. Sci. Total Environ. 2022, 827, 154294. [Google Scholar] [CrossRef]
- Gallego-Sala, A.V.; Charman, D.J.; Brewer, S.; Page, S.E.; Prentice, I.C.; Friedlingstein, P.; Moreton, S.; Amesbury, M.J.; Beilman, D.W.; Björck, S.; et al. Latitudinal Limits to the Predicted Increase of the Peatland Carbon Sink with Warming. Nat. Clim. Change 2018, 8, 907–913. [Google Scholar] [CrossRef]
- Lund, M.; Lafleur, P.M.; Roulet, N.T.; Lindroth, A.; Christensen, T.R.; Aurela, M.; Chojnicki, B.H.; Flanagan, L.B.; Humphreys, E.R.; Laurila, T.; et al. Variability in Exchange of CO2 across 12 Northern Peatland and Tundra Sites. Glob. Change Biol. 2010, 16, 2436–2448. [Google Scholar] [CrossRef]
- Ward, S.E.; Bardgett, R.D.; McNamara, N.P.; Ostle, N.J. Plant Functional Group Identity Influences Short-Term Peatland Ecosystem Carbon Flux: Evidence from a Plant Removal Experiment. Funct. Ecol. 2009, 23, 454–462. [Google Scholar] [CrossRef]
- Buttler, A.; Robroek, B.J.M.; Laggoun-Défarge, F.; Jassey, V.E.J.; Pochelon, C.; Bernard, G.; Delarue, F.; Gogo, S.; Mariotte, P.; Mitchell, E.A.D.; et al. Experimental Warming Interacts with Soil Moisture to Discriminate Plant Responses in an Ombrotrophic Peatland. J. Veg. Sci. 2015, 26, 964–974. [Google Scholar] [CrossRef]
- Chiapusio, G.; Binet, P.; Bertheau, C.; Priault, P. Sphagnum Physiological Responses to Elevated Temperature, Nitrogen, CO2 and Low Moisture in Laboratory and in Situ Microhabitats: A Review. Aquat. Ecol. 2021, 56, 429–445. [Google Scholar] [CrossRef]
- Weston, D.J.; Timm, C.M.; Walker, A.P.; Gu, L.; Muchero, W.; Schmutz, J.; Shaw, A.J.; Tuskan, G.A.; Warren, J.M.; Wullschleger, S.D. Sphagnum Physiology in the Context of Changing Climate: Emergent Influences of Genomics, Modelling and Host–Microbiome Interactions on Understanding Ecosystem Function. Plant Cell Environ. 2015, 38, 1737–1751. [Google Scholar] [CrossRef]
- Fewster, R.E.; Morris, P.J.; Swindles, G.T.; Ivanovic, R.F.; Treat, C.C.; Jones, M.C. Holocene Vegetation Dynamics of Circum-Arctic Permafrost Peatlands. Quat. Sci. Rev. 2023, 307, 108055. [Google Scholar] [CrossRef]
- Kokkonen, N.; Laine, A.M.; Männistö, E.; Mehtätalo, L.; Korrensalo, A.; Tuittila, E.-S. Two Mechanisms Drive Changes in Boreal Peatland Photosynthesis Following Long-Term Water Level Drawdown: Species Turnover and Altered Photosynthetic Capacity. Ecosystems 2022, 25, 1601–1618. [Google Scholar] [CrossRef]
- Weltzin, J.F.; Pastor, J.; Harth, C.; Bridgham, S.D.; Updegraff, K.; Chapin, C.T. Response of bog and fen plant communities to warming and water-table manipulations. Ecology 2000, 81, 3464–3478. [Google Scholar] [CrossRef]
- Rastogi, A.; Stróżecki, M.; Kalaji, H.M.; Łuców, D.; Lamentowicz, M.; Juszczak, R. Impact of Warming and Reduced Precipitation on Photosynthetic and Remote Sensing Properties of Peatland Vegetation. Environ. Exp. Bot. 2019, 160, 71–80. [Google Scholar] [CrossRef]
- Strasser, R.J.; Tsimilli-Michael, M.; Srivastava, A. Analysis of the Chlorophyll a Fluorescence Transient. In Advances in Photosynthesis and Respiration. Chlorophyll a Fluorescence: A Signature of Photosynthesis; Papageorgiou, G., Govindjee, Eds.; Springer: Dordrecht, The Netherlands, 2004; pp. 321–362. [Google Scholar]
- Kalaji, H.M.; Jajoo, A.; Oukarroum, A.; Brestic, M.; Zivcak, M.; Samborska, I.A.; Cetner, M.D.; Łukasik, I.; Goltsev, V.; Ladle, R.J.; et al. The Use of Chlorophyll Fluorescence Kinetics Analysis to Study the Performance of Photosynthetic Machinery in Plants. In Emerging Technologies and Management of Crop Stress Tolerance; Elsevier Inc.: Amsterdam, The Netherlands, 2014; Volume 2, pp. 347–384. ISBN 9780128010877. [Google Scholar]
- Lundell, R.; Saarinen, T.; Åström, H.; Hänninen, H. The Boreal Dwarf Shrub Vaccinium Vitis-Idaea Retains Its Capacity for Photosynthesis through the Winter. Botany 2008, 86, 491–500. [Google Scholar] [CrossRef]
- Gilmore, A.M.; Ball, M.C. Protection and Storage of Chlorophyll in Overwintering Evergreens. Proc. Natl. Acad. Sci. USA 2000, 97, 11098–11101. [Google Scholar] [CrossRef]
- Lehner, G.; Lütz, C. Photosynthetic Functions of Cembran Pines and Dwarf Pines during Winter at Timberline as Regulated by Different Temperatures, Snowcover and Light. J. Plant Physiol. 2003, 160, 153–166. [Google Scholar] [CrossRef]
- Campbell, C.; Rydin, H. The Effects of Winter Stress on Sphagnum Species with Contrasting Macro- and Microdistributions. J. Bryol. 2019, 41, 205–217. [Google Scholar] [CrossRef]
- Küttim, M.; Küttim, L.; Ilomets, M.; Laine, A.M. Controls of Sphagnum Growth and the Role of Winter. Ecol. Res. 2020, 35, 219–234. [Google Scholar] [CrossRef]
- Bassi, R.; Dall’osto, L. Dissipation of Light Energy Absorbed in Excess: The Molecular Mechanisms. Annu. Rev. Plant Biol. 2021, 72, 47–76. [Google Scholar] [CrossRef]
- Peichl, M.; Sonnentag, O.; Nilsson, M.B. Bringing Color into the Picture: Using Digital Repeat Photography to Investigate Phenology Controls of the Carbon Dioxide Exchange in a Boreal Mire. Ecosystems 2015, 18, 115–131. [Google Scholar] [CrossRef]
- Liu, M.; Wang, Y.; Zhang, H.; Hao, Y.; Wu, H.; Shen, H.; Zhang, P. Mechanisms of Photoprotection in Overwintering Evergreen Conifers: Sustained Quenching of Chlorophyll Fluorescence. Plant Physiol. Biochem. 2024, 210, 108638. [Google Scholar] [CrossRef] [PubMed]
- Saarinen, T.; Lundell, R.; Hänninen, H. Recovery of Photosynthetic Capacity in Vaccinium Vitis-Idaea during Mild Spells in Winter. Plant Ecol. 2011, 212, 1429–1440. [Google Scholar] [CrossRef]
- Kalaji, M.H.; Goltsev, V.N.; Zuk-Golaszewska, K.; Zivcak, M.; Brestic, M. Chlorophyll Fluorescence—Basics and Applicatrions; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Guo, Y.; Lu, Y.; Goltsev, V.; Strasser, R.J.; Kalaji, H.M.; Wang, H.; Wang, X.; Chen, S.; Qiang, S. Comparative Effect of Tenuazonic Acid, Diuron, Bentazone, Dibromothymoquinone and Methyl Viologen on the Kinetics of Chl a Fluorescence Rise OJIP and the MR820 Signal. Plant Physiol. Biochem. 2020, 156, 39–48. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Guo, Y.; Wang, H.; Luo, Z.; Chen, Y.; Jiang, M.; Lu, H.; Valverde, B.E.; Qiang, S.; Strasser, R.J.; et al. Action of the Fungal Compound Citrinin, a Bioherbicide Candidate, on Photosystem II. Pest. Manag. Sci. 2024, 80, 133–148. [Google Scholar] [CrossRef]
- Bednaříková, M.; Folgar-Cameán, Y.; Kučerová, Z.; Lazár, D.; Špundová, M.; Hájek, J.; Barták, M. Analysis of K-and l-Band Appearance in Ojips in Antarctic Lichens in Low and High Temperature. Photosynthetica 2020, 58, 646–656. [Google Scholar] [CrossRef]
- Shomali, A.; Aliniaeifard, S.; Bakhtiarizadeh, M.R.; Lotfi, M.; Mohammadian, M.; Vafaei Sadi, M.S.; Rastogi, A. Artificial Neural Network (ANN)-Based Algorithms for High Light Stress Phenotyping of Tomato Genotypes Using Chlorophyll Fluorescence Features. Plant Physiol. Biochem. 2023, 201, 107893. [Google Scholar] [CrossRef]
- Ferroni, L.; Živčak, M.; Kovar, M.; Colpo, A.; Pancaldi, S.; Allakhverdiev, S.I.; Brestič, M. Fast Chlorophyll a Fluorescence Induction (OJIP) Phenotyping of Chlorophyll-Deficient Wheat Suggests That an Enlarged Acceptor Pool Size of Photosystem I Helps Compensate for a Deregulated Photosynthetic Electron Flow. J. Photochem. Photobiol. B 2022, 234, 112549. [Google Scholar] [CrossRef]
- Chen, S.; Yang, J.; Zhang, M.; Strasser, R.J.; Qiang, S. Classification and Characteristics of Heat Tolerance in Ageratina Adenophora Populations Using Fast Chlorophyll a Fluorescence Rise O-J-I-P. Environ. Exp. Bot. 2016, 122, 126–140. [Google Scholar] [CrossRef]
- Strasser, R.J.; Srivastava, A.; Tsimilli-Michael, M. The Fluorescence Transient as a Tool to Characterize and Screen Photosynthetic Samples. In Probing Photosynthesis: Mechanism, Regulation and Adaptation; Yunus, M., Pathre, U., Mohanty, P., Eds.; CRC Press: Boca Raton, FL, USA, 2000; pp. 445–483. [Google Scholar]
- Baghbani, F.; Lotfi, R.; Moharramnejad, S.; Bandehagh, A.; Roostaei, M.; Rastogi, A.; Kalaji, H.M. Impact of Fusarium Verticillioides on Chlorophyll Fluorescence Parameters of Two Maize Lines. Eur. J. Plant Pathol. 2019, 154, 337–346. [Google Scholar] [CrossRef]
- Lotfi, R.; Abbasi, A.; Kalaji, H.M.; Eskandari, I.; Sedghieh, V.; Khorsandi, H.; Sadeghian, N.; Yadav, S.; Rastogi, A. The Role of Potassium on Drought Resistance of Winter Wheat Cultivars under Cold Dryland Conditions: Probed by Chlorophyll a Fluorescence. Plant Physiol. Biochem. 2022, 182, 45–54. [Google Scholar] [CrossRef] [PubMed]
- Górecki, K.; Rastogi, A.; Stróżecki, M.; Gąbka, M.; Lamentowicz, M.; Łuców, D.; Kayzer, D.; Juszczak, R. Water Table Depth, Experimental Warming, and Reduced Precipitation Impact on Litter Decomposition in a Temperate Sphagnum-Peatland. Sci. Total Environ. 2021, 771, 145452. [Google Scholar] [CrossRef] [PubMed]
- Antala, M.; Rastogi, A.; Cogliati, S.; Stróżecki, M.; Colombo, R.; Juszczak, R. Sun-Induced Fluorescence Spectrum as a Tool for Assessing Peatland Vegetation Productivity in the Framework of Warming and Reduced Precipitation Experiment. Remote Sens. Environ. 2024, 301, 113921. [Google Scholar] [CrossRef]
- Lamentowicz, M.; Mueller, M.; Gałka, M.; Barabach, J.; Milecka, K.; Goslar, T.; Binkowski, M. Reconstructing Human Impact on Peatland Development During the Past 200 Years in CE Europe Through Biotic Proxies and X-ray Tomography. Quat. Int. 2015, 357, 282–294. [Google Scholar] [CrossRef]
- Milecka, K.; Kowalewski, G.; Fiałkiewicz-Kozieł, B.; Gałka, M.; Lamentowicz, M.; Chojnicki, B.H.; Goslar, T.; Barabach, J. Hydrological Changes in the Rzecin Peatland (Puszcza Notecka, Poland) Induced by Anthropogenic Factors: Implications for Mire Development and Carbon Sequestration. Holocene 2017, 27, 651–664. [Google Scholar] [CrossRef]
Abbreviation | Name of Parameter | Measurement Protocol |
---|---|---|
Fo | Minimal fluorescence | OJIP and NPQ3 |
Fm | Maximal fluorescence | OJIP and NPQ3 |
ϕPo | Maximum quantum yield of photosystem II photochemistry | OJIP and NPQ3 |
ϕPSII | Actual quantum yield of photosystem II photochemistry (at 300 μmol m−2 s−1) | NPQ3 |
ϕNPQ | Quantum yield of light-induced energy dissipation (at 300 μmol m−2 s−1) | NPQ3 |
ϕNO | Quantum yield of light-independent energy dissipation (at 300 μmol m−2 s−1) | NPQ3 |
NPQ | Non-photochemical quenching of maximum fluorescence (at 300 μmol m−2 s−1) | NPQ3 |
ϕDo | Quantum yield of energy dissipation at time 0 | OJIP |
Fm/Fo | Maximum fluorescence normalized by minimum fluorescence | OJIP |
Fv/Fo | Maximum efficiency of the water diffusion reaction on the donor side of photosystem II | OJIP |
VJ | Relative variable fluorescence at step J | OJIP |
VI | Relative variable fluorescence at step I | OJIP |
Ψo | Efficiency of electron transport beyond plastoquinone | OJIP |
ABS/RC | Absorption flux per one active reaction center at time 0 | OJIP |
TRo/RC | Energy flux trapped by one active reaction center at time 0 | OJIP |
ETo/RC | Rate of electron transport by one active reaction center at time 0 | OJIP |
DIo/RC | Energy flux not intercepted by reaction center at time 0 | OJIP |
Sm | Normalized area above the O-J-I-P curve | OJIP |
Ss | Normalized area above O-J curve | OJIP |
Mo | Approximated initial slope of the fluorescence transient | OJIP |
N | Number of plastoquinone reductions from time 0 to time of reaching maximum fluorescence | OJIP |
PI ABS | Photosystem II performance index on an absorption basis | OJIP |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Antala, M.; Abdelmajeed, A.Y.A.; Stróżecki, M.; Krzesiński, W.; Juszczak, R.; Rastogi, A. Photosynthetic Responses of Peat Moss (Sphagnum spp.) and Bog Cranberry (Vaccinium oxycoccos L.) to Spring Warming. Plants 2024, 13, 3246. https://doi.org/10.3390/plants13223246
Antala M, Abdelmajeed AYA, Stróżecki M, Krzesiński W, Juszczak R, Rastogi A. Photosynthetic Responses of Peat Moss (Sphagnum spp.) and Bog Cranberry (Vaccinium oxycoccos L.) to Spring Warming. Plants. 2024; 13(22):3246. https://doi.org/10.3390/plants13223246
Chicago/Turabian StyleAntala, Michal, Abdallah Yussuf Ali Abdelmajeed, Marcin Stróżecki, Włodzimierz Krzesiński, Radosław Juszczak, and Anshu Rastogi. 2024. "Photosynthetic Responses of Peat Moss (Sphagnum spp.) and Bog Cranberry (Vaccinium oxycoccos L.) to Spring Warming" Plants 13, no. 22: 3246. https://doi.org/10.3390/plants13223246
APA StyleAntala, M., Abdelmajeed, A. Y. A., Stróżecki, M., Krzesiński, W., Juszczak, R., & Rastogi, A. (2024). Photosynthetic Responses of Peat Moss (Sphagnum spp.) and Bog Cranberry (Vaccinium oxycoccos L.) to Spring Warming. Plants, 13(22), 3246. https://doi.org/10.3390/plants13223246