Optimizing Brassica oleracea L. Breeding Through Somatic Hybridization Using Cytoplasmic Male Sterility (CMS) Lines: From Protoplast Isolation to Plantlet Regeneration
Abstract
:1. Introduction
2. Methodology of Research
3. Cytoplasmic Male Sterility in Brassicaceae Breeding
3.1. Discovery of Sterilizing Cytoplasms in Brassicas
3.2. Three-Line CMS/Rf Breeding System
3.3. Molecular Mechanism of CMS/Rf System in Brassicas
4. Use of Protoplast Technology in Brassica oleracea L. Crops
4.1. Discovering Protoplasts Technology
4.2. Tissue Sources and Cell Wall Digestion Procedures for Protoplast Isolation
4.3. Culture Media Formulation and Plant Regeneration
B. oleracea L. Cultivars | Tissue Source | Age of Explant | Enzyme Mixture and Condition | Incubation Time | Yield (Protoplast g−1 FW) | References |
---|---|---|---|---|---|---|
B. oleracea var. italica | Cotyledons and Leaves | 3–4 wk | 1.5% Cellulase R-10, 0.4% Macerozyme R-10, 400 mM D-Mannitol, 0.1% BSA, 8 mM CaCl2·2H2O, 5 mM MES, and 5 mM KOH. | 12–16 h | 9.1 × 106 g−1 FW | [80] |
Cotyledons | 7–10 d | 0.5% Cellulase R-10, 0.1% Pectolyase Y-23, and 0.6 M D-Mannitol. | 12 h | 5.05 × 106 g−1 FW | [81] | |
Leaves | 3 wk | 1.5% (w/v) Cellulase R-10, 0.75% w/v) Macerocyme R-10, 10 mM MES, 0.6 M D-mannitol, 10 mM CaCl2·2H2O, and 0.1% w/v) BSA. | 3 h | 4.2 × 106 g−1 FW | [120] | |
Leaves | 20 d | 1.5% Cellulase R-10, 0.4% Macerozyme R-10, 400 mM D-Mannitol, 0.1% BSA, 8 mM CaCl2·2H2O, 5 mM MES, and 5 mM KOH. | 12 h | NR | [121] | |
3 wk | 2% Cellulysin, 1% Macerozyme R-10, 0.5% Driselase®, 0.08 M CaCl2, 0.2 M D-Mannitol, 1 mM MES, and 1 mM KH2PO4. | 16 h | 1 to 5 × 106 g−1 FW | [106] | ||
B. oleracea var. capitata | Leaves (1) and Hypocotyls (2) | 2–6 wk 1–2 wk | (1) 1.0% Cellulase R-10, 0.1% Pectolyase Y-23, 0.6 M D-Mannitol, 20 mM MES, and 5.0 mM MgCl2·6H2O. (2) 1.0% Cellulose R-10, 0.5% Driselase®, 1.0% Macerozyme R-10, 0.6 M D-Mannitol, 20 mM MES, and 5.0 mM MgCl2·6H2O. | 16–18 h | 2.0 × 106 g−1 FW | [84] |
Leaves | 4 wk | 0.5% Cellulase Onozuka RS, 0.01–0.1% Pectolyase Y-23 or 0.1% Macerozyme R-10, 2 mM MES, 3 mM CaCl2, and 0.4 M D-Mannitol. | 16 h | 3.75 to 2.75 × 106 g−1 FW | [122] | |
Cotyledons and Leaves | NR | 1.5% Cellulase R-10, 0.4% Macerozyme R-10, 400 mM D-Mannitol, 0.1% BSA, 8 mM CaCl2·2H2O, 5 mM MES, and 5 mM KOH. | 12–16 h | 7.0 × 106 g−1 FW | [79] | |
Hypocotyls | 3–4 wk | 0.5% Cellulase R-10, 0.1% Pectolyase Y-23, 2 mM MES, 3 mM CaCl2, and 0.4 M D-Mannitol. | 18 h | NR | [80] | |
B. oleracea var. botytris | Cotyledons and Leaves | 3–4 wk | 1.5% Cellulase R-10, 0.4% Macerozyme R-10, 400 mM Mannitol, 0.1% BSA, 8 mM CaCl2·2H2O, 5 mM MES, and 5 mM KOH. | 12–16 h | 7.5 × 106 g−1 FW | [80] |
Hypocotyls | 3 wk | 1.0% Cellulase-R-10, 0.1% Macerozyme R-10, 0.5 M D-mannitol, and 0.55 mM CaCl2·2H2O. | NR | NR | [85] |
4.4. Fusion Procedures and Somatic Hybridization
Cultivars | Source | Medium Composition | Results | References |
---|---|---|---|---|
B. oleracea var. italica | Cotyledons and true leaves | Gamborg B5 [135] with vitamins, 2% (w/v) glucose, 7% (w/v) D-mannitol, 1 mg L−1 BAP, 1 mg L−1 NAA, and 1–0.25 mg L−1 2,4-D. Liquid culture. | Protoplast division and microcallus formation | [80] |
½ Gamborg B5 [135] with vitamins, 2% (w/v) glucose, 4% (w/v) D-mannitol, 1 mg L−1 BAP, and 0.2 mg L−1 NAA. Liquid culture. | ||||
MS [136] micro- and macro-elements and vitamins, 3% (w/v) sucrose, 0.1–0.01 mg L−1 NAA, 1–3 mg L−1 BAP, and 0.8% agar. | Shoot induction | |||
MS [136] micro- and macro-elements and vitamins, 3% sucrose, 0.1–0.01 mg L−1 NAA, 3 mg L−1 TDZ, and 0.8% agar. | Shoot inducing | |||
½ MS [136] with vitamins, 2% sucrose, 0.1 mg L−1 NAA, and 0.8% agar. | Root inducing | |||
True leaves | NH4NO3-free MS [136] micro- and macro-elements and vitamins, 60 g L−1 myo-inositol, 3% (w/v) sucrose, 2 mg L−1 2,4-D, and 0.5 mg L−1 BAP, and pH 5.8. Liquid culture. | Protoplast division | [121] | |
MS [136] micro- and macro-elements and vitamins, 100 mg L−1 myo-inositol, 30 g L−1 sucrose, 0.4 mg L−1 thiamin, 2 mg L−1 2,4-D, 0.5 mg L−1 BAP, 0.4% (w/v) Gelrite and pH 5.8. | Microcallus formation | |||
MS [136] micro- and macro-elements and vitamins, 100 mg L−1 myo-inositol, 30 g L−1 sucrose, 0.4 mg L−1 thiamin, 2 mg L−1 BAP, 0.5 mg L−1 NAA, 0.8% (w/v) plant agar, and pH 5.8. | Shoot induction | |||
½ MS [136] micro- and macro-elements and vitamins, 2% sucrose, 0.8% plant agar, and pH 5.8. | Root induction | |||
True leaves | Gamborg B5 [135] micro-, macro-elements with vitamins, 2% (w/v) glucose, 7% (w/v) D-mannitol, 1 mg L−1 NAA, 1 mg L−1 BAP, 0.25 mg L−1 2,4-D, and pH 5.8. Liquid culture. | Protoplast division and microcallus formation | [106] | |
MS [136] micro- and macro-elements with vitamins, 1% (w/v) sucrose, 2% (w/v) D-mannitol, 1 mg L−1 NAA, 1 mg L−1 IPA, 0.2 mg L−1 GA3, 0.8% (w/v) plant agar, and pH 5.8. | Shoot induction | |||
MS [136] micro- and macro-elements with vitamins, 1% (w/v) sucrose, 0.1 mg L−1 NAA, 0.1 mg L−1 BAP, 0.6% (w/v) plant agar, and pH 5.8. | Root induction | |||
B. oleracea var. capitata | Etiolated hypocotyls | Kao and Michayluk [137] macro- and micro-elements and organic acids, Gamborg B5 [138] with vitamins, 74 g L−1 glucose, 250 mg L−1 casein enzymatic hydrolysate, 0.1 mg L−1 2,4-D, 0.2 mg L−1 zeatin, and pH 5.6. Alginate layers embedding. | Protoplast division and microcallus formation | [73] |
MS [136] micro- and macro-elements with vitamins, 3% sucrose, 0.5 mg L−1 BAP, 0.2 mg L−1 NAA or 2 mg L−1 2,4-D, 0.8% agar, and pH 5.8. | Shoot induction | |||
MS [136] micro- and macro-elements with vitamins, 3% sucrose, 1 mg L−1 BAP, 2 mg L−1 2,4-D, 0.8% agar, and pH 5.8. | Shoot induction | |||
True leaves and hypocotyls | Kao and Michayluk [137] macro- and micro-elements and 0.4X organic acids, Gamborg B5 [138] vitamins, 2% (w/v) mannitol, 3% (w/v) sucrose, 250 mg L−1 casein enzymatic hydrolysate, 0.1 mg L−1 NAA, 0.2 mg L−1 zeatin, pH 5.6. Alginate layers embedding. | Protoplast division and microcallus formation | [84] | |
MS [136] micro- and macro-elements and vitamins, 2% (w/v) sucrose, 0.25% (w/v) Phytagel, and pH 5.8. | Shoot and root induction | |||
MS [136] micro- and macro-elements and vitamins, 0.4 mg L−1 calcium panthothenate, 0.1 mg L−1 GA3, 3.0 mg L−1 kinetin, and 3% (w/v) sucrose, 0.25% (w/v) Phytagel, and pH 5.8. | Shoot and root induction | |||
MS [136] micro- and macro-elements, and modified vitamin composition, 0.5 mg L−1 nicotinic acid, 0.1 mg L−1 pyridoxine and thiamine, 3 mg L−1 glycine, and 2% (w/v) sucrose, 0.25% (w/v) Phytagel, and pH 5.8. | Shoot and root induction | |||
Etiolated hypocotyls | Kao and Michayluk [137] macro- and micro-elements and 0.4X organic acids, Gamborg B5 [138] with vitamins, 20 g L−1 mannitol, 30 g L−1 sucrose, 250 mg L−1 casein enzymatic hydrolysate, 0.45 µM 2,4-D, 1 µM zeatin, and pH 5.6. Alginate layers embedding. | Protoplast division and microcallus formation | [82] | |
MS [136] micro- and macro-elements with vitamins, 8.8 µM BAP, 2.7 µM NAA, 2% (w/v) sucrose, 2.5 g L−1 Gelrite, and pH 5.8. | Shoot induction | |||
MS [136] micro- and macro-elements with vitamins, 2% (w/v) sucrose, 2.5 g L−1 Gelrite, and pH 5.8. | Root induction | |||
Cotyledons and true leaves | Gamborg B5 [135] with vitamins, 2% glucose, 70 g L−1 D-Mannitol, 1 mg L−1 BAP, 1 mg L−1 NAA, and 1–0.25 mg L−1 2,4-D. Liquid culture. | Protoplast division and microcallus formation | [80] | |
½ Gamborg B5 [135] with vitamins, 2% glucose, 40 g L−1 D-Mannitol, 1 mg L−1 BAP, and 0.2 mg L−1 NAA. | ||||
MS [136] micro- and macro-elements with vitamins, 3% sucrose, 0.1–0.01 mg L−1 NAA, 1–3 mg L−1 BAP, and 0.8% agar. | Shoot inducing | |||
MS [136] micro- and macro-elements with vitamins, 3% sucrose, 0.1–0.01 mg L−1 NAA, 3 mg L−1 TDZ, and 0.8% plant agar. | Shoot inducing | |||
½ MS [136] micro- and macro-elements with vitamins, 2% sucrose, 0.1 mg L−1 NAA, and 0.8% (w/v) plant agar. | Root inducing | |||
True leaves | Kao and Michayluk [137] macro- and micro-elements and organic acids, Gamborg B5 [138] vitamins, 250 mg L−1 casein hydrolysate, 74 g L−1 glucose, 0.1 mg L−1 2,4-D and 0.2 mg L−1 zeatin, and pH 5.6. Alginate layers embedding. | Protoplast division and microcallus formation | [83] | |
MS [136] micro- and macro-elements with vitamins, 750 mg L−1 CaCl2 2H2O, 1 mg L−1 BAP, 0.1 µM PSK-α, 2% (w/v) sucrose, 0.25% (w/v) Gelrite, and pH 5.7–5.8. | Shoot and root formation | |||
Gamborg B5 [135] micro-, macro-elements and vitamins without growth regulators, 750 mg L−1 CaCl2 2H2O, 1 mg L−1 BAP, 0.1 µM PSK-α, 2% (w/v) sucrose, 0.25% (w/v) Gelrite, and pH 5.7–5.8. | Shoot and root formation | |||
B. oleracea var. botytris | Cotyledons and true leaves | Gamborg B5 [135] micro-, macro-elements with vitamins, 2% (w/v) glucose, 7% (w/v) D-Mannitol, 1 mg L−1 BAP, 1 mg L−1 NAA, 1–0.25 mg L−1 2,4-D, and pH 5.6. Liquid culture. | Protoplast division and microcallus formation | [80] |
½ Gamborg B5 [135] with vitamins, 2% (w/v) glucose, 4% (w/v) D-Mannitol, 1 mg L−1 BAP, 0.2 mg L−1 NAA, and pH 5.6. Liquid culture. | ||||
MS [136] micro- and macro-elements with vitamins, 3% (w/v) sucrose, 0.1–0.01 mg L−1 NAA, 1–3 mg L−1 BAP, 0.8% (w/v) plant agar, and pH 5.8. | Shoot inducing | |||
MS [136] micro- and macro-elements with vitamins, 3% (w/v) sucrose, 0.1–0.01 mg L−1 NAA, 3 mg L−1 TDZ, 0.8% (w/v) plant agar, and pH 5.8. | Shoot inducing | |||
½ MS [136] micro- and macro-elements with vitamins, 3% (w/v) sucrose, 0.1 mg L−1 NAA, 0.8% (w/v) plant agar, and pH 5.8. | Root inducing | |||
True leaves | Gamborg B5 [135] micro- and macro-elements with vitamins, 2% (w/v) glucose, 7% (w/v) D-Mannitol, 0.1 g L−1 MES, 1 mg L−1 NAA, 1 mg L−1 BAP, 0.25 mg L−1 2,4-D, and pH 5.8. Agarose embedding. | Protoplast division and microcallus formation | [94,139] | |
Gamborg B5 [135] micro- and macro-elements with vitamins, 2% (w/v) sucrose, 4% (w/v) D-Mannitol, 0.1 g L−1 MES, 1 mg L−1 NAA, 1 mg L−1 BAP, 0.25 mg L−1 2,4-D, and pH 5.8. Agarose embedding. | ||||
MS [136] micro- and macro-elements with vitamins, 2% (w/v) sucrose, 1 mg L−1 2iP, 1 mg L−1 NAA, 1 mg L−1 GA3, 0.6% (w/v) plant agar, and pH 5.8. | Shoot induction | |||
MS [136] micro- and macro-elements with vitamins, 1% (w/v) sucrose, 0.1 mg L−1 BAP, 0.5 mg L−1 2–4-D, 0.6% (w/v) plant agar, and pH 5.8. | Shoot induction | |||
MS [136] micro- and macro-elements with vitamins, 1% (w/v) sucrose, 0.01 mg L−1 NAA, 0.6% (w/v) plant agar, and pH 5.8. | Root induction |
4.5. Genome and Gene Editing
Parental Combinations | Type of Cross | Tissue Source | Pre-Treatment | Fusion Method | Fusion Type | Hybrid Performance | References |
---|---|---|---|---|---|---|---|
B. oleracea var. capitata × B. juncea B. oleracea var. capitata × B. rapa B. oleracea var. capitata × B. juncea | Interspecific | Hypocotyl and cotyledons | 2 mM IOA 15 min at 4 °C. | 50% (w/v) polyethylene glycol (PEG 6000). | Symmetric | Production of sterile hybrids with cold tolerance and atrazine resistance. | [143] |
B. oleracea var. botrytis × B. rapa | Interspecific | Leaves | X-ray irradiation of 92 Gy and 2 mM IOA for 15 min at 4 °C. | 50% (w/v) polyethylene glycol (PEG 6000). | Asymmetric | Cold tolerance and Ogura male sterile hybrids. | [160] |
B. oleracea var. capitata × A. thaliana | Intergeneric | Hypocotyls and leaves | 2 mM of IOA for 15 min at 25 °C and UV radiation at 4680 J m−2. | 50% (w/v) polyethylene glycol (PEG 6000). | Asymmetric | Establishment of cabbage lines with CMS (male sterile hybrid production). | [161] |
B. oleracea var. capitata × B. nigra | Interspecific | Cotyledons and hypocotyls | 0.0875 J cm−2 UV irradiation. | 40% (w/v) polyethylene glycol (PEG 1500). | Symmetric | Resistance to Xanthomonas campestris pv. campestris | [162] |
B. oleracea var. botrytis × Matthiola incana | Intergeneric | Hypocotyls and leaves | None. | 40% (w/v) polyethylene glycol (PEG 1500). | Symmetric | α-linolenic acid increases content and aphid resistance. | [128] |
B. oleracea var. italica × B. campestris | Interspecific | Cotyledons and hypocotyls | None. | 40% (w/v) polyethylene glycol (PEG 1450) and dimethyl sulfoxide (DMSO). | Symmetric | Bolting resistance. | [142] |
B. oleracea var. capitata × B. rapa | Interspecific | Leaves | 3 mM IOA 15 min at 4 °C. | 40% (w/v) polyethylene glycol (PEG 3350). | Symmetric | Production of interspecific hybrids resistant to Erwinia carotovora subsp. Carotovora. | [59] |
B. oleracea var. capitata × B. oleracea var. botrytis B. oleracea × B. nigra B. oleracea × Diplotaxis tenuifolia B. oleracea × Matthiola incana | Intraspecific Interspecific Interspecific Interspecific | Hypocotyls and leaves | X-ray irradiation of 92 Gy and 3 mM IOA for 15 min at 4 °C. | 12.5% (w/v) polyethylene glycol (PEG 6000). | Asymmetric | Production of interspecific hybrids resistant to Alternaria spp. | [132] |
B. oleracea var. botrytis × B. nigra | Interspecific | Hypocotyls and leaves | 0.0875 J cm−2 UV irradiation and 2 mM IOA for 15 min at 4 °C. | 40% (w/v) polyethylene glycol (PEG 1500). | Asymmetric | Resistance to black rot. | [85] |
B. oleracea var. italica × B. juncea | Interspecific | Cotyledons and hypocotyls | None. | 40% (w/v) polyethylene glycol (PEG 1450). | Symmetric | Resistance to turnip mosaic virus. | [163] |
B. oleracea var. capitata × C. bursa-pastoris | Intergeneric | Leaves | 3 mM IOA for 15 min at 4 °C. | 50% (w/v) polyethylene glycol (PEG 6000). | Symmetric | Resistance to Alternaria brassicicola. | [122] |
5. Perspectives in Brassicaceae Breeding
6. Concluding Remarks
Author Contributions
Funding
Conflicts of Interest
References
- German, D.A.; Hendriks, K.P.; Koch, M.A.; Lens, F.; Lysak, M.A.; Bailey, C.D.; Mummenhoff, K.; Al-Shehbaz, I.A. An Updated Classification of the Brassicaceae (Cruciferae). PhytoKeys 2023, 220, 127. [Google Scholar] [CrossRef] [PubMed]
- Katche, E.; Quezada-Martinez, D.; Katche, E.I.; Vasquez-Teuber, P.; Mason, A.S. Interspecific Hybridization for Brassica Crop Improvement. Crop Breed. Genet. Genom. 2019, 1, e190007. [Google Scholar]
- Cai, C.; Bucher, J.; Bakker, F.T.; Bonnema, G. Evidence for Two Domestication Lineages Supporting a Middle-Eastern Origin for Brassica oleracea Crops from Diversified Kale Populations. Hortic. Res. 2022, 9, uhac033. [Google Scholar] [CrossRef] [PubMed]
- Nagaharu, U. Genome Analysis in Brassica with Special Reference to the Experimental Formation of B. napus and Peculiar Mode of Fertilization. Jpn. J. Bot. 1935, 7, 389–452. [Google Scholar]
- Chen, S.; Nelson, M.N.; Chèvre, A.-M.; Jenczewski, E.; Li, Z.; Mason, A.S.; Meng, J.; Plummer, J.A.; Pradhan, A.; Siddique, K.H.M. Trigenomic Bridges for Brassica Improvement. CRC Crit. Rev. Plant Sci. 2011, 30, 524–547. [Google Scholar] [CrossRef]
- Cartea, M.E.; Francisco, M.; Soengas, P.; Velasco, P. Phenolic Compounds in Brassica Vegetables. Molecules 2010, 16, 251–280. [Google Scholar] [CrossRef]
- Syed, R.U.; Moni, S.S.; Break, M.K.B.; Khojali, W.M.A.; Jafar, M.; Alshammari, M.D.; Abdelsalam, K.; Taymour, S.; Alreshidi, K.S.M.; Elhassan Taha, M.M. Broccoli: A Multi-Faceted Vegetable for Health: An in-Depth Review of Its Nutritional Attributes, Antimicrobial Abilities, and Anti-Inflammatory Properties. Antibiotics 2023, 12, 1157. [Google Scholar] [CrossRef]
- Kaiser, A.E.; Baniasadi, M.; Giansiracusa, D.; Giansiracusa, M.; Garcia, M.; Fryda, Z.; Wong, T.L.; Bishayee, A. Sulforaphane: A Broccoli Bioactive Phytocompound with Cancer Preventive Potential. Cancers 2021, 13, 4796. [Google Scholar] [CrossRef]
- Bessler, H.; Djaldetti, M. Broccoli and Human Health: Immunomodulatory Effect of Sulforaphane in a Model of Colon Cancer. Int. J. Food Sci. Nutr. 2018, 69, 946–953. [Google Scholar] [CrossRef]
- Bahar, N.H.A.; Lo, M.; Sanjaya, M.; Van Vianen, J.; Alexander, P.; Ickowitz, A.; Sunderland, T. Meeting the Food Security Challenge for Nine Billion People in 2050: What Impact on Forests? Glob. Environ. Chang. 2020, 62, 102056. [Google Scholar] [CrossRef]
- Albacete, A.; Martínez-Andújar, C.; Pérez-Alfocea, F. Hormonal and Metabolic Regulation of Source-Sink Relations under Salinity and Drought: From Plant Survival to Crop Yield Stability. Biotechnol. Adv. 2014, 32, 12–30. [Google Scholar] [CrossRef] [PubMed]
- Lamaoui, M.; Jemo, M.; Datla, R.; Bekkaoui, F. Heat and Drought Stresses in Crops and Approaches for Their Mitigation. Front. Chem. 2018, 6, 26. [Google Scholar] [CrossRef] [PubMed]
- Sanoubar, R.; Cellini, A.; Veroni, A.M.; Spinelli, F.; Masia, A.; Vittori Antisari, L.; Orsini, F.; Gianquinto, G. Salinity Thresholds and Genotypic Variability of Cabbage (Brassica oleracea L.) Grown under Saline Stress. J. Sci. Food Agric. 2016, 96, 319–330. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, V.M.; Soengas, P.; Alonso-Villaverde, V.; Sotelo, T.; Cartea, M.E.; Velasco, P. Effect of Temperature Stress on the Early Vegetative Development of Brassica oleracea L. BMC Plant Biol. 2015, 15, 145. [Google Scholar] [CrossRef]
- Sahin, U.; Ekinci, M.; Ors, S.; Turan, M.; Yildiz, S.; Yildirim, E. Effects of Individual and Combined Effects of Salinity and Drought on Physiological, Nutritional and Biochemical Properties of Cabbage (Brassica oleracea Var. capitata). Sci. Hortic. 2018, 240, 196–204. [Google Scholar] [CrossRef]
- Jabeen, A.; Mir, J.I.; Malik, G.; Yasmeen, S.; Ganie, S.A.; Rasool, R.; Hakeem, K.R. Biotechnological Interventions of Improvement in Cabbage (Brassica oleracea Var. capitata L.). Sci. Hortic. 2024, 329, 112966. [Google Scholar] [CrossRef]
- Kamiński, P.; Podwyszyńska, M.; Starzycki, M.; Starzycka-Korbas, E. Interspecific Hybridisation of Cytoplasmic Male-Sterile Rapeseed with Ogura Cytoplasm and Brassica rapa Var. pekinensis as a Method to Obtain Male-Sterile Chinese Cabbage Inbred Lines. Euphytica 2016, 208, 519–534. [Google Scholar] [CrossRef]
- Singh, R.K.; Prasad, A.; Muthamilarasan, M.; Parida, S.K.; Prasad, M. Breeding and Biotechnological Interventions for Trait Improvement: Status and Prospects. Planta 2020, 252, 54. [Google Scholar] [CrossRef]
- Bos, I.; Caligari, P. Selection Methods in Plant Breeding; Springer Science & Business Media: Dordrecht, The Netherlands, 2007; ISBN 1402063709. [Google Scholar]
- Díaz-González, T.E.; Fernández-Carvajal Álvarez, M.C.; Fernández Prieto, J.A. Curso de Botánica, 1st ed.; Díaz-Huici, Á., Ed.; Trea Ciencias: Gijón, Spain, 2004; pp. 428–429. [Google Scholar]
- Cardi, T.; Earle, E.D. Production of New CMS Brassica oleracea by Transfer of ‘Anand’ cytoplasm from B. rapa through Protoplast Fusion. Theor. Appl. Genet. 1997, 94, 204–212. [Google Scholar] [CrossRef]
- Havey, M.J. The Use of Cytoplasmic Male Sterility for Hybrid Seed Production. In Molecular Biology and Biotechnology of Plant Organelles: Chloroplasts and Mitochondria; Springer: Berlin/Heidelberg, Germany, 2004; pp. 623–634. [Google Scholar]
- Zhang, L.; Meng, S.; Liu, Y.; Han, F.; Xu, T.; Zhao, Z.; Li, Z. Advances in and Perspectives on Transgenic Technology and CRISPR-Cas9 Gene Editing in Broccoli. Genes 2024, 15, 668. [Google Scholar] [CrossRef]
- Bohra, A.; Jha, U.C.; Adhimoolam, P.; Bisht, D.; Singh, N.P. Cytoplasmic Male Sterility (CMS) in Hybrid Breeding in Field Crops. Plant Cell Rep. 2016, 35, 967–993. [Google Scholar] [CrossRef] [PubMed]
- Farinati, S.; Draga, S.; Betto, A.; Palumbo, F.; Vannozzi, A.; Lucchin, M.; Barcaccia, G. Current Insights and Advances into Plant Male Sterility: New Precision Breeding Technology Based on Genome Editing Applications. Front. Plant Sci. 2023, 14, 1223861. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Li, Y.; Guo, Y.; Borrego, E.J.; Wei, Z.; Ren, H.; Ma, Z.; Yan, Y. A Rapid Pipeline for Pollen-and Anther-Specific Gene Discovery Based on Transcriptome Profiling Analysis of Maize Tissues. Int. J. Mol. Sci. 2021, 22, 6877. [Google Scholar] [CrossRef] [PubMed]
- Ren, W.; Si, J.; Chen, L.; Fang, Z.; Zhuang, M.; Lv, H.; Wang, Y.; Ji, J.; Yu, H.; Zhang, Y. Mechanism and Utilization of Ogura Cytoplasmic Male Sterility in Cruciferae Crops. Int. J. Mol. Sci. 2022, 23, 9099. [Google Scholar] [CrossRef]
- Chen, R.; Xu, Q.; Liu, Y.; Zhang, J.; Ren, D.; Wang, G.; Liu, Y. Generation of Transgene-Free Maize Male Sterile Lines Using the CRISPR/Cas9 System. Front. Plant Sci. 2018, 9, 1180. [Google Scholar] [CrossRef]
- Cheng, X.-Q.; Zhang, X.-Y.; Xue, F.; Zhu, S.-H.; Li, Y.-J.; Zhu, Q.-H.; Liu, F.; Sun, J. Characterization and Transcriptome Analysis of a Dominant Genic Male Sterile Cotton Mutant. BMC Plant Biol. 2020, 20, 312. [Google Scholar] [CrossRef]
- Shu, J.; Liu, Y.; Li, Z.; Zhang, L.; Fang, Z.; Yang, L.; Zhuang, M.; Zhang, Y.; Lv, H. Detection of the Diversity of Cytoplasmic Male Sterility Sources in Broccoli (Brassica oleracea Var. italica) Using Mitochondrial Markers. Front. Plant Sci. 2016, 7, 927. [Google Scholar] [CrossRef]
- Jing, Z.-G.; Pei, X.-L.; Tang, Z.; Liu, Q.; Zhang, X.-L.; Luo, T.-K.; Zhu, S.-Y. Molecular Identification of Ogu Cytoplasmic Male Sterile and Sequence Analysis in Broccoli (Brassica oleracea Var. italica). Guihaia 2015, 35, 239–243. [Google Scholar]
- Aalto, E.A.; Koelewijn, H.-P.; Savolainen, O. Cytoplasmic Male Sterility Contributes to Hybrid Incompatibility between Subspecies of Arabidopsis lyrata. G3 Genes Genomes Genet. 2013, 3, 1727–1740. [Google Scholar] [CrossRef]
- Colombo, N.; Galmarini, C.R. The Use of Genetic, Manual and Chemical Methods to Control Pollination in Vegetable Hybrid Seed Production: A Review. Plant Breed. 2017, 136, 287–299. [Google Scholar] [CrossRef]
- Ogura, H. Studies on the New Male-Sterility in Japanese Radish, with Special Reference to the Utilization of This Sterility towards the Practical Raising of Hybrid Seeds. Mem. Fac. Agric. Kagoshima Univ. 1968, 6, 39–78. [Google Scholar]
- Thompson, K.F. Cytoplasmic Male-Sterility in Oil-Seed Rape. Heredity 1972, 29, 253–257. [Google Scholar] [CrossRef]
- Rawat, D.; Anand, I. Male Sterility in Indian Mustard. Indian J. Genet. 1979, 39, 412–414. [Google Scholar]
- Pearson, O.H. Nature and Mechanisms of Cytoplasmic Male Sterility in Plants: A Review. HortScience 1981, 16, 482–487. [Google Scholar] [CrossRef]
- Fu, T.; Tang, G.; Yang, X. Studies on “Three Line” Polima Cytoplasmic Male Sterility Developed in Brassica napus L. Plant Breed. 1990, 104, 115–120. [Google Scholar]
- Liu, H.L.; Fu, T.D.; Yang, S.N. Discovery and Studies on Polima CMS Line. In Proceedings of the 7th International Rapeseed Congress/Convened Under the Patronage of Stanislaw Zieba; by the Plant Breeding and Acclimatization Institute under the Auspices of the Group Consultatif International de Recherche sur le Colza; Panstwowe Wydawnictwo Rolnicze i Lesne: Poznan, Poland, 1988. [Google Scholar]
- Luo, C.; Sun, Y.; Zhang, Y.; Guo, Y.; Klima, M.; Hu, S. Genetic Investigation and Cytological Comparison of Two Genic Male Sterile Lines 9012A and MSL in Brassica napus L. Euphytica 2018, 214, 124. [Google Scholar] [CrossRef]
- Frauen, M.; Noack, J.; Paulmann, W.; Grosse, F. Development and Perspectives of MSL-Hybrids in Winter Oilseed Rape in Europe. In Proceedings of the 11th GCIRC Rapessed Congress, Copenhagen, Denmark, 6–10 July 2003; pp. 316–318. [Google Scholar]
- Wan, Z.; Jing, B.; Tu, J.; Ma, C.; Shen, J.; Yi, B.; Wen, J.; Huang, T.; Wang, X.; Fu, T. Genetic Characterization of a New Cytoplasmic Male Sterility System (Hau) in Brassica juncea and Its Transfer to B. napus. Theor. Appl. Genet. 2008, 116, 355–362. [Google Scholar] [CrossRef]
- Hoser-Krauze, J.; Lakowska-Ryk, E.; Antosik, J. The Inheritance of Broccoli (Brassica oleracea L. Var. botrytis L.) Leaf Resistance to Downy Mildew-Peronospora parasitica (Pers.) Ex Fr. Genet. Pol. 1987, 28, 377–380. [Google Scholar]
- Kamiński, P. Development of Male Sterile Broccoli Lines with Raphanus Sativus Cytoplasm and Assessment of Their Value for Breeding Purposes. J. Hortic. Res. 2013, 21, 101–107. [Google Scholar] [CrossRef]
- Yamagishi, H.; Landgren, M.; Forsberg, J.; Glimelius, K. Production of Asymmetric Hybrids between Arabidopsis thaliana and Brassica napus Utilizing an Efficient Protoplast Culture System. Theor. Appl. Genet. 2002, 104, 959–964. [Google Scholar] [CrossRef]
- Prakash, S.; Kirti, P.B.; Bhat, S.R.; Gaikwad, K.; Kumar, V.D.; Chopra, V.L. A Moricandia arvensis–Based Cytoplasmic Male Sterility and Fertility Restoration System in Brassica juncea. Theor. Appl. Genet. 1998, 97, 488–492. [Google Scholar] [CrossRef]
- Zhang, R.-J.; Hu, S.-W.; Yan, J.-Q.; Sun, G.-L. Cytoplasmic Diversity in Brassica rapa L. Investigated by Mitochondrial Markers. Genet. Resour. Crop Evol. 2013, 60, 967–974. [Google Scholar] [CrossRef]
- Chen, L.; Liu, Y.-G. Male Sterility and Fertility Restoration in Crops. Annu. Rev. Plant Biol. 2014, 65, 579–606. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Yang, X.; Zhao, N.; Hu, Z.; Mackenzie, S.A.; Zhang, M.; Yang, J. Exploiting Sterility and Fertility Variation in Cytoplasmic Male Sterile Vegetable Crops. Hortic. Res. 2022, 9, uhab039. [Google Scholar] [CrossRef]
- Shahinnia, F.; Geyer, M.; Block, A.; Mohler, V.; Hartl, L. Identification of Rf9, a Gene Contributing to the Genetic Complexity of Fertility Restoration in Hybrid Wheat. Front. Plant Sci. 2020, 11, 577475. [Google Scholar] [CrossRef]
- Pelletier, G.; Budar, F. Brassica Ogu-INRA Cytoplasmic Male Sterility: An Example of Successful Plant Somatic Fusion for Hybrid Seed Production. In Somatic Genome Manipulation; Li, X.-Q., Donnelly, D.J., Jensen, T.G., Eds.; Springer: New York, NY, USA, 2015; pp. 199–216. ISBN 978-1-4939-2388-5. [Google Scholar]
- Gupta, S.K. Biology and Breeding of Crucifers; CRC Press: Boca Raton, FL, USA, 2016; ISBN 042914864X. [Google Scholar]
- Primard-Brisset, C.; Poupard, J.P.; Horvais, R.; Eber, F.; Pelletier, G.; Renard, M.; Delourme, R. A New Recombined Double Low Restorer Line for the Ogu-INRA Cms in Rapeseed (Brassica napus L.). Theor. Appl. Genet. 2005, 111, 736–746. [Google Scholar] [CrossRef]
- Long, W.; Hu, M.; Gao, J.; Sun, L.; Zhang, J.; Pu, H. Identification and Application of Markers Closely Linked to the Restorer Gene (Rfm) in Rapeseed (Brassica napus L.). Breed. Sci. 2019, 69, 316–322. [Google Scholar] [CrossRef]
- Hu, X.; Sullivan-Gilbert, M.; Kubik, T.; Danielson, J.; Hnatiuk, N.; Marchione, W.; Greene, T.; Thompson, S.A. Mapping of the Ogura Fertility Restorer Gene Rfo and Development of Rfo Allele-Specific Markers in Canola (Brassica napus L.). Mol. Breed. 2008, 22, 663–674. [Google Scholar] [CrossRef]
- Kang, L.; Li, P.; Wang, A.; Ge, X.; Li, Z. A Novel Cytoplasmic Male Sterility in Brassica napus (Inap CMS) with Carpelloid Stamens via Protoplast Fusion with Chinese Woad. Front. Plant Sci. 2017, 8, 529. [Google Scholar] [CrossRef]
- Kaminski, P.; Marasek-Ciolakowska, A.; Podwyszynska, M.; Starzycki, M.; Starzycka-Korbas, E.; Nowak, K. Development and Characteristics of Interspecific Hybrids between Brassica oleracea L. and B. napus L. Agronomy 2020, 10, 1339. [Google Scholar] [CrossRef]
- Yu, H.; Li, Z.; Ren, W.; Han, F.; Yang, L.; Zhuang, M.; Lv, H.; Liu, Y.; Fang, Z.; Zhang, Y. Creation of Fertility-Restored Materials for Ogura CMS in Brassica oleracea by Introducing Rfo Gene from Brassica napus via an Allotriploid Strategy. Theor. Appl. Genet. 2020, 133, 2825–2837. [Google Scholar] [CrossRef] [PubMed]
- Ren, J.P.; Dickson, M.H.; Earle, E.D. Improved Resistance to Bacterial Soft Rot by Protoplast Fusion between Brassica rapa and B. oleracea. Theor. Appl. Genet. 2000, 100, 810–819. [Google Scholar] [CrossRef]
- FitzJohn, R.G.; Maddison, W.P.; Otto, S.P. Estimating Trait-Dependent Speciation and Extinction Rates from Incompletely Resolved Phylogenies. Syst. Biol. 2009, 58, 595–611. [Google Scholar] [CrossRef] [PubMed]
- Touzet, P.; Meyer, E.H. Cytoplasmic Male Sterility and Mitochondrial Metabolism in Plants. Mitochondrion 2014, 19, 166–171. [Google Scholar] [CrossRef]
- Ranaware, A.S.; Kunchge, N.S.; Lele, S.S.; Ochatt, S.J. Protoplast Technology and Somatic Hybridisation in the Family Apiaceae. Plants 2023, 12, 1060. [Google Scholar] [CrossRef]
- Pelletier, G.; Budar, F. The Molecular Biology of Cytoplasmically Inherited Male Sterility and Prospects for Its Engineering. Curr. Opin. Biotechnol. 2007, 18, 121–125. [Google Scholar] [CrossRef]
- Toriyama, K. Molecular Basis of Cytoplasmic Male Sterility and Fertility Restoration in Rice. Plant Biotechnol. 2021, 38, 285–295. [Google Scholar] [CrossRef]
- Duroc, Y.; Gaillard, C.; Hiard, S.; Defrance, M.-C.; Pelletier, G.; Budar, F. Biochemical and Functional Characterization of ORF138, a Mitochondrial Protein Responsible for Ogura Cytoplasmic Male Sterility in Brassiceae. Biochimie 2005, 87, 1089–1100. [Google Scholar] [CrossRef]
- Ge, X.; Chen, J.; Li, O.; Zou, M.; Tao, B.; Zhao, L.; Wen, J.; Yi, B.; Tu, J.; Shen, J. ORF138 Causes Abnormal Lipid Metabolism in the Tapetum Leading to Ogu Cytoplasmic Male Sterility in Brassica napus. J. Integr. Agric. 2024, in press. [Google Scholar] [CrossRef]
- Yamagishi, H.; Bhat, S.R. Cytoplasmic Male Sterility in Brassicaceae Crops. Breed. Sci. 2014, 64, 38–47. [Google Scholar] [CrossRef]
- Gregory, D.W.; Cocking, E.C. The Large-Scale Isolation of Protoplasts from Immature Tomato Fruit. J. Cell Biol. 1965, 24, 143. [Google Scholar] [CrossRef] [PubMed]
- Pasternak, T.; Paponov, I.A.; Kondratenko, S. Optimizing Protocols for Arabidopsis Shoot and Root Protoplast Cultivation. Plants 2021, 10, 375. [Google Scholar] [CrossRef] [PubMed]
- Reed, K.M.; Bargmann, B.O.R. Protoplast Regeneration and Its Use in New Plant Breeding Technologies. Front. Genome Ed. 2021, 3, 734951. [Google Scholar] [CrossRef] [PubMed]
- Shepard, J.F.; Totten, R.E. Isolation and Regeneration of Tobacco Mesophyll Cell Protoplasts under Low Osmotic Conditions. Plant Physiol. 1975, 55, 689–694. [Google Scholar] [CrossRef]
- Dudits, D.; Kao, K.N.; Constabel, F.; Gamborg, O.L. Embryogenesis and Formation of Tetraploid and Hexaploid Plants from Carrot Protoplasts. Can. J. Bot. 1976, 54, 1063–1067. [Google Scholar] [CrossRef]
- Pareek, L.K.; Chandra, N. Somatic Embryogenesis in Leaf Callus From Cauliflower (Brassica oleracea Var. botrytis). Plant Sci. Lett. 1978, 11, 311–316. [Google Scholar] [CrossRef]
- Potrykus, I.; Shillito, R.D. Protoplasts: Isolation, Culture, Plant Regeneration. In Methods in Enzymology; Elsevier: Amsterdam, The Netherlands, 1986; Volume 118, pp. 549–578. ISBN 0076-6879. [Google Scholar]
- Lian, Y.; Lin, G.; Zheng, Q. Tri-Parental Protoplast Fusion of Brassica Species to Produce Somatic Hybrids with High Genetic and Phenotypic Variability. Indian J. Genet. 2015, 75, 497. [Google Scholar] [CrossRef]
- Bruznican, S.; Eeckhaut, T.; Van Huylenbroeck, J.; De Keyser, E.; De Clercq, H.; Geelen, D. An Asymmetric Protoplast Fusion and Screening Method for Generating Celeriac Cybrids. Sci. Rep. 2021, 11, 4553. [Google Scholar] [CrossRef]
- Jourdan, P.S.; Earle, E.D.; Mutschler, M.A. Synthesis of Male Sterile, Triazine-Resistant Brassica napus by Somatic Hybridization between Cytoplasmic Male Sterile B. oleracea and Atrazine-Resistant B. campestris. Theor. Appl. Genet. 1989, 78, 445–455. [Google Scholar] [CrossRef]
- Pelletier, G.; Primard, C.; Vedel, F.; Chetrit, P.; Remy, R.; Rousselle; Renard, M. Intergeneric Cytoplasmic Hybridization in Cruciferae by Protoplast Fusion. Mol. Gen. Genet. 1983, 191, 244–250. [Google Scholar] [CrossRef]
- Stajič, E. Improvements in Protoplast Isolation Protocol and Regeneration of Different Cabbage (Brassica oleracea Var. capitata L.) Cultivars. Plants 2023, 12, 3074. [Google Scholar] [CrossRef]
- Hussain, M.; Li, H.; Badri Anarjan, M.; Lee, S. Development of a General Protoplast-Mediated Regeneration Protocol for Brassica: Cabbage and Cauliflower as Examples. Hortic. Environ. Biotechnol. 2024, 65, 313–321. [Google Scholar] [CrossRef]
- Yang, D.; Zhao, Y.; Liu, Y.; Han, F.; Li, Z. A High-Efficiency PEG-Ca2+-Mediated Transient Transformation System for Broccoli Protoplasts. Front. Plant Sci. 2022, 13, 1081321. [Google Scholar] [CrossRef] [PubMed]
- Kiełkowska, A.; Adamus, A. Exogenously Applied Polyamines Reduce Reactive Oxygen Species, Enhancing Cell Division and the Shoot Regeneration from Brassica oleracea L. Var. capitata Protoplasts. Agronomy 2021, 11, 735. [Google Scholar] [CrossRef]
- Kiełkowska, A.; Adamus, A. Peptide Growth Factor Phytosulfokine-α Stimulates Cell Divisions and Enhances Regeneration from B. Oleracea Var. Capitata L. Protoplast Culture. J. Plant Growth Regul. 2019, 38, 931–944. [Google Scholar] [CrossRef]
- Kiełkowska, A.; Adamus, A. An Alginate-Layer Technique for Culture of Brassica oleracea L. Protoplasts. Vitr. Cell. Dev. Biol.-Plant 2012, 48, 265–273. [Google Scholar] [CrossRef]
- Wang, G.; Tang, Y.; Yan, H.; Sheng, X.; Hao, W.; Zhang, L.; Lu, K.; Liu, F. Production and Characterization of Interspecific Somatic Hybrids between Brassica oleracea Var. botrytis and B. nigra and Their Progenies for the Selection of Advanced Pre-Breeding Materials. Plant Cell Rep. 2011, 30, 1811–1821. [Google Scholar] [CrossRef]
- Bekalu, Z.E.; Panting, M.; Bæksted Holme, I.; Brinch-Pedersen, H. Opportunities and Challenges of In Vitro Tissue Culture Systems in the Era of Crop Genome Editing. Int. J. Mol. Sci. 2023, 24, 11920. [Google Scholar] [CrossRef]
- Navrátilová, B. Protoplast Cultures and Protoplast Fusion focused on Brassicaceae—A Review. Hortic. Sci. 2004, 31, 140–157. [Google Scholar] [CrossRef]
- Fry, S.C. Primary Cell Wall Metabolism: Tracking the Careers of Wall Polymers in Living Plant Cells. New Phytol. 2004, 161, 641–675. [Google Scholar] [CrossRef]
- Keegstra, K. Plant Cell Walls. Plant Physiol. 2010, 154, 483–486. [Google Scholar] [CrossRef] [PubMed]
- Amos, R.A.; Mohnen, D. Critical Review of Plant Cell Wall Matrix Polysaccharide Glycosyltransferase Activities Verified by Heterologous Protein Expression. Front. Plant Sci. 2019, 10, 915. [Google Scholar] [CrossRef] [PubMed]
- Femenia, A.; Bestard, M.J.; Sanjuan, N.; Rosselló, C.; Mulet, A. Effect of Rehydration Temperature on the Cell Wall Components of Broccoli (Brassica oleracea L. Var. italica) Plant Tissues. J. Food Eng. 2000, 46, 157–163. [Google Scholar] [CrossRef]
- Schäfer, J.; Bunzel, M. Maturation-Related Modifications of Cell Wall Structures of Kohlrabi (Brassica oleracea Var. gongylodes). Eur. Food Res. Technol. 2018, 244, 893–902. [Google Scholar] [CrossRef]
- Femenia, A.; Waldron, K.W.; Robertson, J.A.; Selvendran, R.R. Compositional and Structural Modification of the Cell Wall of Cauliflower (Brassica oleracea L. Var botrytis) during Tissue Development and Plant Maturation. Carbohydr. Polym. 1999, 39, 101–108. [Google Scholar] [CrossRef]
- Chikkala, V.R.N.; Nugent, G.D.; Dix, P.J.; Stevenson, T.W. Regeneration from Leaf Explants and Protoplasts of Brassica oleracea Var. Botrytis (Cauliflower). Sci. Hortic. 2009, 119, 330–334. [Google Scholar] [CrossRef]
- Chen, L.-P.; Zhang, M.-F.; Xiao, Q.-B.; Wu, J.-G.; Hirata, Y. Plant Regeneration from Hypocotyl Protoplasts of Red Cabbage (Brassica oleracea) by Using Nurse Cultures. Plant Cell Tissue Organ Cult. 2004, 77, 133–138. [Google Scholar] [CrossRef]
- Jeong, Y.Y.; Lee, H.-Y.; Kim, S.W.; Noh, Y.-S.; Seo, P.J. Optimization of Protoplast Regeneration in the Model Plant Arabidopsis thaliana. Plant Methods 2021, 17, 21. [Google Scholar] [CrossRef]
- Yoo, S.-D.; Cho, Y.-H.; Sheen, J. Arabidopsis Mesophyll Protoplasts: A Versatile Cell System for Transient Gene Expression Analysis. Nat. Protoc. 2007, 2, 1565–1572. [Google Scholar] [CrossRef]
- Li, X.; Sandgrind, S.; Moss, O.; Guan, R.; Ivarson, E.; Wang, E.S.; Kanagarajan, S.; Zhu, L.-H. Efficient Protoplast Regeneration Protocol and CRISPR/Cas9-Mediated Editing of Glucosinolate Transporter (GTR) Genes in Rapeseed (Brassica napus L.). Front. Plant Sci. 2021, 12, 680859. [Google Scholar] [CrossRef]
- Quazi, H.M. Isolation and Culture of Protoplasts from Brassica. N. Z. J. Bot. 1975, 13, 571–576. [Google Scholar] [CrossRef]
- Zhao, K.-N.; Bittisnich, D.J.; Halloran, G.M.; Whitecross, M.I. Studies of Cotyledon Protoplast Cultures from B. napus, B. campestris and B. oleracea. II: Callus Formation and Plant Regeneration. Plant Cell Tissue Organ Cult. 1995, 40, 73–84. [Google Scholar] [CrossRef]
- Kartha, K.K.; Michayluk, M.R.; Kao, K.N.; Gamborg, O.L.; Constabel, F. Callus Formation and Plant Regeneration from Mesophyll Protoplasts of Rape Plants (Brassica napus L. Cv. Zephyr). Plant Sci. Lett. 1974, 3, 265–271. [Google Scholar] [CrossRef]
- Emmerling, M.; Seitz, H.U. Influence of a Specific Xyloglucan-Nonasaccharide Derived from Cell Walls of Suspension-Cultured Cells of Daucus carota L. on Regenerating Carrot Protoplasts. Planta 1990, 182, 174–180. [Google Scholar] [CrossRef] [PubMed]
- Glimelius, K. High Growth Rate and Regeneration Capacity of Hypocotyl Protoplasts in Some Brassicaceae. Physiol. Plant. 1984, 61, 38–44. [Google Scholar] [CrossRef]
- Gambhir, G.; Kumar, P.; Srivastava, D.K. High Frequency Regeneration of Plants from Cotyledon and Hypocotyl Cultures in Brassica oleracea Cv. Pride of India. Biotechnol. Rep. 2017, 15, 107–113. [Google Scholar] [CrossRef]
- Sharma, S.; Gambhir, G.; Srivastava, D.K. High Frequency Organogenesis in Cotyledon and Hypocotyl Explants of Cabbage (Brassica oleracea L. Var. capitata). Natl. Acad. Sci. Lett. 2014, 37, 5–12. [Google Scholar] [CrossRef]
- Robertson, D.; Earle, E.D. Plant Regeneration from Leaf Protoplasts of Brassica oleracea Var. italica CV Green Comet Broccoli. Plant Cell Rep. 1986, 5, 61–64. [Google Scholar] [CrossRef]
- Zhong, Z.X.; Li, X. Plant Regeneration from Hypocotyl Protoplasts Culture of Brassica oleracea Var. italica. Acta Agric. Shanghai 1993, 9, 4. [Google Scholar]
- Mix, W.G.; Wang, H.M. Regeneration of Germ Free Broccoli (Brassica oleracea L. Var. italica) by in Vitro Bud Culture. Landbauforsch. Volkenrode 1990, 40, 251–256. [Google Scholar]
- Kaur, N.D.; Vyvadilová, M.; Klíma, M.; Bechyně, M. A Simple Procedure for Mesophyll Protoplast Culture and Plant Regeneration in Brassica oleracea L. Czech J. Genet. Plant Breed. 2006, 42, 103–110. [Google Scholar] [CrossRef]
- Godel-Jędrychowska, K.; Maćkowska, K.; Kurczyńska, E.; Grzebelus, E. Composition of the Reconstituted Cell Wall in Protoplast-Derived Cells of Daucus Is Affected by Phytosulfokine (PSK). Int. J. Mol. Sci. 2019, 20, 5490. [Google Scholar] [CrossRef] [PubMed]
- Hall, R.D.; Pedersen, C.; Krens, F.A. Regeneration of Plants from Protoplasts of Beta vulgaris (Sugar Beet). In Plant Protoplasts and Genetic Engineering V; Springer: Berlin/Heidelberg, Germany, 1994; pp. 16–37. [Google Scholar]
- Pati, P.K.; Sharma, M.; Ahuja, P.S. Rose Protoplast Isolation and Culture and Heterokaryon Selection by Immobilization in Extra Thin Alginate Film. Protoplasma 2008, 233, 165–171. [Google Scholar] [CrossRef] [PubMed]
- Grzebelus, E.; Szklarczyk, M.; Baranski, R. An Improved Protocol for Plant Regeneration from Leaf-and Hypocotyl-Derived Protoplasts of Carrot. Plant Cell Tissue Organ Cult. 2012, 109, 101–109. [Google Scholar] [CrossRef]
- Eeckhaut, T.; Lakshmanan, P.S.; Deryckere, D.; Van Bockstaele, E.; Van Huylenbroeck, J. Progress in Plant Protoplast Research. Planta 2013, 238, 991–1003. [Google Scholar] [CrossRef]
- Ravanfar, S.A.; Orbovic, V.; Moradpour, M.; Abdul Aziz, M.; Karan, R.; Wallace, S.; Parajuli, S. Improvement of Tissue Culture, Genetic Transformation, and Applications of Biotechnology to Brassica. Biotechnol. Genet. Eng. Rev. 2017, 33, 1–25. [Google Scholar] [CrossRef]
- Ebrahimzadegan, R.; Maroufi, A. In Vitro Regeneration and Agrobacterium-Mediated Genetic Transformation of Dragon’s Head Plant (Lallemantia iberica). Sci. Rep. 2022, 12, 1784. [Google Scholar] [CrossRef]
- Sandgrind, S.; Li, X.; Ivarson, E.; Ahlman, A.; Zhu, L.H. Establishment of an Efficient Protoplast Regeneration and Transfection Protocol for Field Cress (Lepidium campestre). Front. Genome Ed. 2021, 3, 757540. [Google Scholar] [CrossRef]
- Tomiczak, K.; Sliwinska, E.; Rybczyński, J.J. Comparison of the Morphogenic Potential of Five Gentiana Species in Leaf Mesophyll Protoplast Culture and Ploidy Stability of Regenerated Calli and Plants. Plant Cell Tissue Organ Cult. 2016, 126, 319–331. [Google Scholar] [CrossRef]
- Aleza, P.; García-Lor, A.; Juárez, J.; Navarro, L. Recovery of Citrus Cybrid Plants with Diverse Mitochondrial and Chloroplastic Genome Combinations by Protoplast Fusion Followed by in Vitro Shoot, Root, or Embryo Micrografting. Plant Cell Tissue Organ Cult. 2016, 126, 205–217. [Google Scholar] [CrossRef]
- Lin, C.; Hsu, C.; Yang, L.; Lee, L.; Fu, J.; Cheng, Q.; Wu, F.; Hsiao, H.C.; Zhang, Y.; Zhang, R. Application of Protoplast Technology to CRISPR/Cas9 Mutagenesis: From Single-cell Mutation Detection to Mutant Plant Regeneration. Plant Biotechnol. J. 2018, 16, 1295–1310. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.-C.; Ahn, W.S.; Cha, A.; Jie, E.Y.; Kim, S.W.; Hwang, B.-H.; Lee, S. Development of Glucoraphanin-Rich Broccoli (Brassica oleracea Var. italica) by CRISPR/Cas9-Mediated DNA-Free BolMYB28 Editing. Plant Biotechnol. Rep. 2022, 16, 123–132. [Google Scholar] [CrossRef]
- Sigareva, M.A.; Earle, E.D. Direct Transfer of a Cold-Tolerant Ogura Male-Sterile Cytoplasm into Cabbage (Brassica oleracea ssp. capitata) via Protoplast Fusion. Theor. Appl. Genet. 1997, 94, 213–220. [Google Scholar] [CrossRef]
- Sedlák, P.; Sedláková, V.; Vašek, J.; Zeka, D.; Čílová, D.; Melounová, M.; Orsák, M.; Domkářová, J.; Doležal, P.; Vejl, P. Phenotypic, Molecular and Biochemical Evaluation of Somatic Hybrids between Solanum tuberosum and S. bulbocastanum. Sci. Rep. 2022, 12, 4484. [Google Scholar] [CrossRef]
- Liu, S.; Xia, G. The Place of Asymmetric Somatic Hybridization in Wheat Breeding. Plant Cell Rep. 2014, 33, 595–603. [Google Scholar] [CrossRef]
- Zhao, Z.; Hu, T.; Ge, X.-H.; Du, X.; Ding, L.; Li, Z. Production and Characterization of Intergeneric Somatic Hybrids between Brassica napus and Orychophragmus violaceus and Their Backcrossing Progenies. Plant Cell Rep. 2008, 27, 1611–1621. [Google Scholar] [CrossRef]
- Dudits, D. Increase of Genetic Variability by Asymmetric Cell Hybridization and Isolated Chromosome Transfer. In Progress in Plant Protoplast Research, Proceedings of the 7th International Protoplast Symposium, Wageningen, The Netherlands, 6–11 December 1987; Springer: Berlin/Heidelberg, Germany, 1988; pp. 275–281. [Google Scholar]
- Forsberg, J.; Landgren, M.; Glimelius, K. Fertile Somatic Hybrids between Brassica napus and Arabidopsis thaliana. Plant Sci. 1994, 95, 213–223. [Google Scholar] [CrossRef]
- Sheng, X.; Liu, F.; Zhu, Y.; Zhao, H.; Zhang, L.; Chen, B. Production and Analysis of Intergeneric Somatic Hybrids between Brassica oleracea and Matthiola incana. Plant Cell Tissue Organ Cult. 2007, 92, 55–62. [Google Scholar] [CrossRef]
- Yue, J.-J.; Yuan, J.-L.; Wu, F.-H.; Yuan, Y.-H.; Cheng, Q.-W.; Hsu, C.-T.; Lin, C.-S. Protoplasts: From Isolation to CRISPR/Cas Genome Editing Application. Front. Genome Ed. 2021, 3, 717017. [Google Scholar] [CrossRef]
- Dudits, D.; Hadlaczky, G.; Lévi, E.; Fejér, O.; Haydu, Z.; Lazar, G. Somatic Hybridisation of Daucus carota and D. capillifolius by Protoplast Fusion. Theor. Appl. Genet. 1977, 51, 127–132. [Google Scholar] [CrossRef]
- Toda, E.; Koiso, N.; Takebayashi, A.; Ichikawa, M.; Kiba, T.; Osakabe, K.; Osakabe, Y.; Sakakibara, H.; Kato, N.; Okamoto, T. An Efficient DNA-and Selectable-Marker-Free Genome-Editing System Using Zygotes in Rice. Nat. Plants 2019, 5, 363–368. [Google Scholar] [CrossRef] [PubMed]
- Scholze, P.; Krämer, R.; Ryschka, U.; Klocke, E.; Schumann, G. Somatic Hybrids of Vegetable Brassicas as Source for New Resistances to Fungal and Virus Diseases. Euphytica 2010, 176, 1–14. [Google Scholar] [CrossRef]
- Joseph, B.; Corwin, J.A.; Li, B.; Atwell, S.; Kliebenstein, D.J. Cytoplasmic Genetic Variation and Extensive Cytonuclear Interactions Influence Natural Variation in the Metabolome. Elife 2013, 2, e00776. [Google Scholar] [CrossRef] [PubMed]
- Terada, R.; Yamashita, Y.; Nishibayashi, S.; Shimamoto, K. Somatic Hybrids between Brassica oleracea and B. campestris: Selection by the Use of Iodoacetamide Inactivation and Regeneration Ability. Theor. Appl. Genet. 1987, 73, 379–384. [Google Scholar] [CrossRef] [PubMed]
- Gamborg, O.L.; Miller, R.; Ojima, K. Nutrient Requirements of Suspension Cultures of Soybean Root Cells. Exp. Cell Res. 1968, 50, 151–158. [Google Scholar] [CrossRef]
- Murashige, T.; Skoog, F. A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiol. Plant. 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Kao, K.N.; Michayluk, M.R. Nutritional Requirements for Growth of Vicia Hajastana Cells and Protoplasts at a Very Low Population Density in Liquid Media. Planta 1975, 126, 105–110. [Google Scholar] [CrossRef]
- Chen, L.-P.; Zhang, M.-F.; Li, C.-S.; Hirata, Y. Production of Interspecific Somatic Hybrids between Tuber Mustard (Brassica juncea) and Red Cabbage (Brassica oleracea). Plant Cell Tissue Organ Cult. 2005, 80, 305–311. [Google Scholar] [CrossRef]
- Nugent, G.D.; Coyne, S.; Nguyen, T.T.; Kavanagh, T.A.; Dix, P.J. Nuclear and Plastid Transformation of Brassica oleracea Var. botrytis (Cauliflower) Using PEG-Mediated Uptake of DNA into Protoplasts. Plant Sci. 2006, 170, 135–142. [Google Scholar] [CrossRef]
- Fujita, Y.; Sunaga, K.; Shim, S.; Yamada, W.; Ohnishi, T.; Bang, S.W. Production of a Desirable Brassica oleracea CMS Line Using an Alloplasmic B. rapa CMS Line Carrying Diplotaxis erucoides Cytoplasm as a Bridge Plant. Plant Breed. 2018, 137, 162–170. [Google Scholar] [CrossRef]
- Sigareva, M.A.; Earle, E.D. Regeneration of Plants from Protoplasts of Capsella bursa-pastoris and Somatic Hybridization with Rapid Cycling Brassica oleracea. Plant Cell Rep. 1999, 18, 412–417. [Google Scholar] [CrossRef]
- Hansen, L.N. Intertribal Somatic Hybridization between Rapid Cycling Brassica oleracea L. and Camelina sativa (L.) Crantz. Euphytica 1998, 104, 173–179. [Google Scholar] [CrossRef]
- Lian, Y.; Lin, G.; Zhao, X. Morphological, Cytological, and Molecular Characterization of Hybrids and Their Progenies Derived from the Somatic Hybridization of Brassica campestris and Brassica oleracea. Chin. J. Biotechnol. 2011, 11, 1586–1597. [Google Scholar]
- Su, W.; Xu, M.; Radani, Y.; Yang, L. Technological Development and Application of Plant Genetic Transformation. Int. J. Mol. Sci. 2023, 24, 10646. [Google Scholar] [CrossRef]
- Ahmar, S.; Gill, R.A.; Jung, K.-H.; Faheem, A.; Qasim, M.U.; Mubeen, M.; Zhou, W. Conventional and Molecular Techniques from Simple Breeding to Speed Breeding in Crop Plants: Recent Advances and Future Outlook. Int. J. Mol. Sci. 2020, 21, 2590. [Google Scholar] [CrossRef]
- Hwang, H.-H.; Yu, M.; Lai, E.-M. Agrobacterium-Mediated Plant Transformation: Biology and Applications. Arab. Book 2017, 15, e0186. [Google Scholar] [CrossRef]
- Gelvin, S.B. Agrobacterium-Mediated Plant Transformation: The Biology behind the “Gene-Jockeying” Tool. Microbiol. Mol. Biol. Rev. 2003, 67, 16–37. [Google Scholar] [CrossRef]
- Li, Y.; Man, S.; Ye, S.; Liu, G.; Ma, L. CRISPR-Cas-based Detection for Food Safety Problems: Current Status, Challenges, and Opportunities. Compr. Rev. Food Sci. Food Saf. 2022, 21, 3770–3798. [Google Scholar] [CrossRef]
- Zhang, T.; Xie, Z.; Zheng, X.; Liang, Y.; Lu, Y.; Zhong, H.; Qian, F.; Zhu, Y.; Sun, R.; Sheng, Y. CRISPR-Cas12a Powered Hybrid Nanoparticle for Extracellular Vesicle Aggregation and in-Situ MicroRNA Detection. Biosens. Bioelectron. 2024, 245, 115856. [Google Scholar] [CrossRef]
- Badon, I.W.; Oh, Y.; Kim, H.-J.; Lee, S.H. Recent Application of CRISPR-Cas12 and OMEGA System for Genome Editing. Mol. Ther. 2024, 32, 32–43. [Google Scholar] [CrossRef]
- Nakamura, M.; Gao, Y.; Dominguez, A.A.; Qi, L.S. CRISPR Technologies for Precise Epigenome Editing. Nat. Cell Biol. 2021, 23, 11–22. [Google Scholar] [CrossRef] [PubMed]
- Anzalone, A.V.; Koblan, L.W.; Liu, D.R. Genome Editing with CRISPR–Cas Nucleases, Base Editors, Transposases and Prime Editors. Nat. Biotechnol. 2020, 38, 824–844. [Google Scholar] [CrossRef] [PubMed]
- Jinek, M.; Chylinski, K.; Fonfara, I.; Hauer, M.; Doudna, J.A.; Charpentier, E. A Programmable Dual-RNA–Guided DNA Endonuclease in Adaptive Bacterial Immunity. Science 2012, 337, 816–821. [Google Scholar] [CrossRef] [PubMed]
- Donohoue, P.D.; Barrangou, R.; May, A.P. Advances in Industrial Biotechnology Using CRISPR-Cas Systems. Trends Biotechnol. 2018, 36, 134–146. [Google Scholar] [CrossRef]
- Jaganathan, D.; Ramasamy, K.; Sellamuthu, G.; Jayabalan, S.; Venkataraman, G. CRISPR for Crop Improvement: An Update Review. Front. Plant Sci. 2018, 9, 985. [Google Scholar] [CrossRef]
- Das, A.; Sharma, N.; Prasad, M. CRISPR/Cas9: A Novel Weapon in the Arsenal to Combat Plant Diseases. Front. Plant Sci. 2019, 9, 2008. [Google Scholar] [CrossRef]
- Andersson, M.; Turesson, H.; Nicolia, A.; Fält, A.-S.; Samuelsson, M.; Hofvander, P. Efficient Targeted Multiallelic Mutagenesis in Tetraploid Potato (Solanum tuberosum) by Transient CRISPR-Cas9 Expression in Protoplasts. Plant Cell Rep. 2017, 36, 117–128. [Google Scholar] [CrossRef]
- Hsu, M.-N.; Chang, Y.-H.; Truong, V.A.; Lai, P.-L.; Nguyen, T.K.N.; Hu, Y.-C. CRISPR Technologies for Stem Cell Engineering and Regenerative Medicine. Biotechnol. Adv. 2019, 37, 107447. [Google Scholar] [CrossRef]
- Andersson, M.; Turesson, H.; Olsson, N.; Fält, A.; Ohlsson, P.; Gonzalez, M.N.; Samuelsson, M.; Hofvander, P. Genome Editing in Potato via CRISPR-Cas9 Ribonucleoprotein Delivery. Physiol. Plant. 2018, 164, 378–384. [Google Scholar] [CrossRef]
- Heath, D.W.; Earle, E.D. Synthesis of Low Linolenic Acid Rapeseed (Brassica napus L.) through Protoplast Fusion. Euphytica 1997, 93, 339–343. [Google Scholar] [CrossRef]
- Yamagishi, H.; Nakagawa, S.; Kinoshita, D.; Ishibashi, A.; Yamashita, Y. Somatic Hybrids between Arabidopsis thaliana and Cabbage (Brassica oleracea L.) with All Chromosomes Derived from A. Thaliana and Low Levels of Fertile Seed. JJSHS 2008, 77, 277–282. [Google Scholar] [CrossRef]
- Zhang, L.; Zhao, H.; Chen, B.; Liu, F. Development and Identification of Interspecific Somatic Hybrids between Cauliflower and Black Mustard. Chin. Bull. Bot. 2008, 25, 176. [Google Scholar]
- Lian, Y.-J.; Lin, G.-Z.; Zhao, X.-M.; Lim, H.-T. Production and Genetic Characterization of Somatic Hybrids between Leaf Mustard (Brassica juncea) and Broccoli (Brassica oleracea). Vitr. Cell. Dev. Biol.—Plant 2011, 47, 289–296. [Google Scholar] [CrossRef]
- Ma, C.; Liu, M.; Li, Q.; Si, J.; Ren, X.; Song, H. Efficient BoPDS Gene Editing in Cabbage by the CRISPR/Cas9 System. Hortic. Plant J. 2019, 5, 164–169. [Google Scholar] [CrossRef]
- Shea, D.J.; Tomaru, Y.; Itabashi, E.; Nakamura, Y.; Miyazaki, T.; Kakizaki, T.; Naher, T.N.; Shimizu, M.; Fujimoto, R.; Fukai, E. The Production and Characterization of a BoFLC2 Introgressed Brassica rapa by Repeated Backcrossing to an F1. Breed. Sci. 2018, 68, 316–325. [Google Scholar] [CrossRef]
- Sun, Q.; Lin, L.; Liu, D.; Wu, D.; Fang, Y.; Wu, J.; Wang, Y. CRISPR/Cas9-Mediated Multiplex Genome Editing of the BnWRKY11 and BnWRKY70 Genes in Brassica napus L. Int. J. Mol. Sci. 2018, 19, 2716. [Google Scholar] [CrossRef]
- Hong, J.K.; Suh, E.J.; Park, S.R.; Park, J.; Lee, Y.-H. Multiplex CRISPR/Cas9 Mutagenesis of BrVRN1 Delays Flowering Time in Chinese Cabbage (Brassica rapa L. ssp. pekinensis). Agriculture 2021, 11, 1286. [Google Scholar] [CrossRef]
- Jeong, S.Y.; Ahn, H.; Ryu, J.; Oh, Y.; Sivanandhan, G.; Won, K.-H.; Park, Y.D.; Kim, J.-S.; Kim, H.; Lim, Y.P. Generation of Early-Flowering Chinese Cabbage (Brassica rapa spp. pekinensis) through CRISPR/Cas9-Mediated Genome Editing. Plant Biotechnol. Rep. 2019, 13, 491–499. [Google Scholar]
- Neequaye, M.; Steuernagel, B.; Saha, S.; Trick, M.; Troncoso-Rey, P.; van den Bosch, F.; Traka, M.H.; Østergaard, L.; Mithen, R. Characterisation of the Introgression of Brassica Villosa Genome into Broccoli to Enhance Methionine-Derived Glucosinolates and Associated Health Benefits. Front. Plant Sci. 2022, 13, 855707. [Google Scholar] [CrossRef]
- Wu, Z.; Yang, Y.; Li, T.; Shen, Z.; Zhou, X.; Zhang, Y. Genetic Characterization and Fine Mapping of a Recessive Genic Male-Sterile Gene in Flowering Chinese Cabbage (Brassica rapa Var. parachinensis). 3 Biotech 2024, 14, 160. [Google Scholar] [CrossRef]
- Singh, S.; Bhatia, R.; Kumar, R.; Sharma, K.; Dash, S.; Dey, S.S. Cytoplasmic Male Sterile and Doubled Haploid Lines with Desirable Combining Ability Enhances the Concentration of Important Antioxidant Attributes in Brassica oleracea. Euphytica 2018, 214, 207. [Google Scholar] [CrossRef]
- Sanchez-Puerta, M.V.; Zubko, M.K.; Palmer, J.D. Homologous Recombination and Retention of a Single Form of Most Genes Shape the Highly Chimeric Mitochondrial Genome of a Cybrid Plant. New Phytol. 2015, 206, 381–396. [Google Scholar] [CrossRef] [PubMed]
- Chase, C.D.; Gabay-Laughnan, S. Cytoplasmic Male Sterility and Fertility Restoration by Nuclear Genes. In Molecular Biology and Biotechnology of Plant Organelles: Chloroplasts and Mitochondria; Springer: Berlin/Heidelberg, Germany, 2004; pp. 593–621. [Google Scholar]
- Johnson, A.A.T.; Piovano, S.M.; Ravichandran, V.; Veilleux, R.E. Selection of Monoploids for Protoplast Fusion and Generation of Intermonoploid Somatic Hybrids of Potato. Am. J. Potato Res. 2001, 78, 19–29. [Google Scholar] [CrossRef]
- Wang, Y.; Ji, J.; Fang, Z.; Yang, L.; Zhuang, M.; Zhang, Y.; Lv, H. BoGDB: An Integrative Genomic Database for Brassica oleracea L. Front. Plant Sci. 2022, 13, 852291. [Google Scholar] [CrossRef]
- Liu, S.; Liu, Y.; Yang, X.; Tong, C.; Edwards, D.; Parkin, I.A.P.; Zhao, M.; Ma, J.; Yu, J.; Huang, S. The Brassica oleracea Genome Reveals the Asymmetrical Evolution of Polyploid Genomes. Nat. Commun. 2014, 5, 3930. [Google Scholar] [CrossRef]
- Parkin, I.A.P.; Koh, C.; Tang, H.; Robinson, S.J.; Kagale, S.; Clarke, W.E.; Town, C.D.; Nixon, J.; Krishnakumar, V.; Bidwell, S.L. Transcriptome and Methylome Profiling Reveals Relics of Genome Dominance in the Mesopolyploid Brassica oleracea. Genome Biol. 2014, 15, R77. [Google Scholar] [CrossRef]
- Belser, C.; Istace, B.; Denis, E.; Dubarry, M.; Baurens, F.-C.; Falentin, C.; Genete, M.; Berrabah, W.; Chèvre, A.-M.; Delourme, R. Chromosome-Scale Assemblies of Plant Genomes Using Nanopore Long Reads and Optical Maps. Nat. Plants 2018, 4, 879–887. [Google Scholar] [CrossRef]
- Sun, D.; Wang, C.; Zhang, X.; Zhang, W.; Jiang, H.; Yao, X.; Liu, L.; Wen, Z.; Niu, G.; Shan, X. Draft Genome Sequence of Cauliflower (Brassica oleracea L. Var. botrytis) Provides New Insights into the C Genome in Brassica Species. Hortic. Res. 2019, 6, 82. [Google Scholar] [CrossRef]
- Guo, N.; Wang, S.; Gao, L.; Liu, Y.; Wang, X.; Lai, E.; Duan, M.; Wang, G.; Li, J.; Yang, M. Genome Sequencing Sheds Light on the Contribution of Structural Variants to Brassica oleracea Diversification. BMC Biol. 2021, 19, 93. [Google Scholar] [CrossRef]
- Forzieri, G.; Feyen, L.; Russo, S.; Vousdoukas, M.; Alfieri, L.; Outten, S.; Migliavacca, M.; Bianchi, A.; Rojas, R.; Cid, A. Multi-Hazard Assessment in Europe under Climate Change. Clim. Chang. 2016, 137, 105–119. [Google Scholar] [CrossRef]
- Flexas, J.; Medrano, H. Drought-Inhibition of Photosynthesis in C 3 Plants: Stomatal and Non-Stomatal Limitations Revisited. Ann. Bot. 2002, 89, 183–189. [Google Scholar] [CrossRef] [PubMed]
- Habben, J.E.; Bao, X.; Bate, N.J.; Debruin, J.L.; Dolan, D.; Hasegawa, D.; Helentjaris, T.G.; Lafitte, R.H.; Lovan, N.; Mo, H.; et al. Transgenic Alteration of Ethylene Biosynthesis Increases Grain Yield in Maize under Field Drought-Stress Conditions. Plant Biotechnol. J. 2014, 12, 685–693. [Google Scholar] [CrossRef] [PubMed]
- Todaka, D.; Shinozaki, K.; Yamaguchi-Shinozaki, K. Recent Advances in the Dissection of Drought-Stress Regulatory Networks and Strategies for Development of Drought-Tolerant Transgenic Rice Plants. Front. Plant Sci. 2015, 6, 84. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romero-Muñoz, M.; Pérez-Jiménez, M. Optimizing Brassica oleracea L. Breeding Through Somatic Hybridization Using Cytoplasmic Male Sterility (CMS) Lines: From Protoplast Isolation to Plantlet Regeneration. Plants 2024, 13, 3247. https://doi.org/10.3390/plants13223247
Romero-Muñoz M, Pérez-Jiménez M. Optimizing Brassica oleracea L. Breeding Through Somatic Hybridization Using Cytoplasmic Male Sterility (CMS) Lines: From Protoplast Isolation to Plantlet Regeneration. Plants. 2024; 13(22):3247. https://doi.org/10.3390/plants13223247
Chicago/Turabian StyleRomero-Muñoz, Miriam, and Margarita Pérez-Jiménez. 2024. "Optimizing Brassica oleracea L. Breeding Through Somatic Hybridization Using Cytoplasmic Male Sterility (CMS) Lines: From Protoplast Isolation to Plantlet Regeneration" Plants 13, no. 22: 3247. https://doi.org/10.3390/plants13223247
APA StyleRomero-Muñoz, M., & Pérez-Jiménez, M. (2024). Optimizing Brassica oleracea L. Breeding Through Somatic Hybridization Using Cytoplasmic Male Sterility (CMS) Lines: From Protoplast Isolation to Plantlet Regeneration. Plants, 13(22), 3247. https://doi.org/10.3390/plants13223247