Chemical and Biological Properties of Different Romanian Populations of Hyssopus officinalis Correlated via Molecular Docking
Abstract
:1. Introduction
2. Results
2.1. Exploring the Effect of Soil and Climate Variability on Oil Yield Extraction
2.2. Chemical Composition of HOEOs by GC-MS
2.3. Inhibition of Haemolysis Values and Protein Denaturation
Inhibition of Haemolysis Values
2.4. The Antimicrobial Activity of HOEOs
2.5. Molecular Docking
3. Discussion
3.1. Climate Factor Data
3.2. Gas Chromatography–Mass Spectrometry (GC/MS)
3.3. Inhibition of Haemolysis and Protein Denaturation
3.4. The Antimicrobial Activity of HOEOs
3.5. Molecular Docking
4. Materials and Methods
4.1. Chemicals
4.2. Samples
4.3. Climate Data Evaluation
4.4. Gas Chromatography–Mass Spectrometry (GC/MS)
4.5. Inhibition of Haemolysis Values and Protein Denaturation
4.5.1. Membrane Lysis Assay
Preparation of Red Cell Suspension
4.5.2. Heat-Induced Haemolysis
4.5.3. The Effect on Protein Denaturation
4.6. Evaluation of the Antimicrobial Activity
4.7. Correlation Analysis and Path Analysis
4.8. Molecular Docking Studies
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vivó-Barrachina, L.; Rojas-Chacón, M.J.; Navarro-Salazar, R.; Belda-Sanchis, V.; Pérez-Murillo, J.; Peiró-Puig, A.; Herran-González, M.; Pérez-Bermejo, M. The Role of Natural Products on Diabetes Mellitus Treatment: A Systematic Review of Randomized Controlled Trials. Pharmaceutics 2022, 14, 101. [Google Scholar] [CrossRef] [PubMed]
- Shivaprasad, H.N.; Sirisha Mulukuri, N.V.L.; Chandrasekar, S.B.; Baheti, A.M.; Pawar, A.T. Role of Natural Products in Infectious Diseases. In Viral, Parasitic, Bacterial, and Fungal Infections; Elsevier: Amsterdam, The Netherlands, 2023; pp. 757–770. ISBN 978-0-323-85730-7. [Google Scholar]
- Olajide, O.A.; Sarker, S.D. Anti-Inflammatory Natural Products. In Annual Reports in Medicinal Chemistry; Elsevier: Amsterdam, The Netherlands, 2020; Volume 55, pp. 153–177. ISBN 978-0-12-821019-2. [Google Scholar]
- Stan, D.; Enciu, A.-M.; Mateescu, A.L.; Ion, A.C.; Brezeanu, A.C.; Stan, D.; Tanase, C. Natural Compounds with Antimicrobial and Antiviral Effect and Nanocarriers Used for Their Transportation. Front. Pharmacol. 2021, 12, 723233. [Google Scholar] [CrossRef] [PubMed]
- Obiștioiu, D.; Hulea, A.; Cocan, I.; Alexa, E.; Negrea, M.; Popescu, I.; Herman, V.; Imbrea, I.M.; Heghedus-Mindru, G.; Suleiman, M.A.; et al. Boswellia Essential Oil: Natural Antioxidant as an Effective Antimicrobial and Anti-Inflammatory Agent. Antioxidants 2023, 12, 1807. [Google Scholar] [CrossRef] [PubMed]
- Sharifi-Rad, J.; Quispe, C.; Kumar, M.; Akram, M.; Amin, M.; Iqbal, M.; Koirala, N.; Sytar, O.; Kregiel, D.; Nicola, S.; et al. Hyssopus Essential Oil: An Update of Its Phytochemistry, Biological Activities, and Safety Profile. Oxidative Med. Cell. Longev. 2022, 2022, 8442734. [Google Scholar] [CrossRef] [PubMed]
- Eldeghedy, H.I.; El-Gendy, A.E.-N.G.; Nassrallah, A.A.; Aboul-Enein, A.M.; Omer, E.A. Essential Oil Composition and Biological Activities of Hyssopus officinalis and Perilla Frutescens. Int. J. Health Sci. 2022, 6, 9963–9982. [Google Scholar] [CrossRef]
- Pekhova, O.A.; Timasheva, L.A.; Danilova, I.L.; Belova, I.V. Dynamics of Accumulation of Biologically Active Substances in Hyssopus officinalis L. Plants Grown in the Foothill Zone of Crimea. Taurida Her. Agrar. Sci. 2021, 4, 138–148. [Google Scholar] [CrossRef]
- Aćimović, M.; Pezo, L.; Zeremski, T.; Lončar, B.; Marjanović Jeromela, A.; Stanković Jeremic, J.; Cvetković, M.; Sikora, V.; Ignjatov, M. Weather Conditions Influence on Hyssop Essential Oil Quality. Processes 2021, 9, 1152. [Google Scholar] [CrossRef]
- Aćimović, M.; Stanković Jeremić, J.; Cvetković, M.; Kiprovski, B.; Marjanović-Jeromela, A.; Rat, M.; Malenčić, Đ. Essential Oil Analysis of Different Hyssop Genotypes from IFVCNS Medicinal Plant Collection Garden. Letop. Naučnih Rad. Ann. Agron. 2019, 43, 38–45. [Google Scholar]
- Aćimović, M.; Todosijević, M.; Varga, A.; Kiprovski, B.; Tešević, V.; Čabarkapa, I.; Sikora, V. Bioactivity of Essential Oils from Cultivated Winter Savory, Sage and Hyssop. Lek. Sirovine 2019, 39, 11–17. [Google Scholar] [CrossRef]
- Radzhabov, G.; Musaev, A.; Islamova, F.; Aliev, A. Analysis of Accumulation of Volatile Organic Compounds in Plants of Hyssopus officinalis L., Introduced in Mountain Conditions. Sustain. Dev. Mt. Territ. 2023, 15, 174–181. [Google Scholar] [CrossRef]
- Hristova, Y.; Wanner, J.; Jirovetz, L.; Stappen, I.; Iliev, I.; Gochev, V. Chemical Composition and Antifungal Activity of Essential Oil of Hyssopus officinalis L. from Bulgaria against Clinical Isolates of Candida Species. Biotechnol. Biotechnol. Equip. 2015, 29, 592–601. [Google Scholar] [CrossRef]
- Zawislak, G. Essential Oil Composition of Hyssopus officinalis L. Grown in Poland. J. Essent. Oil Bear. Plants 2016, 19, 699–705. [Google Scholar] [CrossRef]
- Saebi, A.; Minaei, S.; Mahdavian, A.R.; Ebadi, M.-T. Quantity and Quality of Hyssop (Hyssopus officinalis L.) Affected by Precision Harvesting. Int. J. Hortic Sci. Technol. 2021, 8. [Google Scholar] [CrossRef]
- Baj, T.; Korona-Głowniak, I.; Kowalski, R.; Malm, A. Chemical Composition and Microbiological Evaluation of Essential Oil from Hyssopus officinalis L. with White and Pink Flowers. Open Chem. 2018, 16, 317–323. [Google Scholar] [CrossRef]
- Moulodi, F.; Khezerlou, A.; Zolfaghari, H.; Mohamadzadeh, A.; Alimoradi, F. Chemical Composition and Antioxidant and Antimicrobial Properties of the Essential Oil of Hyssopus officinalis L. J. Kermanshah Univ. Med. Sci. 2019, in press. [Google Scholar] [CrossRef]
- Figueredo, G.; Musa Özcan, M.; Chalchat, J.C.; Bagci, Y.; Chalard, P. Chemical Composition of Essential Oil of Hyssopus officinalis L. and Origanum Acutidens. J. Essent. Oil Bear. Plants 2012, 15, 300–306. [Google Scholar] [CrossRef]
- Ortiz de Elguea-Culebras, G.; Sánchez-Vioque, R.; Berruga, M.I.; Herraiz-Peñalver, D.; González-Coloma, A.; Andrés, M.F.; Santana-Méridas, O. Biocidal Potential and Chemical Composition of Industrial Essential Oils from Hyssopus officinalis, Lavandula × Intermedia Var. Super, and Santolina Chamaecyparissus. Chem. Biodivers. 2018, 15, e1700313. [Google Scholar] [CrossRef]
- Fraternale, D.; Ricci, D.; Epifano, F.; Curini, M. Composition and Antifungal Activity of Two Essential Oils of Hyssop (Hyssopus officinalis L.). J. Essent. Oil Res. 2004, 16, 617–622. [Google Scholar] [CrossRef]
- Zhytomyr National Agroecological University, Ukraine; Kotyuk, L.A. Hyssop Composition Depending on Age and Plants Development Phases. Biotechnol. Acta 2015, 8, 55–63. [Google Scholar] [CrossRef]
- Gonceariuc, M.; Balmuù, Z. Diversity of the Essential Oil Content and Chemical Composition of Hyssopus officinalis L. Genotypes. Olten.-Stud. Comun. Stiintele Nat. 2013, 29, 71–77. [Google Scholar]
- Atazhanova, G.; Ishmuratova, M.; Levaya, Y.; Smagulov, M.; Lakomkina, Y. The Genus Hyssopus: Traditional Use, Phytochemicals and Pharmacological Properties. Plants 2024, 13, 1683. [Google Scholar] [CrossRef] [PubMed]
- Nadgir, C.A.; Biswas, D.A. Antibiotic Resistance and Its Impact on Disease Management. Cureus 2023, 15, e38251. [Google Scholar] [CrossRef] [PubMed]
- Darby, E.M.; Trampari, E.; Siasat, P.; Gaya, M.S.; Alav, I.; Webber, M.A.; Blair, J.M.A. Molecular Mechanisms of Antibiotic Resistance Revisited. Nat. Rev. Microbiol. 2023, 21, 280–295. [Google Scholar] [CrossRef] [PubMed]
- Urban-Chmiel, R.; Marek, A.; Stępień-Pyśniak, D.; Wieczorek, K.; Dec, M.; Nowaczek, A.; Osek, J. Antibiotic Resistance in Bacteria—A Review. Antibiotics 2022, 11, 1079. [Google Scholar] [CrossRef]
- Jianu, C.; Stoin, D.; Cocan, I.; David, I.; Pop, G.; Lukinich-Gruia, A.T.; Mioc, M.; Mioc, A.; Șoica, C.; Muntean, D.; et al. In Silico and In Vitro Evaluation of the Antimicrobial and Antioxidant Potential of Mentha × Smithiana R. GRAHAM Essential Oil from Western Romania. Foods 2021, 10, 815. [Google Scholar] [CrossRef]
- Soler-Rodriguez, A.M.; Zhang, H.; Lichenstein, H.S.; Qureshi, N.; Niesel, D.W.; Crowe, S.E.; Peterson, J.W.; Klimpel, G.R. Neutrophil Activation by Bacterial Lipoprotein Versus Lipopolysaccharide: Differential Requirements for Serum and CD14. J. Immunol. 2000, 164, 2674–2683. [Google Scholar] [CrossRef]
- Gomes, N.E.; Brunialti, M.K.C.; Mendes, M.E.; Freudenberg, M.; Galanos, C.; Salomão, R. Lipopolysaccharide-Induced Expression of Cell Surface Receptors and Cell Activation of Neutrophils and Monocytes in Whole Human Blood. Braz. J. Med. Biol. Res. 2010, 43, 853–858. [Google Scholar] [CrossRef]
- Pieterse, E.; Rother, N.; Yanginlar, C.; Hilbrands, L.B.; Van Der Vlag, J. Neutrophils Discriminate between Lipopolysaccharides of Different Bacterial Sources and Selectively Release Neutrophil Extracellular Traps. Front. Immunol. 2016, 7, 484. [Google Scholar] [CrossRef]
- Afrasiabi, S.; Chiniforush, N.; Partoazar, A.; Goudarzi, R. The Role of Bacterial Infections in Rheumatoid Arthritis Development and Novel Therapeutic Interventions: Focus on Oral Infections. Clin. Lab. Anal. 2023, 37, e24897. [Google Scholar] [CrossRef]
- Mićović, T.; Ušjak, D.; Milenković, M.; Samardžić, S.; Maksimović, Z. Antimicrobial Activity of Hyssopus officinalis L. Subsp. Aristatus (Godr.) Nyman (Lamiaceae) Essential Oils from Montenegro and Serbia. Lek. Sirovine 2023, 43, 1–6. [Google Scholar] [CrossRef]
- Epand, R.M.; Walker, C.; Epand, R.F.; Magarvey, N.A. Molecular Mechanisms of Membrane Targeting Antibiotics. Biochim. Biophys. Acta BBA Biomembr. 2016, 1858, 980–987. [Google Scholar] [CrossRef] [PubMed]
- Azam, F.; Abodabos, H.S.; Taban, I.M.; Rfieda, A.R.; Mahmood, D.; Anwar, M.J.; Khan, S.; Sizochenko, N.; Poli, G.; Tuccinardi, T.; et al. Rutin as Promising Drug for the Treatment of Parkinson’s Disease: An Assessment of MAO-B Inhibitory Potential by Docking, Molecular Dynamics and DFT Studies. Mol. Simul. 2019, 45, 1563–1571. [Google Scholar] [CrossRef]
- Shushni, M.A.M.; Azam, F.; Lindequist, U. Oxasetin from Lophiostoma sp. of the Baltic Sea: Identification, in Silico Binding Mode Prediction and Antibacterial Evaluation against Fish Pathogenic Bacteria. Nat. Prod. Commun. 2013, 8, 1223–1226. [Google Scholar] [CrossRef] [PubMed]
- Keska, P.; Stadnik, J. Antimicrobial Peptides of Meat Origin—An In Silico and In Vitro Analysis. Protein Pept. Lett. 2017, 24, 165–173. [Google Scholar] [CrossRef]
- Brugueras, M.; García, M.; Díaz, R. Actualidad de Las Quinolonas. Rev. Cuba. Farm. 2005, 39, 1–15. [Google Scholar]
- Ma, X.; Ma, X.; Ma, Z.; Wang, J.; Sun, Z.; Yu, W.; Li, F.; Ding, J. Effect of Hyssopus officinalis L. on Inhibiting Airway Inflammation and Immune Regulation in a Chronic Asthmatic Mouse Model. Exp. Ther. Med. 2014, 8, 1371–1374. [Google Scholar] [CrossRef]
- Lee, H.-N.; Kundu, J.K.; Cha, Y.-N.; Surh, Y.-J. Resolvin D1 Stimulates Efferocytosis through P50/P50-Mediated Suppression of Tumor Necrosis Factor-α Expression. J. Cell Sci. 2013, 126, 4037–4047. [Google Scholar] [CrossRef]
- Tan, S.; Zou, Z.; Luan, X.; Chen, C.; Li, S.; Zhang, Z.; Quan, M.; Li, X.; Zhu, W.; Yang, G. Synthesis, Anti-Inflammatory Activities, and Molecular Docking Study of Novel Pyxinol Derivatives as Inhibitors of NF-κB Activation. Molecules 2024, 29, 1711. [Google Scholar] [CrossRef]
- Manea, A.; Birsan, M.-V.; Dima, V.; Havriș, L.-E. Comparative Analysis of Land and Air Temperature in Romania since A.D. 1961. Land 2024, 13, 596. [Google Scholar] [CrossRef]
- Şmuleac, L.; Rujescu, C.; Șmuleac, A.; Imbrea, F.; Radulov, I.; Manea, D.; Ienciu, A.; Adamov, T.; Pașcalău, R. Impact of Climate Change in the Banat Plain, Western Romania, on the Accessibility of Water for Crop Production in Agriculture. Agriculture 2020, 10, 437. [Google Scholar] [CrossRef]
- Croitoru, A.-E.; Piticar, A.; Ciupertea, A.-F.; Roşca, C.F. Changes in Heat Waves Indices in Romania over the Period 1961–2015. Glob. Planet. Change 2016, 146, 109–121. [Google Scholar] [CrossRef]
- Dobrinescu, A.; Busuioc, A.; Birsan, M.; Dumitrescu, A.; Orzan, A. Changes in Thermal Discomfort Indices in Romania and Their Connections with Large-Scale Mechanisms. Clim. Res. 2015, 64, 213–226. [Google Scholar] [CrossRef]
- Dascălu, S.I.; Gothard, M.; Bojariu, R.; Birsan, M.-V.; Cică, R.; Vintilă, R.; Adler, M.-J.; Chendeș, V.; Mic, R.-P. Drought-Related Variables over the Bârlad Basin (Eastern Romania) under Climate Change Scenarios. Catena 2016, 141, 92–99. [Google Scholar] [CrossRef]
- Ogunwande, I.; Flamini, G.; Alese, O.; Cioni, P.; Ogundajo, A.; Setzer, W. A New Chemical Form of Essential Oil of Hyssopus officinalis L. (Lamiaceae) from Nigeria. Int. J. Biol. Chem. Sci. 2011, 5, 46–55. [Google Scholar] [CrossRef]
- Maslova, E.; Gulya, N.; Perelugina, T.; Semykina, V.; Kalashnikova, E. Introduction of Hyssopus officinalis L. into in Vitro Culture to Optimise the Conditions for Obtaining Callus Tissues and Microclonal Propagation as a Promising Metod of Innovative Agrobiotechnologies. BIO Web Conf. 2021, 30, 05006. [Google Scholar] [CrossRef]
- Said-Al Ahl, H. Essential Oil Composition of Hyssopus officinalis L. Cultivated in Egypt. Int. J. Plant Res. 2015, 1, 49–53. [Google Scholar]
- Rashidi, S.; Eikani, M.H.; Ardjmand, M. Extraction of Hyssopus officinalis L. Essential Oil Using Instant Controlled Pressure Drop Process. J. Chromatogr. A 2018, 1579, 9–19. [Google Scholar] [CrossRef]
- Judžentienė, A. Hyssop (Hyssopus officinalis L.) Oils. In Essential Oils in Food Preservation, Flavor and Safety; Elsevier: Amsterdam, The Netherlands, 2016; pp. 471–479. ISBN 978-0-12-416641-7. [Google Scholar]
- Moro, A.; Zalacain, A.; Hurtado De Mendoza, J.; Carmona, M. Effects of Agronomic Practices on Volatile Composition of Hyssopus officinalis L. Essential Oils. Molecules 2011, 16, 4131–4139. [Google Scholar] [CrossRef]
- Floares (Oarga), D.; Cocan, I.; Alexa, E.; Poiana, M.-A.; Berbecea, A.; Boldea, M.V.; Negrea, M.; Obistioiu, D.; Radulov, I. Influence of Extraction Methods on the Phytochemical Profile of Sambucus nigra L. Agronomy 2023, 13, 3061. [Google Scholar] [CrossRef]
- Horablaga, N.M.; Cozma, A.; Alexa, E.; Obistioiu, D.; Cocan, I.; Poiana, M.-A.; Lalescu, D.; Pop, G.; Imbrea, I.M.; Buzna, C. Influence of Sample Preparation/Extraction Method on the Phytochemical Profile and Antimicrobial Activities of 12 Commonly Consumed Medicinal Plants in Romania. Appl. Sci. 2023, 13, 2530. [Google Scholar] [CrossRef]
- Wesolowska, A.; Jadczak, D. Comparison of the Chemical Composition of Essential Oils Isolated from Hyssop (Hyssopus officinalis L.) with Blue, Pink and White Flowers. J. Essent. Oil Bear. Plants 2018, 21, 938–949. [Google Scholar] [CrossRef]
- Gunathilake, K.D.P.P.; Ranaweera, K.K.D.S.; Rupasinghe, H.P.V. In Vitro Anti-Inflammatory Properties of Selected Green Leafy Vegetables. Biomedicines 2018, 6, 107. [Google Scholar] [CrossRef] [PubMed]
- Fujiati, F.; Haryati, H.; Joharman, J.; Utami, S.W. In Vitro Metabolite Profiling and Anti-Inflammatory Activities of Rhodomyrtus Tomentosa with Red Blood Cell Membrane Stabilization Methods. Rep. Biochem. Mol. Biol. 2022, 11, 502–510. [Google Scholar] [CrossRef] [PubMed]
- Bonam, S.R.; Wang, F.; Muller, S. Lysosomes as a Therapeutic Target. Nat. Rev. Drug Discov. 2019, 18, 923–948. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Choi, W.-S.; Kim, K.-J.; Eom, C.-D.; Park, M.-J. Investigation of Active Anti-Inflammatory Constituents of Essential Oil from Pinus Koraiensis (Sieb. et Zucc.) Wood in LPS-Stimulated RBL-2H3 Cells. Biomolecules 2021, 11, 817. [Google Scholar] [CrossRef]
- Gushiken, L.F.S.; Beserra, F.P.; Hussni, M.F.; Gonzaga, M.T.; Ribeiro, V.P.; De Souza, P.F.; Campos, J.C.L.; Massaro, T.N.C.; Hussni, C.A.; Takahira, R.K.; et al. Beta-Caryophyllene as an Antioxidant, Anti-Inflammatory and Re-Epithelialization Activities in a Rat Skin Wound Excision Model. Oxidative Med. Cell. Longev. 2022, 2022, 9004014. [Google Scholar] [CrossRef]
- Mićović, T.; Topalović, D.; Živković, L.; Spremo-Potparević, B.; Jakovljević, V.; Matić, S.; Popović, S.; Baskić, D.; Stešević, D.; Samardžić, S.; et al. Antioxidant, Antigenotoxic and Cytotoxic Activity of Essential Oils and Methanol Extracts of Hyssopus officinalis L. Subsp. Aristatus (Godr.) Nyman (Lamiaceae). Plants 2021, 10, 711. [Google Scholar] [CrossRef]
- Stappen, I.; Wanner, J.; Tabanca, N.; Wedge, D.E.; Ali, A.; Kaul, V.K.; Lal, B.; Jaitak, V.; Gochev, V.K.; Schmidt, E.; et al. Chemical Composition and Biological Activity of Essential Oils of Dracocephalum Heterophyllum and Hyssopus officinalis from Western Himalaya. Nat. Prod. Commun. 2015, 10, 133–138. [Google Scholar] [CrossRef]
- Bhatti, H.N.; Khan, S.S.; Khan, A.; Rani, M.; Ahmad, V.U.; Choudhary, M.I. Biotransformation of Monoterpenoids and Their Antimicrobial Activities. Phytomedicine 2014, 21, 1597–1626. [Google Scholar] [CrossRef]
- Salehi, B.; Upadhyay, S.; Erdogan Orhan, I.; Kumar Jugran, A.; Jayaweera, S.L.D.; Dias, D.A.; Sharopov, F.; Taheri, Y.; Martins, N.; Baghalpour, N.; et al. Therapeutic Potential of α- and β-Pinene: A Miracle Gift of Nature. Biomolecules 2019, 9, 738. [Google Scholar] [CrossRef]
- Dahham, S.; Tabana, Y.; Iqbal, M.; Ahamed, M.; Ezzat, M.; Majid, A.; Majid, A. The Anticancer, Antioxidant and Antimicrobial Properties of the Sesquiterpene β-Caryophyllene from the Essential Oil of Aquilaria Crassna. Molecules 2015, 20, 11808–11829. [Google Scholar] [CrossRef] [PubMed]
- Selestino Neta, M.C.; Vittorazzi, C.; Guimarães, A.C.; Martins, J.D.L.; Fronza, M.; Endringer, D.C.; Scherer, R. Effects of β-Caryophyllene and Murraya Paniculata Essential Oil in the Murine Hepatoma Cells and in the Bacteria and Fungi 24-h Time–Kill Curve Studies. Pharm. Biol. 2017, 55, 190–197. [Google Scholar] [CrossRef] [PubMed]
- Dharani, S.R.; Ranjitha, R.; Sripathi, R.; Muhammad, A.K.S.; Ravi, S. Docking Studies in Target Proteins Involved in Antibacterial Action Mechanisms: Alkaloids Isolated from Scutellaria Genus. Asian J. Pharm. Clin. Res. 2016, 9, 121–125. [Google Scholar]
- Muller, C.W.; Rey, F.A.; Sodeoka, M.; Verdine, G.L.; Harrison, S.C. Structure of the NF-Kappa B P50 Homodimer Bound to DNA. Nature 1995, 373, 311–317. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.E.; Huang, D.B.; Chen, Y.Q.; Ghosh, G. Crystal Structure of P50/P65 Heterodimer of Transcription Factor NF-kappaB Bound to DNA. Nature 1998, 391, 410–413. [Google Scholar] [CrossRef]
- Bota, V.; Sumalan, R.M.; Obistioiu, D.; Negrea, M.; Cocan, I.; Popescu, I.; Alexa, E. Study on the Sustainability Potential of Thyme, Oregano, and Coriander Essential Oils Used as Vapours for Antifungal Protection of Wheat and Wheat Products. Sustainability 2022, 14, 4298. [Google Scholar] [CrossRef]
- Alexa, V.T.; Szuhanek, C.; Cozma, A.; Galuscan, A.; Borcan, F.; Obistioiu, D.; Dehelean, C.A.; Jumanca, D. Natural Preparations Based on Orange, Bergamot and Clove Essential Oils and Their Chemical Compounds as Antimicrobial Agents. Molecules 2020, 25, 5502. [Google Scholar] [CrossRef]
- Babushok, V.I.; Linstrom, P.J.; Zenkevich, I.G. Retention Indices for Frequently Reported Compounds of Plant Essential Oils. J. Phys. Chem. Ref. Data 2011, 40, 043101. [Google Scholar] [CrossRef]
- Pătruică, S.; Adeiza, S.M.; Hulea, A.; Alexa, E.; Cocan, I.; Moraru, D.; Imbrea, I.; Floares, D.; Pet, I.; Imbrea, F.; et al. Romanian Bee Product Analysis: Chemical Composition, Antimicrobial Activity, and Molecular Docking Insights. Foods 2024, 13, 1455. [Google Scholar] [CrossRef]
- Okoli, C.O.; Akah, P.A.; Onuoha, N.J.; Okoye, T.C.; Nwoye, A.C.; Nworu, C.S. Acanthus Montanus: An Experimental Evaluation of the Antimicrobial, Anti-Inflammatory and Immunological Properties of a Traditional Remedy for Furuncles. BMC Complement Altern. Med. 2008, 8, 27. [Google Scholar] [CrossRef]
- Bălașoiu (Jigău), R.A.C.; Obistioiu, D.; Hulea, A.; Suleiman, M.A.; Popescu, I.; Floares (Oarga), D.; Imbrea, I.M.; Neacșu, A.-G.; Șmuleac, L.; Pașcalău, R.; et al. Analysing the Antibacterial Synergistic Interactions of Romanian Lavender Essential Oils via Gas Chromatography—Mass Spectrometry: In Vitro and In Silico Approaches. Plants 2024, 13, 2136. [Google Scholar] [CrossRef] [PubMed]
- Beicu, R.; Alexa, E.; Obiștioiu, D.; Cocan, I.; Imbrea, F.; Pop, G.; Circioban, D.; Moisa, C.; Lupitu, A.; Copolovici, L.; et al. Antimicrobial Potential and Phytochemical Profile of Wild and Cultivated Populations of Thyme (Thymus sp.) Growing in Western Romania. Plants 2021, 10, 1833. [Google Scholar] [CrossRef] [PubMed]
- Pătruică, S.; Alexa, E.; Obiștioiu, D.; Cocan, I.; Radulov, I.; Berbecea, A.; Lazăr, R.N.; Simiz, E.; Vicar, N.M.; Hulea, A.; et al. Chemical Composition, Antioxidant and Antimicrobial Activity of Some Types of Honey from Banat Region, Romania. Molecules 2022, 27, 4179. [Google Scholar] [CrossRef] [PubMed]
- RCSB Protein Data Bank. Available online: https://www.rcsb.org./ (accessed on 23 July 2024).
- The National Center for Biotechnology Information. Available online: https://pubchem.ncbi.nlm.nih.gov/ (accessed on 27 July 2024).
Source of Variance | DF | SS (Sum of Squares) | F-Statistic | p-Value | Significance |
---|---|---|---|---|---|
Coarse sand (%) | 1 | 6.72 | 34.21 | 3.829 × 10−4 | p < 0.001 *** |
Fine sand (%) | 1 | 146.69 | 23.48 | 1.279 × 10−3 | p < 0.01 ** |
Silt (%) | 1 | 0.49 | 0.13 | 7.200 × 10−1 | ns |
Clay (%) | 1 | 178.08 | 24.99 | 1.054 × 10−3 | p < 0.01 ** |
Apparent density (g/cm3) | 1 | 0.19 | 27.78 | 7.545 × 10−4 | p < 0.001 *** |
Total porosity (%) | 1 | 184.9 | 12.62 | 7.481 × 10−3 | p < 0.01 ** |
Hygroscopic coefficient (%) | 1 | 2.73 | 13.85 | 5.856 × 10−3 | p < 0.01 ** |
Wilting coefficient (%) | 1 | 8.63 | 17.33 | 3.151 × 10−3 | p < 0.01 ** |
pH in H2O | 1 | 6.72 | 1.08 | 3.27 × 10−1 | ns |
Humus (%) | 1 | 146.69 | 7.04 | 4.52 × 10−2 | p < 0.05 * |
N total (%) | 1 | 0.49 | 284.53 | 1.34 × 10−5 | p < 0.001 *** |
P mobil (ppm) | 1 | 178.08 | 2.58 | 1.69 × 10−1 | ns |
K mobil (ppm) | 1 | 184.9 | 60.65 | 5.59 × 10−4 | p < 0.001 *** |
Temperature | 1 | 0.15 | 0.002 | 0.96 | ns |
Precipitation | 1 | 140.16 | 0.21 | 0.64 | ns |
No. crt | RI c/ Rir | Compounds | HORT (%) | HORL (%) | HOAT (%) | HOAL (%) | HOCT (%) | HOCL (%) |
---|---|---|---|---|---|---|---|---|
1 | 1021/1015 | α-Pinene | 0.49 | 0.60 | 0.49 | 0.54 | 0.44 | 0.82 |
2 | 1048/1050 | Camphene | 0.19 | 0.22 | 0.18 | 0.19 | 0.20 | 0.26 |
3 | 1104/1096 | β-Pinene | 9.45 | 11.77 | 10.37 | 10.86 | 8.74 | 15.85 |
4 | 1136/1140 | Sabinene | 1.44 | 1.84 | 1.40 | 1.65 | 1.30 | 2.20 |
5 | 1158/1164 | β-Myrcene | 1.28 | 2.02 | 1.45 | 1.92 | 1.55 | 2.05 |
6 | 1196/1193 | Limonene | 0.66 | 0.93 | 0.77 | 0.94 | 0.71 | 1.00 |
7 | 1211/1209 | β-Phellandrene | 1.20 | 4.31 | 2.15 | 4.16 | 2.94 | 3.28 |
8 | 1232/1234 | β-cis-Ocimene | 0.98 | 0.19 | 0.80 | 0.28 | 0.24 | 0.11 |
9 | 1240/1237 | Eucalyptol | 0.14 | 0.19 | 0.15 | 0.19 | 0.27 | 0.19 |
10 | 1494/1490 | Cyclohexene, 4-isopropenyl-1-methoxymethoxymethyl- | 2.17 | 1.47 | 1.64 | 1.55 | 1.94 | 1.14 |
11 | 1528/1528 | α-Gurjunene | 0.38 | 0.29 | 0.41 | 0.27 | 0.64 | 0.28 |
12 | 1532/1533 | β- Bourbonene | 1.75 | 0.63 | 1.41 | 0.75 | 2.16 | 0.53 |
13 | 1545/1542 | Linalool | 0.68 | 0.67 | 0.79 | 0.88 | 0.93 | 0.69 |
14 | 1570/1568 | 3-Thujanone | 0.00 | 0.07 | 0.00 | 0.03 | 0.10 | 0.09 |
15 | 1585/1588 | β-Caryophyllene | 2.37 | 1.25 | 2.12 | 1.31 | 5.12 | 1.01 |
16 | 1644/1649 | Alloaromadendrene | 1.16 | 0.88 | 1.24 | 0.84 | 2.05 | 0.88 |
17 | 1664/1666 | Humulene | 0.21 | 0.16 | 0.20 | 0.14 | 0.32 | 0.14 |
18 | 1679/1680 | α-Caryophyllene | 0.23 | 0.23 | 0.30 | 0.25 | 0.65 | 0.20 |
19 | 1684/1685 | γ-Cadinene | 0.18 | 0.08 | 0.15 | 0.10 | 0.23 | 0.08 |
20 | 1689/1690 | Pinocamphone | 45.97 | 20.17 | 31.91 | 27.34 | 22.17 | 6.09 |
21 | 1708/1708 | Germacrene D | 3.77 | 2.91 | 3.82 | 2.82 | 5.78 | 2.76 |
22 | 1712/1710 | Isocamphopinone | 20.10 | 43.17 | 32.00 | 37.62 | 33.97 | 54.75 |
23 | 1718/1714 | γ-Elemene | 2.33 | 2.58 | 2.72 | 2.23 | 3.82 | 2.40 |
24 | 1731/1730 | Estragole | 0.12 | 0.10 | 0.09 | 0.09 | 0.10 | 0.06 |
25 | 1743/1740 | 3-Octen-5-yne, 2,7-dimethyl-, (e)- | 0.11 | 0.15 | 0.11 | 0.19 | 0.11 | 0.19 |
26 | 1755/1756 | p-Menth-1-en-8-ol | 0.14 | 0.17 | 0.16 | 0.19 | 0.16 | 0.22 |
27 | 1760/1765 | (1r)-(−)-Myrtenal | 0.10 | 0.24 | 0.21 | 0.24 | 0.08 | 0.23 |
28 | 1795/1790 | Myrtenol | 1.31 | 1.91 | 1.85 | 1.61 | 1.03 | 2.01 |
29 | 1954/1953 | Ledol | 0.08 | 0.07 | 0.10 | 0.05 | 0.16 | 0.05 |
30 | 1997/1990 | Elemol | 0.32 | 0.14 | 0.29 | 0.11 | 1.14 | 0.12 |
31 | 2010/2006 | Eugenol methyl ether | 0.25 | 0.20 | 0.23 | 0.17 | 0.23 | 0.16 |
32 | 2022/2023 | Caryophyllene oxide | 0.17 | 0.19 | 0.19 | 0.39 | 0.34 | 0.09 |
33 | 2136/2126 | (−)-Spathulenol | 0.28 | 0.20 | 0.31 | 0.14 | 0.39 | 0.11 |
Total compounds | 100 | 100 | 100 | 100 | 100 | 100 | ||
Monoterpene hydrocarbons | 15.81 | 22.04 | 17.72 | 20.71 | 16.23 | 25.75 | ||
Oxygenated monoterpene | 70.85 | 68.26 | 68.94 | 69.63 | 60.87 | 65.55 | ||
Sesquiterpenes hydrocarbons SH | 12.37 | 9.00 | 12.37 | 8.90 | 20.78 | 8.27 | ||
Oxygenated sesquiterpenes SO | 0.85 | 0.60 | 0.89 | 0.68 | 2.03 | 0.36 | ||
Others O | 0.12 | 0.10 | 0.09 | 0.09 | 0.10 | 0.06 |
mg/mL | 1 | 2 | 4 | 8 | 16 | 32 | 64 | IC50 mg/mL | 1 | 2 | 4 | 8 | 16 | 32 | 64 | IC50 mg/mL |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sample | % IH | % IH | % IH | % IH | % IH | % IH | % IH | % IPD | % IPD | % IPD | % IPD | % IPD | % IPD | % IPD | ||
HORT | −13.04 | −7.78 | −0.114 | 5.01 | 13.28 | 30.17 | 63.04 | 9.09 | −1.18 | −0.11 | 0.57 | 17.69 | 20.96 | 23.61 | 27.39 | 10.80 |
HORL | −32.60 | −31.88 | −14.80 | 0.61 | 24.59 | 42.71 | 43.81 | 6.73 | −4.82 | −1.33 | −1.18 | 19.02 | 23.12 | 25.44 | 29.93 | 9.70 |
HOAT | −24.95 | −5.56 | 16.13 | 23.38 | 38.92 | 47.46 | 58.82 | 5.87 | −3.15 | −1.44 | 5.28 | 8.20 | 17.43 | 20.92 | 26.13 | 11.64 |
HOAL | 13.17 | 15.69 | 42.18 | 43.87 | 55.88 | 64.16 | 66.17 | 4.50 | 3.04 | 15.19 | 27.68 | 30.40 | 30.71 | 32.31 | 36.70 | 9.03 |
HOCT | 16.09 | 28.63 | 43.89 | 55.86 | 62.79 | 70.82 | 76.89 | 3.82 | 7.12 | 18.22 | 33.45 | 36.71 | 38.88 | 41.23 | 44.52 | 7.17 |
HOCL | −19.77 | −13.62 | −8.01 | −6.79 | −0.34 | 13.23 | 16.72 | 12.99 | −1.77 | −1.63 | −1.37 | −1.33 | −0.46 | 9.57 | 12.37 | 24.36 |
Sample mg/mL | S. pyogenes | S. aureus | L. monocytogenes | B. cereus | C. perfringens | P. aeruginosa | S. flexneri | E. coli | S typhimurium | H. influenzae |
---|---|---|---|---|---|---|---|---|---|---|
HORT 1 | 37.25 | 33.29 | 11.43 | −5.76 | 6.28 | 11.23 | −4.23 | −8.98 | 12.38 | 0.58 |
HORT 2 | 44.13 | 36.76 | 12.72 | −4.28 | 5.57 | 9.54 | 0.02 | −4.52 | 16.59 | 1.49 |
HORT 4 | 47.31 | 37.79 | 14.38 | −3.84 | 4.83 | 8.83 | 1.04 | −0.19 | 19.23 | −2.64 |
HORT 8 | 51.47 | 43.77 | 24.48 | 4.29 | 3.27 | −0.25 | 10.26 | 1.56 | 28.57 | −3.03 |
HORT 16 | 53.65 | 46.66 | 27.13 | 6.26 | −1.03 | −2.65 | 13.92 | 5.00 | 38.68 | −3.34 |
HORT 32 | 54.60 | 50.61 | 31.46 | 9.36 | −3.05 | −7.69 | 23.46 | 13.26 | 42.28 | −4.00 |
HORT 64 | 58.19 | 55.63 | 36.17 | 13.14 | −4.80 | −11.52 | 30.65 | 19.49 | 50.97 | −4.95 |
HORL 1 | 47.16 | 32.54 | 10.12 | −14.69 | 3.38 | 3.52 | −9.98 | 22.49 | 18.16 | −4.47 |
HORL 2 | 49.98 | 39.81 | 12.29 | −13.67 | 3.16 | 2.67 | −7.63 | −2.86 | 20.37 | −2.84 |
HORL 4 | 51.28 | 43.67 | 12.51 | −11.05 | 2.94 | 1.01 | −0.58 | 1.43 | 27.12 | −1.33 |
HORL 8 | 52.35 | 48.72 | 25.40 | 1.02 | 1.81 | −1.39 | 4.62 | 5.52 | 32.22 | 1.77 |
HORL 16 | 53.84 | 52.78 | 27.27 | 3.21 | 0.86 | −6.39 | 7.29 | 13.65 | 40.83 | 1.01 |
HORL 32 | 54.91 | 55.67 | 32.76 | 7.90 | 0.76 | −10.51 | 19.68 | 19.10 | 50.36 | 0.82 |
HORL 64 | 56.85 | 58.12 | 37.13 | 14.55 | 0.03 | −12.65 | 24.13 | 24.67 | 55.78 | 0.11 |
HOAT 1 | 47.02 | 38.64 | 7.63 | 10.66 | 7.11 | 9.26 | 4.82 | −0.32 | 17.82 | −5.27 |
HOAT 2 | 51.81 | 41.38 | 9.86 | 11.73 | 6.48 | 5.25 | 6.51 | 1.75 | 18.72 | −4.46 |
HOAT 4 | 53.57 | 46.73 | 14.19 | 14.33 | 5.48 | −0.13 | 12.49 | 5.59 | 26.22 | −3.70 |
HOAT 8 | 54.91 | 49.62 | 18.86 | 21.38 | 2.46 | −2.77 | 17.62 | 11.11 | 28.57 | 0.73 |
HOAT 16 | 59.18 | 51.65 | 19.91 | 28.14 | 1.59 | −6.56 | 21.11 | 19.30 | 36.55 | 1.66 |
HOAT 32 | 60.79 | 58.73 | 25.59 | 31.67 | 1.65 | −10.38 | 24.58 | 21.13 | 42.24 | 1.96 |
HOAT 64 | 66.38 | 61.27 | 29.27 | 34.58 | 0.73 | −16.79 | 28.72 | 24.52 | 48.69 | 2.89 |
HOAL 1 | 52.58 | 40.01 | 6.62 | −0.90 | −5.28 | −0.76 | 8.71 | 0.32 | 20.17 | −0.79 |
HOAL 2 | 54.75 | 44.73 | 8.13 | 12.86 | −4.64 | −2.65 | 11.04 | 3.18 | 27.07 | 1.66 |
HOAL 4 | 58.04 | 48.62 | 13.04 | 17.77 | −3.37 | −6.39 | 16.78 | 9.94 | 34.35 | 1.74 |
HOAL 8 | 59.49 | 51.58 | 15.78 | 19.51 | 1.73 | −10.34 | 21.88 | 16.83 | 35.78 | 2.45 |
HOAL 16 | 63.92 | 57.63 | 18.28 | 27.98 | 3.16 | −12.74 | 27.21 | 23.13 | 39.79 | 2.66 |
HOAL 32 | 66.93 | 63.36 | 24.29 | 35.29 | 4.08 | −13.79 | 33.16 | 28.63 | 44.25 | 3.36 |
HOAL 64 | 72.12 | 69.87 | 29.34 | 39.97 | 5.67 | −15.59 | 38.98 | 33.12 | 49.98 | 4.59 |
HOCT 1 | 46.28 | 20.52 | 17.59 | −5.26 | 0.89 | 1.23 | −6.54 | −4.57 | 23.22 | −7.63 |
HOCT 2 | 49.56 | 22.58 | 18.39 | −3.72 | 1.46 | 1.02 | −4.15 | −2.89 | 31.47 | −5.85 |
HOCT 4 | 50.90 | 24.89 | 20.20 | 0.00 | 2.48 | 0.84 | −1.84 | 0.97 | 35.78 | −2.31 |
HOCT 8 | 52.73 | 26.09 | 30.16 | 4.62 | 3.29 | −1.64 | 1.45 | 5.52 | 36.12 | 1.60 |
HOCT 16 | 54.75 | 27.88 | 35.64 | 11.56 | 3.29 | −4.16 | 6.71 | 13.39 | 42.27 | 2.47 |
HOCT 32 | 58.19 | 32.54 | 41.51 | 14.33 | 4.29 | −7.90 | 11.81 | 20.86 | 44.69 | 3.29 |
HOCT 64 | 60.60 | 40.68 | 47.28 | 24.48 | 4.83 | −11.48 | 15.27 | 25.21 | 47.89 | 4.02 |
HOCL 1 | 50.11 | 30.49 | 14.37 | −3.68 | 4.58 | 4.23 | −7.63 | 0.26 | 27.00 | −8.84 |
HOCL 2 | 51.69 | 33.12 | 15.68 | −1.98 | 3.68 | 3.99 | −5.98 | 1.74 | 32.27 | −5.49 |
HOCL 4 | 52.62 | 34.59 | 16.88 | −1.47 | 2.94 | 3.19 | −2.81 | 3.90 | 37.91 | −3.05 |
HOCL 8 | 53.57 | 36.28 | 28.62 | 6.20 | 1.60 | −0.21 | 0.19 | 7.67 | 45.91 | 1.85 |
HOCL 16 | 54.83 | 38.52 | 37.37 | 13.03 | 0.82 | −1.56 | 5.91 | 15.14 | 54.69 | 2.58 |
HOCL 32 | 58.23 | 42.51 | 44.20 | 17.54 | 0.15 | −5.25 | 11.14 | 20.99 | 58.69 | 3.43 |
HOCL 64 | 61.28 | 51.55 | 47.43 | 26.62 | −1.32 | −11.39 | 14.62 | 23.26 | 60.25 | 4.19 |
S/No. | Compounds | Free Binding Energy (Kcal/mol) | Amino Acid Residues Involved in Binding Interaction | ||||
---|---|---|---|---|---|---|---|
1KZN | 1NFK | 1VKX | 1KZN | 1NFK | 1VKX | ||
1 | Sabinene | −5.4 | −4.4 | −5.3 | Alkyl: Ile78 | Alkyl/Pi-Alkyl: Phe53, Pro68 | Alkyl: Leu440, Val442 |
2 | β-Pinene | −4.6 | −4.6 | −4.9 | Alkyl: Ile78 | Alkyl: Tyr175 | Alkyl: Lys37, Val121, Lys122 |
3 | β-Mircene | −5.1 | −4.3 | −4.8 | Alkyl: Val43, Ala47, Val71, Ile78, Val167 | Alkyl/Pi-Alkyl: Lys49, Pro68, Lys77, Tyr79 | Alkyl: Phe353, Arg356, Val412, Leu440 |
4 | β-Phellandrene | −5.7 | −4.7 | −5.9 | Alkyl: Val43, Ala47, Val71, Val167 | Alkyl: Val120, Ile160, Arg161 | Alkyl: Phe353, Arg356 |
5 | Cyclohexene,4-isopropenyl-1-methoxymethoxymethyl | −5.8 | −4.9 | −5.6 | H: Asn46 C-H: Glu50 Alkyl: Ile78 | H: Arg154 C-H: Ser110 Alkyl: Val58, Leu140, Val142, Lys146 | H: Ser363 Alkyl/Pi-Alkyl: Phe353, Arg356, Val412 |
6 | β-Bourbonene | −6.8 | −6.0 | −6.0 | Alkyl: Ala47, Ile78 | Alkyl: Pro68, Lys77 | Alkyl: Ala497 |
7 | β-Caryophyllene | −5.9 | −6.1 | −5.8 | Alkyl: Lys189 | None | Alkyl: Lys37 |
8 | Alloaromadendrene | −6.4 | −6.2 | −6.6 | Alkyl/Pi-Alkyl: His37, His 38, Ile186 | Alkyl: Pro68, Lys77 | Alkyl: Arg73 |
9 | Pinocamphone | −5.4 | −5.1 | −5.0 | None | None | None |
10 | Isopinocamphone | −4.9 | −4.9 | −5.1 | H: Asn46 | H: Arg189, Glu190 | None |
11 | γ-Elemene | −6.3 | −5.4 | −6.1 | Alkyl: Ile78 | Alkyl: Pro68, Lys77 | Pi-Sigma: Tyr538 Alkyl/Pi-Alkyl: Ala545 |
12 | Myrtenol | −4.8 | −4.8 | −5.4 | Alkyl: Ile78 | Alkyl: Pro68, Lys77 | H: Ser410 Alkyl: Val358, Val442, Leu440, Lys446 |
13 | Elemol | −5.6 | −5.8 | −5.9 | None | Unfavorable Acceptor-Acceptor: Ser78 Alkyl: Pro68 | H: His405, Val469, Gln501 Alkyl: Ala497 |
14 | Germacrene D | −6.8 | −5.9 | −5.8 | Alkyl: Ile78 | Alkyl: Pro68, Lys77 | Alkyl: Pro362, Val412 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Imbrea, I.M.; Osiceanu, M.; Hulea, A.; Suleiman, M.A.; Popescu, I.; Floares, D.; Onisan, E.; Neacșu, A.-G.; Popescu, C.A.; Hulea, C.; et al. Chemical and Biological Properties of Different Romanian Populations of Hyssopus officinalis Correlated via Molecular Docking. Plants 2024, 13, 3259. https://doi.org/10.3390/plants13223259
Imbrea IM, Osiceanu M, Hulea A, Suleiman MA, Popescu I, Floares D, Onisan E, Neacșu A-G, Popescu CA, Hulea C, et al. Chemical and Biological Properties of Different Romanian Populations of Hyssopus officinalis Correlated via Molecular Docking. Plants. 2024; 13(22):3259. https://doi.org/10.3390/plants13223259
Chicago/Turabian StyleImbrea, Ilinca Merima, Magdalena Osiceanu, Anca Hulea, Mukhtar Adeiza Suleiman, Iuliana Popescu, Doris Floares (Oarga), Emilian Onisan, Alina-Georgeta Neacșu, Cosmin Alin Popescu, Calin Hulea, and et al. 2024. "Chemical and Biological Properties of Different Romanian Populations of Hyssopus officinalis Correlated via Molecular Docking" Plants 13, no. 22: 3259. https://doi.org/10.3390/plants13223259
APA StyleImbrea, I. M., Osiceanu, M., Hulea, A., Suleiman, M. A., Popescu, I., Floares, D., Onisan, E., Neacșu, A. -G., Popescu, C. A., Hulea, C., Pop, G., Niță, S., Imbrea, F., & Obistioiu, D. (2024). Chemical and Biological Properties of Different Romanian Populations of Hyssopus officinalis Correlated via Molecular Docking. Plants, 13(22), 3259. https://doi.org/10.3390/plants13223259