A Comprehensive Review of the Functional Potential and Sustainable Applications of Aronia melanocarpa in the Food Industry
Abstract
:1. Introduction
2. Results
2.1. History and Global Spread of Aronia melanocarpa
2.2. Functional Properties of Aronia melanocarpa in Food
2.2.1. Application as an Antioxidant
2.2.2. Application as a Natural Antimicrobial Agent
2.2.3. Application in Metabolic Health Functional Foods
2.3. Strategies to Enhance the Bioavailability of Aronia melanocarpa
2.3.1. Microencapsulation Technology
2.3.2. Nanocarrier Systems
2.3.3. Synergistic Effects with Other Bioactive Components
2.3.4. Process Optimization and Extraction Technology Improvements
2.3.5. Research Trends
2.4. Processing Applications and Consumer Challenges of Aronia melanocarpa
2.4.1. Market Demand and Astringency Removal Technology
2.4.2. Development of Juices and Blended Beverages
2.4.3. Innovative Applications in Fruit Wines and Dried Fruits
2.4.4. Integration of Aronia melanocarpa with Fermented Dairy Products
2.4.5. Other Food Applications and Innovations
2.4.6. Potential Uses of Aronia melanocarpa Leaves
2.4.7. Prospects for Intelligent Food Packaging
3. Future Development and Application Potential of Aronia melanocarpa
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Haejo, Y.; Young-Jun, K.; Youngjae, S. Influence of ripening stage and cultivar on physicochemical properties and antioxidant compositions of aronia grown in south Korea. Foods 2019, 8, 598. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.-W.; Han, H.-A.; Kim, J.-K.; Kim, D.-H.; Kim, M.-K. Comparison of phytochemicals and antioxidant activities of berries cultivated in Korea: Identification of phenolic compounds in Aronia by HPLC/Q-TOF MS. Prev. Nutr. Food Sci. 2021, 26, 459–468. [Google Scholar] [CrossRef]
- Kaloudi, T.; Tsimogiannis, D.; Oreopoulou, V. Aronia Melanocarpa: Identification and exploitation of its phenolic components. Molecules 2022, 27, 4375. [Google Scholar] [CrossRef] [PubMed]
- Jurendić, T.; Ščetar, M. Aronia melanocarpa products and by-products for health and nutrition: A Review. Antioxidants 2021, 10, 1052. [Google Scholar] [CrossRef]
- Ara, V. Black chokeberry: The healthy berry with potential. Fluessiges Obs. 2002, 69, 653–658. [Google Scholar]
- Gonzalez-Molina, E.; Moreno, D.A.; Garcia-Viguera, C. Aronia-enriched lemon juice: A new highly antioxidant beverage. J. Agric. Food Chem. 2008, 56, 11327–11333. [Google Scholar] [CrossRef]
- Pogorzelski, E.; Wilkowska, A.; Kobus, M. Inhibiting effect of tannin in chokeberry must on the winemaking process. Pol. J. Food Nutr. Sci. 2006, 15, 49–53. [Google Scholar]
- Balcerek, M. Carbonyl compounds in Aronia spirits. Pol. J. Food Nutr. Sci. 2010, 60, 243–249. [Google Scholar]
- Bednarska, M.A.; Janiszewska-Turak, E. The influence of spray drying parameters and carrier material on the physico-chemical properties and quality of chokeberry juice powder. J. Food Sci. Technol.-Mysore 2020, 57, 564–577. [Google Scholar] [CrossRef]
- Kedzierska, M.; Olas, B.; Wachowicz, B.; Glowacki, R.; Bald, E.; Czernek, U.; Szydlowska-Pazera, K.; Potemski, P.; Piekarski, J.; Jeziorski, A. Effects of the commercial extract of Aronia on oxidative stress in blood platelets isolated from breast cancer patients after the surgery and various phases of the chemotherapy. Fitoterapia 2012, 83, 310–317. [Google Scholar] [CrossRef]
- Lee, K.P.; Choi, N.H.; Kim, H.-S.; Ahn, S.; Park, I.-S.; Lee, D.W. Anti-neuroinflammatory effects of ethanolic extract of black chokeberry (Aronia melanocapa L.) in lipopolysaccharide-stimulated BV2 cells and ICR mice. Nutr. Res. Pract. 2018, 12, 13–19. [Google Scholar] [CrossRef] [PubMed]
- Yamane, T.; Kozuka, M.; Wada-Yoneta, M.; Sakamoto, T.; Nakagaki, T.; Nakano, Y.; Ohkubo, I. Aronia juice suppresses the elevation of postprandial blood glucose levels in adult healthy Japanese. Clin. Nutr. Exp. 2017, 12, 20–26. [Google Scholar] [CrossRef]
- Kasprzak-Drozd, K.; Oniszczuk, T.; Soja, J.; Gancarz, M.; Wojtunik-Kulesza, K.; Markut-Miotla, E.; Oniszczuk, A. The efficacy of black chokeberry fruits against cardiovascular diseases. Int. J. Mol. Sci. 2021, 22, 6541. [Google Scholar] [CrossRef] [PubMed]
- Bushmeleva, K.; Vyshtakalyuk, A.; Terenzhev, D.; Belov, T.; Parfenov, A.; Sharonova, N.; Nikitin, E.; Zobov, V. Radical scavenging actions and immunomodulatory cctivity of Aronia melanocarpa propylene glycol extracts. Plants. 2021, 10, 2458. [Google Scholar] [CrossRef]
- Banach, M.; Wiloch, M.; Zawada, K.; Cyplik, W.; Kujawski, W. Evaluation of antioxidant and anti-inflammatory activity of anthocyanin-rich water-soluble Aronia dry extracts. Molecules 2020, 25, 4055. [Google Scholar] [CrossRef]
- Jahn, A.; Kim, J.; Bashir, K.M.I.; Cho, M.G. Antioxidant content of Aronia infused beer. Fermentation. 2020, 6, 71. [Google Scholar] [CrossRef]
- Valcheva-Kuzmanova, S.; Kuzmanov, K. Inhibitory effect of Aronia melanocarpa fruit juice on intestinal transit rate in rats. Acta Aliment. 2011, 40, 396–399. [Google Scholar] [CrossRef]
- Williamson, G.; Clifford, M.N. Colonic metabolites of berry polyphenols: The missing link to biological activity? Br. J. Nutr. 2010, 104, S48–S66. [Google Scholar] [CrossRef]
- Mariat, D.; Firmesse, O.; Levenez, F.; Guimaraes, V.D.; Sokol, H.; Dore, J.; Corthier, G.; Furet, J.P. The Firmicutes/Bacteroidetes ratio of the human microbiota changes with age. BMC Microbiol. 2009, 9, 123. [Google Scholar] [CrossRef]
- Most, J.; Penders, J.; Lucchesi, M.; Goossens, G.H.; Blaak, E.E. Gut microbiota composition in relation to the metabolic response to 12-week combined polyphenol supplementation in overweight men and women. Eur. J. Clin. Nutr. 2017, 71, 1040–1045. [Google Scholar] [CrossRef]
- Wei, J.; Yu, W.; Hao, R.; Fan, J.; Gao, J. Anthocyanins from Aronia melanocarpa induce apoptosis in Caco-2 cells through Wnt/β-Catenin signaling pathway. Chem. Biodivers. 2020, 17, e2000654. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Shangguan, N.; Zhang, F.; Duan, R. Aronia-derived anthocyanins and metabolites ameliorate TNFα-induced disruption of myogenic differentiation in satellite cells. Biochem. Biophys. Res. Commun. 2024, 733, 150687. [Google Scholar] [CrossRef] [PubMed]
- Morgan, L.C.; Jesse, T.P.; Stephanie, M.G.W.; Zachary, T.M.; Brian, B.; Seth, T.W.; Carl, J.Y.; Mary, P.M. Polyphenol-rich Aronia melanocarpa fruit beneficially impact cholesterol, glucose, and serum and gut metabolites: A Randomized Clinical Trial. Foods 2024, 13, 2768. [Google Scholar] [CrossRef] [PubMed]
- Zima, K.; Khaidakov, B.; Sochocka, M.; Ochnik, M.; Lemke, K.; Kowalczyk, P. Exploring the potency of polyphenol-rich blend from Lonicera caerulea var. Kamtschatica sevast., Aronia melanocarpa, and Echinacea purpurea: Promising anti-inflammatory, antioxidant, and antiviral properties. Heliyon 2024, 10, e35630. [Google Scholar] [CrossRef]
- Stanca, L.; Bilteanu, L.; Bujor, O.C.; Ion, V.A.; Petre, A.C.; Bădulescu, L.; Geicu, O.I.; Pisoschi, A.M.; Serban, A.I.; Ghimpeteanu, O.M. Development of functional foods: A comparative study on the polyphenols and anthocyanins content in chokeberry and blueberry pomace extracts and their antitumor properties. Foods 2024, 13, 2552. [Google Scholar] [CrossRef]
- Meiners, A.; Huebner, F.; Esselen, M. Isolation and characterization of novel oligomeric proanthocyanidins in chokeberries using high-resolution mass spectrometry and investigation of their antioxidant potential. Appl. Sci. 2024, 14, 7839. [Google Scholar] [CrossRef]
- Junming, H.; Ziyuan, T.; Xu, L.; Zhi, M.; Yue, M.; Yandong, X.; Zheng, L.; Xiang, Y. Mechanical behavior of impact damage on Aronia melanocarpa: An experiment on pendulum method and hyperspectral imaging. J. Food Meas. Charact. 2024, 18, 7894–7915. [Google Scholar]
- Makarova, K.; Zawada, K.; Wagner, D.; Skowyra, J. Optimization of antioxidant properties of creams with berry extracts by artificial neural networks. Acta Phys. Pol. A 2017, 132, 44–51. [Google Scholar] [CrossRef]
- Zima, K.; Khaidakov, B.; Banaszkiewicz, L.; Lemke, K.; Kowalczyk, P.K. Exploring the potential of Ribes nigrum L., Aronia melanocarpa (Michx.) Elliott, and Sambucus nigra L. Fruit polyphenol-rich composition and metformin synergy in type 2 diabetes management. J. Diabetes Res. 2024, 2024, 1092462. [Google Scholar] [CrossRef]
- Elena, D.; Mina, P.; Petko, D. Black chokeberry (Aronia melanocarpa) juice supplementation improves oxidative Stress and Aging Markers in Testis of Aged Rats. Curr. Issues Mol. Biol. 2024, 46, 4452–4470. [Google Scholar] [CrossRef]
- Wilson, S.M.G.; Peach, J.T.; Fausset, H.; Miller, Z.T.; Walk, S.T.; Yeoman, C.J.; Bothner, B.; Miles, M.P. Metabolic impact of polyphenol-rich aronia fruit juice mediated by inflammation status of gut microbiome donors in humanized mouse model. Front. Nutr. 2023, 10, 1244692. [Google Scholar] [CrossRef] [PubMed]
- Suljevic, D.; Mitrasinovic-Brulic, M.; Klepo, L.; Skrijelj, R.; Focak, M. Impact of dietary supplementation with chokeberry (Aronia melanocarpa, Michx.) on tetrachloride-induced liver injury in Wistar rats: Hematological and biochemical implication. Cell Biochem. Funct. 2023, 41, 801–813. [Google Scholar] [CrossRef] [PubMed]
- Zulal, E.; Julide, H.; Mesut, Y.; Ugur, D.; Hande, M.; Nergiz, K. The performance of hypochlorous acid modified Ag nanoparticle-based assay in the determination of total antioxidant capacity of Boswellia serrata and Aronia. Talanta 2024, 267, 125218. [Google Scholar]
- Garofulic, I.E.; Repajic, M.; Zoric, Z.; Jurendic, T.; Dragovic-Uzelac, V. Evaluation of Microwave- and Ultrasound-Assisted extraction techniques for revalorization of black chokeberry (Aronia melanocarpa) fruit pomace anthocyanins. Sustainability 2023, 15, 7047. [Google Scholar] [CrossRef]
- Marko, P.; Vladimir, F.; Biljana, L.; Jelena, F.; Nemanja, M.; Zoranka, M.; Darko, J. A Comparative analysis of thin-layer microwave and microwave/convective dehydration of chokeberry. Foods 2023, 12, 1651. [Google Scholar] [CrossRef]
- Chong Woon, C.; Rustamov, R.; Dan, G.; Hyung Min, K.; Jong Seong, K. Characterization of the bioactive components in Aronia melanocarpa (black chokeberry) fruit extracts and purified fractions by spectrophotometry and high-performance liquid chromatography (HPLC). Anal. Lett. 2023, 56, 2291–2308. [Google Scholar]
- Smith, H.H. Ethnobotany of the Forest Potawatomi Indians; Milwaukee Public Museum: MIlawakee, WI, USA, 1933; Volume 7. [Google Scholar]
- Janick, J.; Paull, R.E. The Encyclopedia of Fruit & Nuts; CABI Publishing: Walingford, UK, 2008. [Google Scholar]
- Jeppsson, N. The effect of cultivar and cracking on fruit quality in black chokeberry (Aronia melanocarpa) and hybrids between chokeberry and rowan (Sorbus). Gartenbauwissenschaft 2000, 65, 93–98. [Google Scholar]
- Scott, R.W.; Skirvin, R.M. Black chokeberry (Aronia melanocarpa Michx.): A semi-edible fruit with no pests. J. Am. Pomol. Soc. 2007, 61, 135. [Google Scholar]
- Hovmalm, H.A.P.; Jeppsson, N.; Bartish, I.V.; Nybom, H. RAPD analysis of diploid and tetraploid populations of Aronia points to different reproductive strategies within the genus. Hereditas 2004, 141, 301–312. [Google Scholar] [CrossRef]
- Lixue, R. Problems and solutions in the development of Aronia melanocarpa in China. For. Pract. Technol. 2015, 2, 21–22. [Google Scholar]
- Jiang, Z. Cultivation techniques of Aronia melanocarpa. Shelter. Sci. Technol. 2009, 22, 118. [Google Scholar]
- Jakobek, L.; Šeruga, M.; Medvidović-Kosanović, M.; Novak, I. Antioxidant activity and polyphenols of Aronia in comparison to other berry species. Agric. Conspec. Sci. 2007, 72, 301–306. [Google Scholar]
- Pavlović, A.N.; Brcanović, J.M.; Veljković, J.N.; Mitić, S.S.; Tošić, S.B.; Kaličanin, B.M.; Kostić, D.A.; Ðorđević, M.S.; Velimirović, D.S. Characterization of commercially available products of aronia according to their metal content. Fruits 2015, 70, 385–393. [Google Scholar] [CrossRef]
- Tolić, M.-T.; Landeka Jurčević, I.; Panjkota Krbavčić, I.; Marković, K.; Vahčić, N. Phenolic content, antioxidant capacity and quality of chokeberry (Aronia melanocarpa) products. Food Technol. Biotechnol. 2015, 53, 171–179. [Google Scholar] [CrossRef]
- Ho, G.T.; Bräunlich, M.; Austarheim, I.; Wangensteen, H.; Malterud, K.E.; Slimestad, R.; Barsett, H. Immunomodulating activity of Aronia melanocarpa polyphenols. Int. J. Mol. Sci. 2014, 15, 11626–11636. [Google Scholar] [CrossRef]
- Daskalova, E.; Delchev, S.; Rashev, P.; Ankova, D.; Pupaki, D.; Vladimirova-Kitova, L.; Kanarev, M. Aronia melanocarpa Supplementation and Thymic Age Alterations in Rats. Proc. Bulg. Acad. Sci. 2021, 74, 1161. [Google Scholar]
- Guo, T.-T.; Zhang, M.-L.; Sun, Z.-C.; Zhang, L.-M.; Xu, X.-D.; Hu, B.-H. Three new triterpenoid glycosides from Aronia melanocarpa (Michx.) Elliott. Nat. Prod. Res. 2023, 37, 3572–3579. [Google Scholar] [CrossRef]
- Lee, H.Y.; Weon, J.B.; Ryu, G.; Yang, W.S.; Kim, N.Y.; Kim, M.K.; Ma, C.J. Neuroprotective effect of Aronia melanocarpa extract against glutamate-induced oxidative stress in HT22 cells. BMC Complement. Altern. Med. 2017, 17, 207. [Google Scholar] [CrossRef]
- Bushmeleva, K.; Vyshtakalyuk, A.; Terenzhev, D.; Belov, T.; Nikitin, E.; Zobov, V. Aronia melanocarpa flavonol extract—Antiradical and immunomodulating activities analysis. Plants 2023, 12, 2976. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, X.; Yan, H.; Liu, Y.; Li, L.; Li, S.; Wang, X.; Wang, D. Aronia melanocarpa ameliorates gout and hyperuricemia in animal models. Food Agric. Immunol. 2019, 30, 47–59. [Google Scholar] [CrossRef]
- Song, D.; Fang, C. Study on the protective effect of Aronia melanocarpa extract on type 2 diabetes by regulating glucose and lipid metabolism through intestinal flora. Food Sci. Nutr. 2024, 12, 7620–7629. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.; Tang, X.; He, Y.; Peng, Z.; Liu, H.; He, Y.; Gao, J. Aronia Melanocarpa Elliot anthocyanins inhibits alcoholic liver disease by activation of α7nAChR. Plant Foods Hum. Nutr. 2024, 4, 779–794. [Google Scholar] [CrossRef] [PubMed]
- Denev, P.N.; Kratchanov, C.G.; Ciz, M.; Lojek, A.; Kratchanova, M.G. Bioavailability and antioxidant activity of black chokeberry (Aronia melanocarpa) polyphenols: In vitro and in vivo evidences and possible mechanisms of action: A review. Compr. Rev. Food Sci. Food Saf. 2012, 11, 471–489. [Google Scholar] [CrossRef]
- Jakobek, L.; Drenjančević, M.; Jukić, V.; Šeruga, M. Phenolic acids, flavonols, anthocyanins and antiradical activity of “Nero”, “Viking”, “Galicianka” and wild chokeberries. Sci. Hortic. 2012, 147, 56–63. [Google Scholar] [CrossRef]
- Paunović, S.M.; Mašković, P.; Milinković, M. Optimization of primary metabolites and antimicrobial activity in aronia berries as affected by soil cultivation systems. Erwerbs-Obstbau 2022, 64, 581–589. [Google Scholar] [CrossRef]
- Liepiņa, I.; Nikolajeva, V.; Jākobsone, I. Antimicrobial activity of extracts from fruits of Aronia melanocarpa and Sorbus aucuparia. Environ. Exp. Biol. 2013, 11, 195–199. [Google Scholar]
- Efenberger-Szmechtyk, M.; Nowak, A.; Czyżowska, A.; Kucharska, A.Z.; Fecka, I. Composition and antibacterial activity of Aronia melanocarpa (Michx.) Elliot, Cornus mas L. and Chaenomeles superba Lindl. leaf extracts. Molecules 2020, 25, 2011. [Google Scholar] [CrossRef]
- Tamkutė, L.; Vaicekauskaitė, R.; Gil, B.M.; Carballido, J.R.; Venskutonis, P.R. Black chokeberry (Aronia melanocarpa L.) pomace extracts inhibit food pathogenic and spoilage bacteria and increase the microbiological safety of pork products. J. Food Process. Preserv. 2021, 45, e15220. [Google Scholar] [CrossRef]
- BoyCheVa, S.; Dimitrov, T.; NayDeNoVa, N.; MihayloVa, G. Quality characteristics of yogurt from goat’s milk, supplemented with fruit juice. Czech J. Food Sci. 2011, 29, 24–30. [Google Scholar] [CrossRef]
- Jurikova, T.; Mlcek, J.; Skrovankova, S.; Sumczynski, D.; Sochor, J.; Hlavacova, I.; Snopek, L.; Orsavova, J. Fruits of black chokeberry Aronia melanocarpa in the prevention of chronic diseases. Molecules 2017, 22, 944. [Google Scholar] [CrossRef]
- Baum, J.I.; Howard, L.R.; Prior, R.L.; Lee, S.-O. Effect of Aronia melanocarpa (Black Chokeberry) supplementation on the development of obesity in mice fed a high-fat diet. J. Berry Res. 2016, 6, 203–212. [Google Scholar] [CrossRef]
- Manach, C.; Scalbert, A.; Morand, C.; Rémésy, C.; Jiménez, L. Polyphenols: Food sources and bioavailability. Am. J. Clin. Nutr. 2004, 79, 727–747. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.J.; McClements, D.J. Nanoemulsions as delivery systems for lipophilic nutraceuticals: Strategies for improving their formulation, stability, functionality and bioavailability. Food Sci. Biotechnol. 2020, 29, 149–168. [Google Scholar] [CrossRef] [PubMed]
- Kandasamy, S.; Naveen, R. A review on the encapsulation of bioactive components using spray-drying and freeze-drying techniques. J. Food Process Eng. 2022, 45, e14059. [Google Scholar] [CrossRef]
- Fang, Z.; Bhandari, B. Encapsulation of polyphenols–A review. Trends Food Sci. Technol. 2010, 21, 510–523. [Google Scholar] [CrossRef]
- Wang, S.; Du, Q.; Meng, X.; Zhang, Y. Natural polyphenols: A potential prevention and treatment strategy for metabolic syndrome. Food Funct. 2022, 13, 9734–9753. [Google Scholar] [CrossRef]
- McClements, D.J. Nanoparticle-and Microparticle-Based Delivery Systems: Encapsulation, Protection and Release of Active Compounds; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Pisoschi, A.M.; Pop, A.; Cimpeanu, C.; Turcuş, V.; Predoi, G.; Iordache, F. Nanoencapsulation techniques for compounds and products with antioxidant and antimicrobial activity-A critical view. Eur. J. Med. Chem. 2018, 157, 1326–1345. [Google Scholar] [CrossRef]
- Saura-Calixto, F.; Goñi, I. Antioxidant capacity of the Spanish Mediterranean diet. Food Chem. 2006, 94, 442–447. [Google Scholar] [CrossRef]
- Hu, B.; Liu, X.; Zhang, C.; Zeng, X. Food macromolecule based nanodelivery systems for enhancing the bioavailability of polyphenols. J. Food Drug Anal. 2017, 25, 3–15. [Google Scholar] [CrossRef]
- Scalbert, A.; Manach, C.; Morand, C.; Rémésy, C.; Jiménez, L. Dietary polyphenols and the prevention of diseases. Crit. Rev. Food Sci. Nutr. 2005, 45, 287–306. [Google Scholar] [CrossRef]
- Xiong, L.; Yang, J.; Jiang, Y.; Lu, B.; Hu, Y.; Zhou, F.; Mao, S.; Shen, C. Phenolic compounds and antioxidant capacities of 10 common edible flowers from China. J. Food Sci. 2014, 79, C517–C525. [Google Scholar] [CrossRef] [PubMed]
- d’Alessandro, L.G.; Kriaa, K.; Nikov, I.; Dimitrov, K. Ultrasound assisted extraction of polyphenols from black chokeberry. Sep. Purif. Technol. 2012, 93, 42–47. [Google Scholar] [CrossRef]
- Xu, Y.; Qiu, Y.; Ren, H.; Ju, D. Optimization of ultrasound-assisted aqueous two-phase system extraction of polyphenolic compounds from Aronia melanocarpa pomace by response surface methodology. Prep. Biochem. Biotechnol. 2017, 47, 312–321. [Google Scholar] [CrossRef]
- Vilkhu, K.; Mawson, R.; Simons, L.; Bates, D. Applications and opportunities for ultrasound assisted extraction in the food industry—A review. Innov. Food Sci. Emerg. Technol. 2008, 9, 161–169. [Google Scholar] [CrossRef]
- Dong, J.; Wang, L.; Bai, J.; Huang, X.; Chen, C. Mass transfer characteristics of adsorption and desorption of anthocyanins in Aronia melanocarpa by ultrasonic coupling macroporous resin fixed bed. Food Sci. 2023, 44, 69–80. [Google Scholar]
- Simić, V.M.; Rajković, K.M.; Stojičević, S.S.; Veličković, D.T.; Nikolić, N.Č.; Lazić, M.L.; Karabegović, I.T. Optimization of microwave-assisted extraction of total polyphenolic compounds from chokeberries by response surface methodology and artificial neural network. Sep. Purif. Technol. 2016, 160, 89–97. [Google Scholar] [CrossRef]
- Dong, J.; Wang, L.; Bai, J.; Huang, X.; Chen, C. Optimization of extraction technology of polysaccharide from Aronia melanocarpa fruit and analysis of monosaccharide composition. Spec. Res. 2024, 12, 1–6. [Google Scholar]
- Wang, L.; Dong, J.; Wang, Y.; Huang, X.; Chen, C. Rapid analysis of fruit components of Aronia melanocarpa based on UPLC-Orbitrap-MS/MS technology and GNPS molecular network. J. Mass Spectrom. 2024, 7, 137696. [Google Scholar]
- Yang, C.; Guo, R.; Xin, M.; Li, M.; Li, Y.; Su, L. Quantitative detection of polyphenol content in Aronia melanocarpa by mid-infrared spectroscopy. Spectrosc. Spectr. Anal. 2024, 44, 3075–3081. [Google Scholar]
- Hunter, P.M.; Hegele, R.A. Functional foods and dietary supplements for the management of dyslipidaemia. Nat. Rev. Endocrinol. 2017, 13, 278–288. [Google Scholar] [CrossRef]
- Woo, H.W.; Lee J, S. Characterization of electrospun Aronia melanocarpa fruit extracts loaded polyurethane nanoweb. Fash. Text. 2021, 8, 1–14. [Google Scholar] [CrossRef]
- Sadowska, A.; Świderski, F.; Rakowska, R.; Hallmann, E. Comparison of quality and microstructure of chokeberry powders prepared by different drying methods, including innovative fluidised bed jet milling and drying. Food Sci. Biotechnol. 2019, 28, 1073–1081. [Google Scholar] [CrossRef]
- Georgiev, D.; Ludneva, D. Possibilities for production of nectars and purees from fruits of black chokeberry (Aronia melanocarpa). In Proceedings of the I Balkan Symposium on Fruit Growing, Plovdiv, Bulgaria, 15–17 November 2007; pp. 595–598. [Google Scholar]
- Borowska, S.; Brzóska, M.M. Chokeberries (Aronia melanocarpa) and their products as a possible means for the prevention and treatment of noncommunicable diseases and unfavorable health effects due to exposure to xenobiotics. Compr. Rev. Food Sci. Food Saf. 2016, 15, 982–1017. [Google Scholar] [CrossRef]
- Kmiecik, W.; Lisiewska, Z.; Jaworska, G. Effect of aronia berry honey syrup used for sweetening jams on their quality. Food/Nahr. 2001, 45, 273–279. [Google Scholar] [CrossRef]
- Shi, D.; Xu, J.; Sheng, L.; Song, K. Comprehensive utilization technology of Aronia melanocarpa. Molecules 2024, 29, 1388. [Google Scholar] [CrossRef]
- Bratosin, B.C.; Martău, G.-A.; Ciont, C.; Ranga, F.; Simon, E.; Szabo, K.; Darjan, S.; Teleky, B.-E.; Vodnar, D.C. Nutritional and physico-chemical characteristics of innovative bars enriched with Aronia melanocarpa by-product powder. Appl. Sci. 2024, 14, 2338. [Google Scholar] [CrossRef]
- Sidor, A.; Drożdżyńska, A.; Gramza-Michałowska, A. Black chokeberry (Aronia melanocarpa) and its products as potential health-promoting factors—An overview. Trends Food Sci. Technol. 2019, 89, 45–60. [Google Scholar] [CrossRef]
- Li, R.; Ruan, W.; Hao, R.; Zhang, P.; Zhou, H.; Wang, J.; Chen, J. Optimization of deastringency removal technology of Aronia melanocarpa juice by ultra-high pressure synergistic enzymatic method. Packag. Food Mach. 2024, 42, 35–39+46. [Google Scholar]
- Zhang, H. Effect of lactobacillus plantarum C8-1 Fermentation on the Quality of Aronia melanocarpa Juice; Beijing Forestry University: Beijing, China, 2018. [Google Scholar]
- Hu, Y.; Niu, X.; Wang, M.; Liu, J.; Zhang, R.; Gao, H.; Ma, Z.; Lv, C. Study on formula optimization and storage quality of raspberry compound beverage of Aronia melanocarpa. Food Ind. Sci. Technol. 2023, 44, 9. [Google Scholar]
- Jin, M.; Liu, D.; Yang, C. Study on technological formula and stability of Aronia melanocarpa compound beverage of Actinidia arguta. Food Sci. Technol. 2024, 49, 84–93. [Google Scholar]
- Mao, X. Study on the technology of compound beverage of Aronia melanocarpa and blueberry. Agric. Prod. Process. 2020, 22, 5. [Google Scholar]
- Zhang, X.; Yin, J.; Liu, Y.; Dai, S.; Lei, Y. Study on the technology of compound juice of Aronia melanocarpa and purple carrots. Agric. Prod. Process. 2021, 19, 41–45. [Google Scholar]
- Liu, Y.; Yin, J.; Lei, Y.; Dai, S. Study on the technology of compound beverage of Aronia melanocarpa and lycium barbarum. Agric. Prod. Process. 2020, 10, 4. [Google Scholar]
- Skąpska, S.; Marszałek, K.; Woźniak, Ł.; Zawada, K.; Wawer, I. Aronia dietary drinks fortified with selected herbal extracts preserved by thermal pasteurization and high pressure carbon dioxide. LWT-Food Sci. Technol. 2017, 85, 423–426. [Google Scholar] [CrossRef]
- Wang, S.; Guan, Q.; Zhang, T.; Yang, C. Development of a compound functional beverage with physalis alkekengi and Aronia melanocarpa. Preserv. Process. 2022, 22, 11. [Google Scholar]
- Long, W.; Shi, T.; Yu, M.; Shan, X.; Wang, Z.; Song, W.; Lv, M.; Chen, H.; Lv, C. Optimization of preparation technology of compound stabilizer for Aronia melanocarpa peanut meal milk beverage. Food Res. Dev. 2024, 45, 152–159. [Google Scholar]
- Wang, H. Development and Functional Evaluation of Compound Beverage of Gynostemma pentaphyllum and Aronia melanocarpa; Shenyang Agriculture University: Shenyang, China, 2020. [Google Scholar]
- Xue, W.; Wang, Y.; Li, X.; Wang, S.; Jiang, W.; Liu, N.; Ma, T.; Fang, Y.; Sun, X. Research and development of fruit wine mixed with Aronia melanocarpa and Rosa rugosa and its quality evaluation. Food Ind. Sci. Technol. 2024, 12, 1–18. [Google Scholar]
- Sui, S.; Zhang, S.; Wang, X.; Li, K. Study on brewing technology of Aronia melanocarpa -Yacon mixed fruit wine. Agric. Sci. Technol. Equip. 2020, 2, 45–47. [Google Scholar]
- Sun, D.; Xue, G. Comparison of nutritional quality and antioxidant activity of Aronia melanocarpa wine with different pretreatment methods. Mod. Food Sci. Technol. 2024, 40, 302–310. [Google Scholar]
- Yao, F.; Wu, P.; Liu, P.; Wang, L. Optimization of fermentation conditions and analysis of antioxidant activity of Aronia melanocarpa fruit wine. China Brew. 2023, 42, 206–211. [Google Scholar]
- Yang, J.; Gao, X.; Sun, Y.; Li, H.; Yang, J.; Xu, W. Optimization of brewing technology and components of Aronia melanocarpa wine by high temperature and response surface methodology. Brew. Sci. Technol. 2023, 10, 52–59. [Google Scholar]
- Zhang, R.; Jing, Y.; Liu, J.; Hu, Y.; Gao, H.; Fan, M.; Lv, C. Effects of fermentation technology on quality and antioxidant activity of Aronia melanocarpa fruit wine during storage. China Brew. 2023, 42, 191–196. [Google Scholar]
- Li, W. Effect of Electron Beam on Dried Fruit of Aronia melanocarpa and Development of Preserved Fruit; Tianjin University of Science and Technology: Tianjin, China, 2022. [Google Scholar]
- Xu, Y. Development of Astringent prese£rved Aronia melanocarpa and Its Antioxidant Activity. Master’s Thesis, Shenyang Agricultural University, Shenyang, China, 2023. [Google Scholar]
- Rul, F. Yogurt microbiology, organoleptic properties and probiotic potential. In Fermented Foods, Part II; CRC Press: Boca Raton, FL, USA, 2017; pp. 418–450. [Google Scholar]
- Sheikh, S.; Siddique, F.; Ameer, K.; Ahmad, R.S.; Hameed, A.; Ebad, A.; Mohamed Ahmed, I.A.; Shibli, S. Effects of white mulberry powder fortification on antioxidant activity, physicochemical, microbial and sensorial properties of yogurt produced from buffalo milk. Food Sci. Nutr. 2023, 11, 204–215. [Google Scholar] [CrossRef]
- Zheleva, N.; Tzanovat, M.; Lazroval, M. Quality characteristics of yogurt from buffalo milk supplemented wine Aronia (Aronia melanocarpa) juice. Scientific Papers. Series, D. Anim. Sci. 2023, 66. [Google Scholar]
- Efenberger-Szmechtyk, M.; Gałązka-Czarnecka, I.; Otlewska, A.; Czyżowska, A.; Nowak, A. Aronia melanocarpa (Michx.) Elliot, Chaenomeles superba Lindl. and Cornus mas L. leaf extracts as natural preservatives for pork meat products. Molecules 2021, 26, 3009. [Google Scholar] [CrossRef]
- Ren, Z. Effect of Aronia melanocarpa Pomace on Growth Performance of Pigs and Its Mechanism; Jilin University: Jilin, China, 2023. [Google Scholar]
- Rodríguez-Werner, M.; Winterhalter, P.; Esatbeyoglu, T. Phenolic composition, radical scavenging activity and an approach for authentication of Aronia melanocarpa berries, juice, and pomace. J. Food Sci. 2019, 84, 1791–1798. [Google Scholar] [CrossRef]
- Bao, C. Effects of Aronia melanocarpa Pomace on Liver Lipid Metabolism and Cecal Flora of Laying Hens in the Late Period of Laying Peak; Jilin Agricultural University: Jilin, China, 2023. [Google Scholar]
- Wang, Y.; Ma, Z.; Li, J.; Zhu, F. Effect of polyphenols in Aronia melanocarpa on gel properties of surimi products. J. China Food Sci. 2024, 12, 1–11. [Google Scholar]
- Ghendov-Mosanu, A.; Ungureanu-Iuga, M.; Mironeasa, S.; Sturza, R. Aronia extracts in the production of confectionery masses. Appl. Sci. 2022, 12, 7664. [Google Scholar] [CrossRef]
- Wu, S.; Yuan, Y.; Yin, J.; Hu, H.; Pei, H.; Li, W.; Zhang, X. Characteristics of effervescent tablets of Aronia melanocarpa: Response surface design and antioxidant activity evaluation. J. Food Meas. Charact. 2022, 16, 2969–2977. [Google Scholar] [CrossRef]
- Kim, D.-W.; Park, M.-H.; Kim, M. Study on antioxidant activity and cytotoxicity of Aronia melanocarpa leaf tea extracts. Food Sci. Biotechnol. 2023, 32, 1423–1433. [Google Scholar] [CrossRef]
- Aydogdu Emir, A.; Yildiz, E.; Oz, E.; Amarowicz, R.; Proestos, C.; Khan, M.R.; Elobeid, T.; Oz, F. Development of simultaneous antioxidant and visual pH-sensing films based on guar gum loaded with Aronia melanocarpa extract. Int. J. Food Sci. Technol. 2023, 58, 4376–4385. [Google Scholar] [CrossRef]
- Ozcan, A.; Arman Kandirmaz, E. Edible film production using Aronia melanocarpa for smart food packaging. Nord. Pulp Pap. Res. J. 2022, 37, 665–676. [Google Scholar] [CrossRef]
- Halász, K.; Csóka, L. Black chokeberry (Aronia melanocarpa) pomace extract immobilized in chitosan for colorimetric pH indicator film application. Food Packag. Shelf Life 2018, 16, 185–193. [Google Scholar] [CrossRef]
- Wu, X.; Yan, X.; Zhang, J.; Wu, X.; Luan, M.; Zhang, Q. Preparation and characterization of pH-sensitive intelligent packaging films based on cassava starch/polyvinyl alcohol matrices containing Aronia melanocarpa anthocyanins. LWT 2024, 194, 115818. [Google Scholar] [CrossRef]
- Long, W.; Lin, Y.; Lv, C.; Dong, J.; Lv, M.; Lou, X. High-compatibility properties of Aronia melanocarpa extracts cross-linked chitosan/polyvinyl alcohol composite film for intelligent food packaging. Int. J. Biol. Macromol. 2024, 270, 132305. [Google Scholar] [CrossRef]
- Chen, X.; Ji, W.; Nan, X.; Wang, H.; Li, J.; Dong, L.; Sheng, G.; Zhou, Q. Preparation and characterization of Aronia melanocarpa/gellan gum/pea protein/chitosan bilayer films. Foods 2022, 11, 2835. [Google Scholar] [CrossRef]
- Oun, A.A.; Shin, G.H.; Kim, J.T. Antimicrobial, antioxidant, and pH-sensitive polyvinyl alcohol/chitosan-based composite films with aronia extract, cellulose nanocrystals, and grapefruit seed extract. Int. J. Biol. Macromol. 2022, 213, 381–393. [Google Scholar] [CrossRef]
- Wu, X.; Yan, X.; Zhang, J.; Wu, X.; Zhang, Q.; Zhang, B. Intelligent films based on dual-modified starch and microencapsulated Aronia melanocarpa anthocyanins: Functionality, stability and application. Int. J. Biol. Macromol. 2024, 275, 134076. [Google Scholar] [CrossRef]
- Wang, C.; Cao, J.; Liu, T.; Jin, L.; Hang, C.; Zhang, C.; Qian, X.; Jiang, D.; Jiang, C. Preparation and characterization of antioxidant and pH-sensitive films based on arrowhead (Sagittaria sagittifolia) starch, κ-carrageenan and black chokeberry (Aronia melanocarpa) extract for monitoring spoilage of chicken wings. International J. Biol. Macromol. 2023, 224, 544–555. [Google Scholar] [CrossRef]
- Li, R.; Gan, Z.; Wang, J.; Jiang, G.; Zhang, Z. Preparation and properties of chitosan- Aronia melanocarpa polyphenols composite coating. Packag. Eng. 2024, 17, 70–77. [Google Scholar]
- Long, W.; Liu, Z.; Lu, M.; Song, W.; Chen, H. Preparation and properties of LV ChangxIn in chitosan- Aronia melanocarpa anthocyanin composite film. In Proceedings of the 20th Annual Meeting of Chinese Institute of Food Science and Technology, Changsha, China, 24–25 October 2023; p. 2. [Google Scholar]
- Li, H. Extraction of Anthocyanin from Aronia melanocarpa and Development of Edible Film. Master’s Thesis, Changchun University of Technology, Jilin, China, 2023. [Google Scholar]
- Zhang, Z. Purification of polyphenols from Aronia melanocarpa pomace and its application in fresh-keeping of cold meat. Master’s Thesis, Changchun University, Jilin, China, 2022. [Google Scholar]
No. | Disease/Condition | Active Compounds | Mechanism Studied | Key Findings | References |
---|---|---|---|---|---|
1 | Infectious shock, neuropathic diseases, rheumatoid arthritis, and other autoimmune diseases | Cyanidin, Procyanidin B2, B5, and C1 | Regulation of macrophage complement activity induced by lipopolysaccharides, inhibition of nitric oxide (NO) production, and the effect of these polyphenols on cell viability | Aronia melanocarpa procyanidins and procyanidin-rich fractions reduced NO production in lipopolysaccharide-activated RAW 264.7 macrophages | [47] |
2 | Autoimmune diseases and tumors | Polyphenols | Impact of pure or 1% pectin-enriched Aronia juice on markers of thymus degeneration in mature rats | Supplementation significantly stimulated CD3 + thymocyte subpopulations and delayed some age-related thymus changes at the microscopic level | [48] |
3 | Neuropathic diseases | 2α, 3α, 23,24-tetrahydroxy-olean-12,19-diene-28-o-β-D-glucopyranoside, 2α, 3β, 23,24-tetrahydroxyoleanane-28-o-β-D-glucopyranoside, and 2α, 3β, 23,24-tetrahydroxyoleanane-12,19-diene-28-o-β-D-glucopyranoside | Inhibition of nitric oxide production by macrophages by isolated triterpene glycosides | Isolated compounds exhibited moderate inhibitory activity on nitric oxide production by macrophages | [49] |
4 | Neurodegenerative diseases | Anthocyanins | Evaluation of whether Aronia melanocarpa protects neuronal cells from glutamate-induced oxidative stress | High antioxidant activity of anthocyanins reduced glutamate-induced HT22 cell death | [50] |
5 | Inflammatory response | Quercetin and rutin from flavonol extracts | Study of antioxidant, immunomodulatory, and cytotoxic activities in lymphoblast RPMI-1788, with quercetin-rutin mixture reducing lipid peroxidation and enhancing phagocytic processes | Quercetin and rutin mixture positively influenced “respiratory burst” formation in neutrophils of healthy animals, leading to a reduction in reactive oxygen species activity | [51] |
6 | Hyperuricemia and gouty arthritis | Aronia melanocarpa fruit | Evaluation of Aronia melanocarpa’s ability to alleviate gouty arthritis and hyperuricemia in sodium urate crystal-induced acute gout rats and oxo-induced hyperuricemic mice | Reduced inflammatory cell counts in serum of acute gout rats, increased ankle joint space, inhibited interleukin (IL)-1β, IL-10, monocyte chemoattractant protein-1, and tumor necrosis factor-α levels; significantly lowered serum uric acid, blood urea nitrogen, and creatinine levels in hyperuricemic mice | [52] |
7 | Colorectal cancer | Anthocyanins | Investigation of the inhibitory effects of Aronia melanocarpa anthocyanins on Caco-2 cells and their suppression of malignant biological behaviors | Reduced cytoplasmic β-catenin and inhibited the expression of proteins in the Wnt/β-catenin signaling pathway | [21] |
8 | Muscle generation under chronic inflammation | Phenolic metabolites | Aronia melanocarpa treatment enhanced myogenesis in a model of chronic muscle inflammation | Aronia melanocarpa metabolites enhanced early myogenesis, characterized by increased expression of MymX and MyoG and formation of new myotubes; prevented muscle atrophy in a dexamethasone-induced model through muscle-specific ubiquitination prevention | [22] |
9 | Type 2 diabetes | Aronia melanocarpa extract | Regulation of glucose-lipid metabolism in type 2 diabetic rats through modulation of gut microbiota by Aronia melanocarpa extract | Aronia melanocarpa extract effectively modulated gut microbiota abundance, reduced colon tissue damage, increased body weight of diabetic rats, and lowered fasting blood glucose, LDL, and triglyceride levels | [53] |
10 | Alcoholic liver disease | Anthocyanins | Aronia melanocarpa anthocyanins alleviated ethanol-induced alcoholic liver disease by modulating the PI3K-Akt and Keap1/HO-1 pathways | Reversed α7nAChR and collagen I expression, downregulated PI3K-Akt and Keap1/HO-1 pathways | [54] |
Intelligent Indicator Film | Main Ingredients | Target | Functions, Effects, Advantages | References |
---|---|---|---|---|
Aronia melanocarpa Extract pH Colorimetric Edible Film | Aronia melanocarpa extract, starch biopolymer | Meat | The edible film turns pink under acidic pH and dark blue under alkaline pH. The color changes according to nitrogen released from spoiled meat. The film also exhibits strong inhibitory activity against Gram-positive bacteria, protecting food from degradation. | [123] |
Chitosan-Based Aronia melanocarpa Extract pH Indicator Film | Aronia melanocarpa extract, chitosan | None | The film shows significant color differences within the pH 1–pH 10 range, with strong indication ability. | [124] |
Anthocyanin-Based pH-Sensitive Packaging Film | Aronia melanocarpa anthocyanins, cassava starch, polyvinyl alcohol | Milk | Adding Aronia melanocarpa anthocyanins to the film significantly enhances its UV-blocking properties, making it more effective for monitoring milk freshness. | [125] |
Intelligent Food Packaging Film with Aronia melanocarpa Extract | Aronia melanocarpa extract, chitosan, polyvinyl alcohol | Shrimp | The film shows excellent antioxidant, antibacterial, and pH-responsive properties. It can be used to monitor the storage of highly perishable shrimp and demonstrates great potential for the preparation of bioactive-enhanced intelligent food packaging films. | [126] |
pH-Sensitive Dual-Layer Edible Film with Aronia melanocarpa Juice and Gellan Gum | Aronia melanocarpa juice, gellan gum, Ca2+ ions, pea protein, chitosan, Lactobacillus rhamnosus | Fresh pork | The edible dual-layer film, enriched with Aronia melanocarpa, functions as a freshness indicator. It offers an innovative approach to nondestructive freshness detection and has applications in 3D food printing with microencapsulation technology. | [127] |
Multi-Material Composite Food Packaging Film with Aronia melanocarpa | Aronia melanocarpa, cellulose nanocrystals, grapefruit seed extract, polyvinyl alcohol, chitosan | None | The composite film exhibits significant color changes under different pH levels and strong antioxidant activity. It shows the highest antibacterial activity against E. coli (Gram-negative) and Listeria monocytogenes (Gram-positive), with excellent UV-blocking (95.5%), antioxidant activity (95%), pH sensitivity, and mechanical properties. | [128] |
Anthocyanin-Based Intelligent Indicator Film with Three Types of Modified Starch | Aronia melanocarpa anthocyanins, cross-linked oxidized starch, acetylated distarch phosphate, hydroxypropyl distarch phosphate | Beef | The developed freeze-dried anthocyanin-based intelligent film demonstrated excellent stability and pH-responsive properties, with significant color changes during beef freshness monitoring. | [129] |
Arrowhead Starch/Carrageenan/Aronia melanocarpa Anthocyanin pH-Sensitive Film | Aronia melanocarpa anthocyanin extract, arrowhead starch, carrageenan | Chicken wings | The film exhibits different color changes under varying pH and ammonia-sensitive conditions, reflecting the freshness of food. | [130] |
Chitosan-Aronia melanocarpa Polyphenol Composite Coating Film | Aronia melanocarpa polyphenols, chitosan | Chilled pork | Inhibits microbial growth in food, extends shelf life, and delays pork spoilage. | [131] |
Chitosan-Aronia melanocarpa Anthocyanin Composite Film | Aronia melanocarpa anthocyanins, chitosan | None | A green, eco-friendly intelligent food packaging material. | [132] |
Aronia melanocarpa Anthocyanin Edible Film | Aronia melanocarpa anthocyanins, chitosan, zein, NADES | None | NADES, a novel natural plasticizer, shows excellent compatibility with anthocyanins and film components, superior to glycerol films. This significantly improves mechanical properties, moisture resistance, hydrophobicity, and antioxidant activity while reducing moisture content. | [133] |
Aronia melanocarpa Pomace Polyphenol-Based Preservative Coating Film | Aronia melanocarpa pomace polyphenols, gelatin | Fresh pork | Pork samples without treatment spoiled by day 9, but Aronia melanocarpa pomace polyphenol-gelatin composite films extended the shelf life by approximately 3 days. | [134] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, J.; Li, F.; Zheng, M.; Sheng, L.; Shi, D.; Song, K. A Comprehensive Review of the Functional Potential and Sustainable Applications of Aronia melanocarpa in the Food Industry. Plants 2024, 13, 3557. https://doi.org/10.3390/plants13243557
Xu J, Li F, Zheng M, Sheng L, Shi D, Song K. A Comprehensive Review of the Functional Potential and Sustainable Applications of Aronia melanocarpa in the Food Industry. Plants. 2024; 13(24):3557. https://doi.org/10.3390/plants13243557
Chicago/Turabian StyleXu, Jing, Fusen Li, Meizhu Zheng, Li Sheng, Dongfang Shi, and Kai Song. 2024. "A Comprehensive Review of the Functional Potential and Sustainable Applications of Aronia melanocarpa in the Food Industry" Plants 13, no. 24: 3557. https://doi.org/10.3390/plants13243557
APA StyleXu, J., Li, F., Zheng, M., Sheng, L., Shi, D., & Song, K. (2024). A Comprehensive Review of the Functional Potential and Sustainable Applications of Aronia melanocarpa in the Food Industry. Plants, 13(24), 3557. https://doi.org/10.3390/plants13243557