Effect of Herbicide-Resistant Oil-Degrading Bacteria on Plants in Soil Contaminated with Oil and Herbicides
Abstract
:1. Introduction
2. Results
2.1. Identification of Strains of Hydrocarbon-Oxidizing Microorganisms
2.2. Properties of the Strains and the Effect of Oil and Herbicides on Them
2.3. Plant Growth Under the Influence of Oil, Herbicides, and Bacteria
2.4. Content of Hormones in Plants
2.5. Pigment Complex and NBI
2.6. Malondialdehyde Content
2.7. Number of Microorganisms of Different Groups in the Soil
2.8. Content of Total Petroleum Hydrocarbons in the Soil
3. Discussion
4. Materials and Methods
4.1. Isolation and Identification of Strains of Hydrocarbon-Oxidizing Microorganisms
4.2. Capacity for Oil Biodegradation, PGP Properties of Strains, and the Influence of Oil and Herbicides on These Characteristics
4.3. Plant Growth Conditions and Treatments
4.4. Content of Hormones in Plants
4.5. Pigment Complex and NBI
4.6. Malondialdehyde Content
4.7. Number of Microorganisms of Different Groups in the Soil
4.8. Content of Total Petroleum Hydrocarbons in the Soil
4.9. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Okorondu, J.; Umar, N.A.; Ulor, C.O.; Onwuagba, C.G.; Diagi, B.G.; Ajiere, S.A.; Nwaogu, C. Anthropogenic activities as primary drivers of environmental pollution and loss of biodiversity: A review. Int. J. Trend Sci. Res. Dev. IJTSRD 2022, 6, 621–643. [Google Scholar]
- Stepanova, A.Y.; Gladkov, E.A.; Osipova, E.S.; Gladkova, O.V.; Tereshonok, D.V. Bioremediation of soil from petroleum contamination. Processes 2022, 10, 1224. [Google Scholar] [CrossRef]
- Wang, A.; Fu, W.; Feng, Y.; Liu, Z.; Song, D. Synergetic effects of microbial-phytoremediation reshape microbial communities and improve degradation of petroleum contaminants. J. Hazard. Mater. 2022, 429, 128396. [Google Scholar] [CrossRef] [PubMed]
- Hassand, M.H.; Omirbekova, A.; Sarwari, A.; Monib, A.W.; Niazi, P. Microbial-plant interactions and their role in mitigating of oil pollution: A review. Eur. J. Theor. Appl. Sci. EJTAS J. 2024, 2, 11–22. [Google Scholar] [CrossRef]
- Chetverikov, S.; Vysotskaya, L.; Kuzina, E.; Arkhipova, T.; Bakaeva, M.; Rafikova, G.; Korshunova, T.; Chetverikova, D.; Hkudaygulov, G.; Kudoyarova, G. Effects of association of barley plants with hydrocarbon-degrading bacteria on the content of soluble organic compounds in clean and oil-contaminated sand. Plants 2021, 10, 975. [Google Scholar] [CrossRef]
- Supreeth, M. Enhanced remediation of pollutants by microorganisms—Plant combination. Int. J. Environ. Sci. Technol. 2022, 19, 4587–4598. [Google Scholar] [CrossRef]
- Dubrovskaya, E.; Pozdnyakova, N.; Golubev, S.; Muratova, A.; Grinev, V.; Bondarenkova, A.; Turkovskaya, O. Peroxidases from root exudates of Medicago sativa and Sorghum bicolor: Catalytic properties and involvement in PAH degradation. Chemosphere 2017, 169, 224–232. [Google Scholar] [CrossRef]
- Wang, T.; Xu, J.; Chen, J.; Liu, P.; Hou, X.; Yang, L.; Zhang, L. Progress in microbial fertilizer regulation of crop growth and soil remediation research. Plants 2024, 13, 346. [Google Scholar] [CrossRef]
- Panagos, P.; Van Liedekerke, M.; Yigini, Y.; Montanarella, L. Contaminated sites in Europe: Review of the current situation based on data collected through a European network. J. Environ. Public Health 2012, 2013, 158764. [Google Scholar] [CrossRef]
- Khan, M.A.I.; Biswas, B.; Smith, E.; Naidu, R.; Megharaj, M. Toxicity assessment of fresh and weathered petroleum hydrocarbons in contaminated soil—A review. Chemosphere 2018, 212, 755–767. [Google Scholar] [CrossRef]
- O’Callaghan-Gordo, C.; Orta-Martínez, M.; Kogevinas, M. Health effects of non-occupational exposure to oil extraction. Environ. Health 2016, 15, 56. [Google Scholar] [CrossRef] [PubMed]
- Ansari, N.; Hassanshahian, M.; Ravan, H. Study the microbial communities’ changes in desert and farmland soil after crude oil pollution. Int. J. Environ. Res. 2018, 12, 391–398. [Google Scholar] [CrossRef]
- Zhen, M.; Chen, H.; Liu, Q.; Song, B.; Wang, Y.; Tang, J. Combination of rhamnolipid and biochar in assisting phytoremediation of petroleum hydrocarbon contaminated soil using Spartina anglica. J. Environ. Sci. 2019, 85, 107–118. [Google Scholar] [CrossRef] [PubMed]
- Kuppusamy, S.; Raju, M.N.; Mallavarapu, M.; Kadiyala, V. Impact of total petroleum hydrocarbons on human health. In Total Petroleum Hydrocarbons; Springer: Cham, Germany, 2020; pp. 139–165. [Google Scholar] [CrossRef]
- Mekonnen, B.A.; Aragaw, T.A.; Genet, M.B. Bioremediation of petroleum hydrocarbon contaminated soil: A review on principles, degradation mechanisms, and advancements. Front. Environ. Sci. 2024, 12, 1354422. [Google Scholar] [CrossRef]
- Gabbasova, I.M.; Suleymanov, R.R.; Garipov, T.T. Degradation and remediation of soils polluted with oil-field wastewater. Eurasian Soil. Sci. 2013, 46, 204–211. [Google Scholar] [CrossRef]
- Chen, M.; Xu, P.; Zeng, G.; Yang, C.; Huang, D.; Zhang, J. Bioremediation of soils contaminated with polycyclic aromatic hydrocarbons, petroleum, pesticides, chlorophenols and heavy metals by composting: Applications, microbes and future research needs. Biotechnol. Adv. 2015, 33, 745–755. [Google Scholar] [CrossRef]
- Guo, M.; Gong, Z.; Allinson, G.; Tai, P.; Miao, R.; Li, X.; Jia, C.; Zhuang, J. Variations in the bioavailability of polycyclic aromatic hydrocarbons in industrial and agricultural soils after bioremediation. Chemosphere 2016, 144, 1513–1520. [Google Scholar] [CrossRef]
- Martínez, B.C.S.; Benavides, L.M.; Santoyo, G.; Sánchez-Yáñez, J.M. Biorecovery of agricultural soil impacted by waste motor oil with Phaseolus vulgaris and Xanthobacter autotrophicus. Plants 2022, 11, 1419. [Google Scholar] [CrossRef]
- Li, Y.; Wang, S.; Nan, Z.; Zang, F.; Sun, H.; Zhang, Q.; Huang, W.; Bao, L. Accumulation, fractionation and health risk assessment of fluoride and heavy metals in soil-crop systems in northwest China. Sci. Total Environ. 2019, 663, 307–314. [Google Scholar] [CrossRef]
- Ghori, N.H.; Ghori, T.; Hayat, M.Q.; Imadi, S.R.; Gul, A.; Altay, V.; Ozturk, M. Heavy metal stress and responses in plants. Int. J. Environ. Sci. Technol. 2019, 16, 1807–1828. [Google Scholar] [CrossRef]
- Shahid, M.; Khan, M.S. Ecotoxicological implications of residual pesticides to beneficial soil bacteria: A review. Pestic. Biochem. Physiol. 2022, 188, 105272. [Google Scholar] [CrossRef] [PubMed]
- Ye, S.; Zeng, G.; Wu, H.; Zhang, C.; Liang, J.; Dai, J.; Liu, Z.; Xiong, W.; Wan, J.; Xu, P.; et al. Co-occurrence and interactions of pollutants, and their impacts on soil remediation—A review. Crit. Rev. Environ. Sci. Technol. 2017, 47, 1528–1553. [Google Scholar] [CrossRef]
- Zeng, S.; Dai, Z.; Ma, B.; Dahlgren, R.A.; Xu, J. Environmental interactions and remediation strategies for co-occurring pollutants in soil. Earth Crit. Zone ECZ 2024, 1, 100002. [Google Scholar] [CrossRef]
- Ebadi, A.; Khoshkholgh Sima, N.A.; Olamaee, M.; Hashemi, M.; Ghorbani Nasrabadi, R. Remediation of saline soils contaminated with crude oil using the halophyte Salicornia persica in conjunction with hydrocarbon-degrading bacteria. J. Environ. Manag. 2018, 219, 260–268. [Google Scholar] [CrossRef]
- Li, Q.; Liu, J.; Gadd, G.M. Fungal bioremediation of soil co-contaminated with petroleum hydrocarbons and toxic metals. Appl. Microbiol. Biotechnol. 2020, 104, 8999–9008. [Google Scholar] [CrossRef]
- Rafikova, G.F.; Kuzina, E.V.; Korshunova, T.Y. Influence of bioremediation on the biological activity of leached chernozem, contaminated with oil and lead. Eurasian Soil. Sci. 2022, 55, 422–435. [Google Scholar] [CrossRef]
- Islas-García, A.; Vega-Loyo, L.; Aguilar-López, R.; Xoconostle-Cázares, B.; Rodríguez-Vázquez, R. Evaluation of hydrocarbons and organochlorine pesticides and their tolerant microorganisms from an agricultural soil to define its bioremediation feasibility. J. Environ. Sci. Health B 2015, 50, 99–108. [Google Scholar] [CrossRef]
- Korshunova, T.; Kuzina, E.; Mukhamatdyarova, S.; Sharipova, Y.; Iskuzhina, M. Promising strains of hydrocarbon-oxidizing pseudomonads with herbicide resistance and plant growth-stimulating properties for bioremediation of oil-contaminated agricultural soils. Agriculture 2023, 13, 1111. [Google Scholar] [CrossRef]
- Korshunova, T.Y.; Kuzina, E.V.; Mukhamatdyarova, S.R.; Sharipova, Y.Y.; Iskuzhina, M.G. Bacteria-destructors with growth-stimulating properties for use in ecological biotechnology. Theor. Appl. Ecol. 2024, 2, 117–124. [Google Scholar] [CrossRef]
- Korshunova, T.Y.; Iskuzina, M.G.; Kuzina, E.V.; Mukhamatdyarova, S.R.; Rameev, T.V. Evaluation of the influence of various pollutants on the growth and development of remediant plants. Ecobiotech 2023, 6, 156–165. [Google Scholar] [CrossRef]
- Zheng, W.; Cui, T.; Li, H. Combined technologies for the remediation of soils contaminated by organic pollutants. A review. Environ. Chem. Lett. 2022, 20, 2043–2062. [Google Scholar] [CrossRef]
- Sharma, I.; Sharma, S.; Sharma, V.; Singh, A.K.; Sharma, A.; Kumar, A.; Singh, J.; Sharma, A. PGPR-enabled bioremediation of pesticide and heavy metal-contaminated soil: A review of recent advances and emerging challenges. Chemosphere 2024, 362, 142678. [Google Scholar] [CrossRef] [PubMed]
- Dai, Y.; Liu, R.; Zhou, Y.; Li, N.; Hou, L.; Ma, Q.; Gao, B. Fire Phoenix facilitates phytoremediation of PAH-Cd co-contaminated soil through promotion of beneficial rhizosphere bacterial communities. Environ. Int. 2020, 136, 105421. [Google Scholar] [CrossRef] [PubMed]
- Korshunova, T.Y.; Bakaeva, M.D.; Kuzina, E.V.; Rafikova, G.F.; Chetverikov, S.P.; Chetverikova, D.V.; Loginov, O.N. Role of bacteria of the genus Pseudomonas in the sustainable development of agricultural systems and environmental protection (review). Appl. Biochem. Microbiol. 2021, 3, 281–296. [Google Scholar] [CrossRef]
- Dahal, U.; Paul, K.; Gupta, S. The multifaceted genus Acinetobacter: From infection to bioremediation. J. Appl. Microbiol. 2023, 134, lxad145. [Google Scholar] [CrossRef]
- Domracheva, L.I.; Skugoreva, S.G.; Kovina, A.L.; Korotkikh, A.I.; Starikov, P.A.; Ashikhmina, T.Y. Specificity of plant-microbial complexes under anthropogenic soil pollution (review). Theor. Appl. Ecol. 2022, 3, 14–25. [Google Scholar] [CrossRef]
- Kuzina, E.; Rafikova, G.; Vysotskaya, L.; Arkhipova, T.; Bakaeva, M.; Chetverikova, D.; Kudoyarova, G.; Korshunova, T.; Chetverikov, S. Influence of hydrocarbon-oxidizing bacteria on the growth, biochemical characteristics, and hormonal status of barley plants and the content of petroleum hydrocarbons in the soil. Plants 2021, 10, 1745. [Google Scholar] [CrossRef]
- Bakaeva, M.; Kuzina, E.; Vysotskaya, L.; Kudoyarova, G.; Arkhipova, T.; Rafikova, G.; Chetverikov, S.; Korshunova, T.; Chetverikova, D.; Loginov, O. Capacity of Pseudomonas strains to degrade hydrocarbons, produce auxins and maintain plant growth under normal conditions and in the presence of petroleum contaminants. Plants 2020, 9, 379. [Google Scholar] [CrossRef]
- Wang, P.; Wei, H.; Ke, T.; Fu, Y.; Zeng, Y.; Chen, C.; Chen, L. Characterization and genome analysis of Acinetobacter oleivorans S4 as an efficient hydrocarbon-degrading and plant-growth-promoting rhizobacterium. Chemosphere 2023, 331, 138732. [Google Scholar] [CrossRef]
- Padilla, F.M.; Gallardo, M.; Manzano-Agugliaro, F. Global trends in nitrate leaching research in the 1960–2017 period. Sci. Total Environ. 2018, 643, 400–413. [Google Scholar] [CrossRef]
- Elhaissoufi, W.; Khourchi, S.; Ibnyasser, A.; Ghoulam, C.; Rchiad, Z.; Zeroual, Y.; Lyamlouli, K.; Bargaz, A. Phosphate solubilizing rhizobacteria could have a stronger influence on wheat root traits and aboveground physiology than rhizosphere P solubilization. Front. Plant Sci. 2020, 11, 979. [Google Scholar] [CrossRef] [PubMed]
- Orozco-Mosqueda, M.d.C.; Santoyo, G.; Glick, B.R. Recent advances in the bacterial phytohormone modulation of plant growth. Plants 2023, 12, 606. [Google Scholar] [CrossRef] [PubMed]
- Etesami, H.; Glick, B.R. Bacterial indole-3-acetic acid: A key regulator for plant growth, plant-microbe interactions, and agricultural adaptive resilience. Microbiol. Res. 2024, 281, 127602. [Google Scholar] [CrossRef] [PubMed]
- Raheem, A.; Shaposhnikov, A.; Belimov, A.A.; Dodd, I.C.; Ali, B. Auxin production by rhizobacteria was associated with improved yield of wheat (Triticum aestivum L.) under drought stress. Arch. Agron. Soil Sci. 2017, 64, 574–587. [Google Scholar] [CrossRef]
- Kang, S.-M.; Hoque, M.I.U.; Woo, J.-I.; Lee, I.-J. Mitigation of salinity stress on soybean seedlings using indole acetic acid-producing Acinetobacter pittii YNA40. Agriculture 2023, 13, 1021. [Google Scholar] [CrossRef]
- Chetverikov, S.; Feoktistova, A.; Timergalin, M.; Rameev, T.; Hkudaygulov, G.; Kendjieva, A.; Bakaeva, M.; Chetverikova, D.; Starikov, S.; Sharipov, D. Mitigation of the negative effect of auxinic herbicide by bacterial suspension of Pseudomonas protegens DA1.2 in wheat plants under drought conditions. Acta Agric. Slov. 2023, 119, 1–7. [Google Scholar] [CrossRef]
- Khmelevtsova, L.E.; Sazykin, I.S.; Sazykina, M.A.; Seliverstova, E.Y. Prokaryotic cytochromes P450 (review). Appl. Biochem. Microbiol. 2017, 4, 401–409. [Google Scholar] [CrossRef]
- Muratova, A.Y.; Turkovskaya, O.V.; Antonyuk, L.P.; Makarov, O.E.; Pozdnyakova, L.I.; Ignatov, V.V. Oil-oxidizing potential of associative rhizobacteria of the genus Azospirillum. Microbiology 2005, 74, 210–215. [Google Scholar] [CrossRef]
- Ahemad, M.; Khan, M.S. Evaluation of plant-growth-promoting activities of rhizobacterium Pseudomonas putida under herbicide stress. Ann. Microbiol. 2012, 62, 1531–1540. [Google Scholar] [CrossRef]
- Tripti; Kumar, A.; Kumar, V.; Anshumali. Effect of commercial pesticides on plant growth-promoting activities of Burkholderia sp. strain L2 isolated from rhizosphere of Lycopersicon esculentum cultivated in agricultural soil. Toxicol. Environ. Chem. 2015, 97, 1180–1189. [Google Scholar] [CrossRef]
- Shahid, M.; Ahmed, B.; Khan, M.S. Evaluation of microbiological management strategy of herbicide toxicity to greengram plants. Biocat. Agric. Biotechnol. 2018, 14, 96–108. [Google Scholar] [CrossRef]
- Shahid, M.; Khan, M.S.; Syed, A.; Elgorban, A.M.; Pichtel, J.; Wong, L.S. Effect of herbicides on cellular growth, microbiological and physiological activities of an identified rhizosphere isolate Rhodococcus erythropolis. Chem. Ecol. 2023, 39, 843–867. [Google Scholar] [CrossRef]
- Lu, C.; Yang, Z.; Liu, J.; Liao, Q.; Ling, W.; Waigi, M.G.; Odinga, E.S. Chlorpyrifos inhibits nitrogen fixation in rice-vegetated soil containing Pseudomonas stutzeri A1501. Chemosphere 2020, 256, 127098. [Google Scholar] [CrossRef] [PubMed]
- Zaidi, A.; Khan, M.S.; Rizvi, A.; Saif, S.; Ahmad, B.; Shahid, M. Role of phosphate-solubilizing bacteria in legume improvement. In Microbes for Legume Improvement; Zaidi, A., Khan, M.S., Musarrat, J., Eds.; Springer: Cham, Switzerland, 2017; pp. 175–197. [Google Scholar] [CrossRef]
- Wang, P.; Chen, C.; Liao, K.; Tao, Y.; Fu, Y.; Chen, L. Mechanism of A. oleivorans S4 treating soluble phosphorus deficiency and hydrocarbon contamination simultaneously. Sci. Total. Environ. 2024, 949, 175215. [Google Scholar] [CrossRef]
- Sadouk, Z.; Tazerouti, A.; Hacene, H. Biodegradation of diesel oil and production of fatty acid esters by a newly isolated Pseudomonas citronellolis KHA. World J. Microbiol. Biotechnol. 2009, 25, 65–70. [Google Scholar] [CrossRef]
- Ntougias, P.S.; Melidis, P.; Navrozidou, E.; Tzegkas, F. Diversity and efficiency of anthracene-degrading bacteria isolated from a denitrifying activated sludge system treating municipal wastewater. Int. Biodeter. Biodegrad. 2015, 97, 151–158. [Google Scholar] [CrossRef]
- Zheng, D.; Wang, X.; Wang, P.; Peng, W.; Ji, N.; Liang, R. Genome sequence of Pseudomonas citronellolis SJTE-3, an estrogen- and polycyclic aromatic hydrocarbon-degrading bacterium. Genome Announc. 2016, 4, e01373-16. [Google Scholar] [CrossRef]
- Góngora-Echeverría, V.R.; García-Escalante, R.; Rojas-Herrera, R.; Giácoman-Vallejos, G.; Ponce-Caballero, C. Pesticide bioremediation in liquid media using a microbial consortium and bacteria-pure strains isolated from a biomixture used in agricultural areas. Ecotoxicol. Environ. Saf. 2020, 200, 110734. [Google Scholar] [CrossRef]
- Zhao, L.; Xiao, D.; Liu, Y.; Xu, Y.; Nan, Y.; Li, D.; Kan, Y.; Cao, X. Biochar as simultaneous shelter, adsorbent, pH buffer, and substrate of Pseudomonas citronellolis to promote biodegradation of high concentrations of phenol in wastewater. Water Res. 2020, 172, 115494. [Google Scholar] [CrossRef]
- Mehdizadeh, M.; Mushtaq, W.; Siddiqui, S.A.; Ayadi, S.; Kaur, P.; Yeboah, S.; Mazraedoost, S.; AL-Taey, D.K.A.; Tampubolon, K. Herbicide residues in agroecosystems: Fate, detection, and effect on non-target plants. Rev. Agric. Sci. 2021, 9, 157–167. [Google Scholar] [CrossRef]
- Song, Y. Insight into the mode of action of 2,4-dichlorophenoxyacetic acid (2,4-D) as an herbicide. J. Integr. Plant Biol. 2014, 56, 106–113. [Google Scholar] [CrossRef] [PubMed]
- Bychkova, V.V.; Sazonova, I.A.; Pidenko, P.S.; Pidenko, S.A.; Burmistrova, N.A. Negative effects of imidazolinone herbicides usage: Problems and decisions. Agrochemistry 2023, 2, 87–96. [Google Scholar] [CrossRef]
- Kuzina, E.V.; Bakaeva, M.D.; Rafikova, G.F.; Chetverikova, D.V.; Kudoyarova, G.R. The influence of bacterization of sudan grass seeds with the strains of Pseudomonas on seed germination and further growth against the background of soil contamination by petroleum hydrocarbons. Ecobiotech 2019, 2, 184–188. [Google Scholar] [CrossRef]
- Bona, C.; Rezende, I.M.; Oliveira Santos, G.; Souza, L.A. Effect of soil contaminated by diesel oil on the germination of seeds and the growth of Schinus terebinthifolius Raddi (Anacardiaceae) seedlings. Braz. Arch. Biol. Technol. 2011, 54, 1379–1387. [Google Scholar] [CrossRef]
- Devatha, C.P.; Vishnu Vishal, A.; Purna Chandra Rao, J. Investigation of physical and chemical characteristics on soil due to crude oil contamination and its remediation. Appl. Water Sci. 2019, 9, 89. [Google Scholar] [CrossRef]
- Agostinetto, D.; Perboni, L.T.; Langaro, A.C.; Gomes, J.; Fraga, D.S.; Franco, J.J. Changes in photosynthesis and oxidative stress in wheat plants submmited to herbicides application. Planta Daninha 2016, 34, 01–09. [Google Scholar] [CrossRef]
- Croft, H.; Chen, J.M.; Luo, X.; Bartlett, P.; Chen, B.; Staebler, R.M. Leaf chlorophyll content as a proxy for leaf photosynthetic capacity. Glob. Change Biol. 2017, 23, 3513–3524. [Google Scholar] [CrossRef]
- Padilla, F.M.; Pena-Fleitas, M.T.; Gallardo, M.; Thompson, R.B. Evaluation of optical sensor measurements of canopy reflectance and of leaf flavonols and chlorophyll contents to assess crop nitrogen status of muskmelon. Eur. J. Agron. 2014, 58, 39–52. [Google Scholar] [CrossRef]
- Cerovic, Z.G.; Ghozlen, N.B.; Milhade, C.; Obert, M.; Debuisson, S.; Le Moigne, M. Nondestructive diagnostic test for nitrogen nutrition of grapevine (Vitis vinifera L.) based on dualex leaf-clip measurements in the field. J. Agric. Food Chem. 2015, 63, 3669–3680. [Google Scholar] [CrossRef]
- Shulaev, V.; Oliver, D.J. Metabolic and proteomic markers for oxidative stress. New tools for reactive oxygen species research. Plant Physiol. 2006, 141, 367–372. [Google Scholar] [CrossRef]
- York, L.M.; Carminati, A.; Mooney, S.J.; Ritz, K.; Bennett, M.J. The holistic rhizosphere: Integrating zones, processes, and semantics in the soil influenced by roots. J. Exp. Bot. 2016, 67, 3629–3643. [Google Scholar] [CrossRef] [PubMed]
- Rohrbacher, F.; St-Arnaud, M. Root exudation: The ecological driver of hydrocarbon rhizoremediation. Agronomy 2016, 6, 19. [Google Scholar] [CrossRef]
- Netrusov, A.I.; Egorova, M.A.; Zakharchuk, L.M.; Dinarieva, T.Y. Workshop on Microbiology; Academy: Moscow, Russia, 2005; 608p. [Google Scholar]
- Raymond, R.L. Microbial oxidation of n-paraffinic hydrocarbons. Dev. Ind. Microbiol. 1961, 2, 23–32. [Google Scholar]
- Korshunova, T.Y.; Mukhamatdyarova, S.R.; Loginov, O.N. Taxonomic classification of the oil destructing bacterium using mass spectrometry methods by the results of analysis of cellular proteins and study of cellular fatty acids. Biol. Bull. 2015, 3, 220–225. [Google Scholar] [CrossRef]
- Wilson, K. Preparation of genomic DNA from bacteria. Curr. Prot. Mol. Biol. 2001, 56, 2–4. [Google Scholar] [CrossRef]
- Lane, D.J. 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematic; John Wiley and Sons: Chichester, UK, 1991; pp. 115–177. [Google Scholar]
- Borzenkov, I.A.; Milekhina, E.I.; Gotoeva, M.T.; Rozanova, E.P.; Belyaev, S.S. The properties of hydrocarbon-oxidizing bacte-ria isolated from the oilfields of Tatarstan, Western Siberia, and Vietnam. Mikrobiologiya 2006, 1, 66–72. [Google Scholar]
- Dzerzhinskaya, I.S. Culture Media for the Isolation and Cultivation of Microorganisms; Astrakhan State Technical University: Astrakhan, Russia, 2008; 348p. [Google Scholar]
- Starikov, S.N.; Chetverikov, S.P. The strain of Enterobacter sp. UOM-3 is capable of synchronous destruction of herbicides and synthesis of indole-3-acetic acid. Ecobiotech 2020, 4, 716–721. [Google Scholar] [CrossRef]
- Pikovskaya, R.I. Mobilization of phosphorus in soil in connection with vital activity of some microbial species. Mikrobiologiya 1948, 17, 362–370. [Google Scholar]
- Lisboa, P.H.G.; de Andrade, P.H.M.; Machado, P.C.; de Sousa, C.P.; Lacava, P.T. Isolation and in vitro screening of plant growth-promoting rhizobacteria from Solanum lycocarpum St. Hil., an endemic plant of the Brazilian tropical savannah. Afr. J. Microbiol. Res. 2021, 5, 253–261. [Google Scholar] [CrossRef]
- Xu, S.J.; Kim, B.S. Biocontrol of fusarium crown and root rot and promotion of growth of tomato by paenibacillus strains isolated from soil. Mycobiology 2014, 42, 158–166. [Google Scholar] [CrossRef]
- Schwyn, B.; Neilands, J.B. Universal chemical assay for the detection and determination of siderophores. Anal. Biochem. 1987, 160, 47–56. [Google Scholar] [CrossRef] [PubMed]
- Wiche, O.; Székely, B.; Kummer, N.A.; Moschner, C.; Heilmeier, H. Effects of intercropping of oat (Avena sativa L.) with white lupin (Lupinus albus L.) on the mobility of target elements for phytoremediation and phytomining in soil solution. Int. J. Phytoremed. 2016, 18, 900–907. [Google Scholar] [CrossRef] [PubMed]
- Pino, N.J.; Múnera, L.M.; Peñuela, G.A. Phytoremediation of soil contaminated with PCBs using different plants and their associated microbial communities. Int. J. Phytoremed. 2019, 21, 316–324. [Google Scholar] [CrossRef] [PubMed]
- Reddy, K.R.; Chirakkara, R.A. Phytoremediation of field soil with mixed contamination. In Proceedings of the 8th International Congress on Environmental Geotechnics, Hangzhou, China, 28 October–1 November 2018; Zhan, L., Chen, Y., Bouazza, A., Eds.; Springer: Singapore, 2019. [Google Scholar] [CrossRef]
- Grifoni, M.; Pedron, F.; Franchi, E.; Fusini, D.; Reverberi, A.P.; Vocciante, M. Green Remediation for the sustainable management of oil spills in agricultural areas. Chem. Eng. Trans. 2022, 94, 829–834. [Google Scholar] [CrossRef]
- Vocciante, M.; Franchi, E.; Fusini, D.; Pedron, F.; Barbafieri, M.; Petruzzelli, G.; Reverberi, A.P. Sustainable recovery of an agricultural area impacted by an oil spill using enhanced phytoremediation. Appl. Sci. 2024, 14, 582. [Google Scholar] [CrossRef]
- Korobova, A.V.; Akhiyarova, G.R.; Veselov, S.Y.; Kudoyarova, G.R.; Fedyaev, V.V.; Farkhutdinov, R.G. Participation of nitrate sensor NRT1.1 in the control of cytokinin level and root elongation under normal conditions and nitrogen deficit. Mosc. Univ. Biol. Sci. Bull. 2019, 74, 221–226. [Google Scholar] [CrossRef]
- Uchiyama, M.; Mihara, M. Determination of malonaldehyde precursor in tissues by thiobarbituric acid test. Anal. Biochem. 1978, 86, 271–278. [Google Scholar] [CrossRef]
Strain | Oil | Oil + Spetsnaz | Oil + Tapir | Oil + Octapon Extra |
---|---|---|---|---|
UOM 35 | 95.9 ± 6.2 c* | 91.7 ± 5.8 c | 38.3 ± 3.2 b | 30.1 ± 3.2 a |
C2 | 74.1 ± 2.8 c | 73.0 ± 4.5 c | 35.9 ± 2.4 b | 10.2 ± 0.7 a |
H3.2 | 71.8 ± 5.1 c | 73.9 ± 3.7 c | 30.6 ± 2.3 b | 10.7 ± 0.4 a |
H4.1 | 72.7 ± 3.5 c | 70.1 ± 5.1 c | 36.3 ± 3.0 b | 21.7 ± 1.0 a |
N2 | 72.6 ± 3.7 c | 73.0 ± 4.1 c | 47.6 ± 2.7 b | 39.5 ± 1.9 a |
Strain | Control (Medium Without Pollutant) | Oil | Spetsnaz | Octapon Extra | Tapir |
---|---|---|---|---|---|
IAA production 1, ng/mL culture liquid | |||||
UOM 35 | 658 ± 37 c* | 332 ± 29 b | 283 ± 37 b | 798 ± 52 d | <150 a |
C2 | <150 | n/d | n/d | n/d | n/d |
H3.2 | 320 ± 23 b | <150 a | <150 a | <150 a | <150 a |
H4.1 | 2766 ± 152 c | 4149 ± 223 e | 2387 ± 158 b | 3545 ± 208 d | <150 a |
N2 | 6025 ± 315 c | 5878 ± 352 c | 3867 ± 254 b | 7133 ± 375 d | 3261 ± 215 a |
Number of microorganisms on a medium without a nitrogen source 2, CFU/mL | |||||
UOM 35 | 106 * | 106 | 107 | 102 | 107 |
C2 | 106 | 107 | 107 | 102 | 107 |
H3.2 | 106 | 107 | 107 | 102 | 107 |
H4.1 | 106 | 107 | 108 | 102 | 108 |
N2 | 106 | 107 | 108 | 103 | 108 |
The phosphate solubilization index (SI) 3 | |||||
UOM 35 | 2.5 ± 0.1 b* | 1.8 ± 0.1 a | 1.7 ± 0.1 a | 1.6 ± 0.1 a | 1.6 ± 0.2 a |
C2 | 3.3 ± 0.2 d | 2.1 ± 0.1 b | 2.6 ± 0.2 c | 1.2 ± 0.1 a | 1.1 ± 0.2 a |
H3.2 | 1.5 ± 0.1 b | 1.3 ± 0.2 ab | 1.5 ± 0.1 b | 1.4 ± 0.2 ab | 1.1 ± 0.1 a |
H4.1 | 2.9 ± 0.3 b | 1.8 ± 0.1 a | 2.5 ± 0.2 b | 2.5 ± 0.2 b | 1.6 ± 0.1 a |
N2 | 3.5 ± 0.3 c | 2.3 ± 0.2 ab | 2.5 ± 0.1 b | 2.4 ± 0.2 ab | 2.1 ± 0.1 a |
Variants of Treatments | Oats | Lupine | |||||
---|---|---|---|---|---|---|---|
Chlorophyll, (μg/cm2) | Flavonoids, (μg/cm2) | NBI | Chlorophyll, (μg/cm2) | Flavonoids, (μg/cm2) | NBI | ||
Without oil | Control | 25.4 ± 0.4 c | 0.61 ± 0.02 b | 43.1 ± 1.3 d | 37.2 ± 0.5 c | 0.27 ± 0.02 ab | 141.5 ± 2.5 d |
N2 | 30.0 ± 0.8 e | 0.60 ± 0.02 b | 50.4 ± 1.4 e | 39.3 ± 0.9 d | 0.25 ± 0.02 ab | 152.7 ± 3.1 e | |
Spetsnaz | 28.9 ± 1.0 de | 0.76 ± 0.01 d | 38.5 ± 0.8 c | 37.0 ± 0.5 c | 0.29 ± 0.02 b | 127.3 ± 2.3 c | |
Spetsnaz + N2 | 29.9 ± 0.9 e | 0.69 ± 0.02 c | 43.7 ± 1.1 d | 38.8 ± 0.5 d | 0.29 ± 0.01 b | 133.4 ± 2.6 c | |
Tapir | 28.3 ± 1.0 de | 0.95 ± 0.03 f | 30.4 ± 0.7 a | 32.6 ± 0.5 a | 0.30 ± 0.01 b | 106.8 ± 1.5 a | |
Tapir + N2 | 27.5 ± 0.8 d | 0.86 ± 0.02 e | 32.7 ± 0.5 b | 35.0 ± 0.5 b | 0.29 ± 0.01 b | 119.8 ± 2.2 b | |
With oil | Without bacteria | 20.2 ± 0.5 a | 0.52 ± 0.02 a | 37.4 ± 1.0 c | 32.3 ± 0.4 a | 0.25 ± 0.02 ab | 129.4 ± 2.8 c |
N2 | 24.2 ± 0.6 b | 0.52 ± 0.01 a | 43.9 ± 1.0 d | 34.8 ± 0.7 b | 0.22 ± 0.01 a | 154.2 ± 2.8 e | |
Spetsnaz | 23.5 ± 0.6 b | 0.61 ± 0.01 b | 37.8 ± 0.7 c | 35.8 ± 0.4 b | 0.25 ± 0.02 ab | 143.9 ± 2.1 d | |
Spetsnaz + N2 | 27.3 ± 0.7 d | 0.60 ± 0.02 b | 42.8 ± 1.1 d | 35.3 ± 0.3 b | 0.23 ± 0.01 a | 154.4 ± 3.1 e | |
Tapir | 25.5 ± 0.5 c | 0.69 ± 0.02 c | 37.0 ± 0.9 c | 33.9 ± 1.4 ab | 0.27 ± 0.02 ab | 130.0 ± 2.7 c | |
Tapir + N2 | 28.9 ± 1.0 de | 0.64 ± 0.02 bc | 44.1 ± 1.0 d | 34.4 ± 0.9 b | 0.24 ± 0.01 a | 143.1 ± 2.7 d |
Product | Spetsnaz | Tapir | Octapon Extra |
---|---|---|---|
Manufacturer | Euroagrochemicals LLC, Ufa, Russia | Agro Expert Group, LLC, Volgograd, Russia | AHK-AGRO, LLC, Ufa, Russia |
Preparative form | water-dispersible granules | water-soluble concentrate | emulsion concentrate |
Active substance, empirical formula, content of the active substance | tribenuron-methyl, C15H17N5O6S 750 g/kg | imazetapir, C15H19N3O3, 100 g/L | 2,4-dichlorophenoxyacetic acid (2,4-D), C8H6Cl, 500 g/L |
Class of chemical compounds | sulfonylurea | imidazolinones | aryloxyalkano-carboxylic acids |
Crops | cereals | legumes | cereals |
Object of influence (weeds) | dicotyledons | dicotyledons, cereal | dicotyledons |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Korshunova, T.; Kuzina, E.; Mukhamatdyarova, S.; Iskuzhina, M.; Kulbaeva, L.; Petrova, S. Effect of Herbicide-Resistant Oil-Degrading Bacteria on Plants in Soil Contaminated with Oil and Herbicides. Plants 2024, 13, 3560. https://doi.org/10.3390/plants13243560
Korshunova T, Kuzina E, Mukhamatdyarova S, Iskuzhina M, Kulbaeva L, Petrova S. Effect of Herbicide-Resistant Oil-Degrading Bacteria on Plants in Soil Contaminated with Oil and Herbicides. Plants. 2024; 13(24):3560. https://doi.org/10.3390/plants13243560
Chicago/Turabian StyleKorshunova, Tatyana, Elena Kuzina, Svetlana Mukhamatdyarova, Milyausha Iskuzhina, Liliya Kulbaeva, and Svetlana Petrova. 2024. "Effect of Herbicide-Resistant Oil-Degrading Bacteria on Plants in Soil Contaminated with Oil and Herbicides" Plants 13, no. 24: 3560. https://doi.org/10.3390/plants13243560
APA StyleKorshunova, T., Kuzina, E., Mukhamatdyarova, S., Iskuzhina, M., Kulbaeva, L., & Petrova, S. (2024). Effect of Herbicide-Resistant Oil-Degrading Bacteria on Plants in Soil Contaminated with Oil and Herbicides. Plants, 13(24), 3560. https://doi.org/10.3390/plants13243560