Evaluation of the Main Macro-, Micro- and Trace Elements Found in Fallopia japonica Plants and Their Traceability in Its Honey: A Case Study from the Northwestern and Western Part of Romania
Abstract
:1. Introduction
2. Results and Discussion
2.1. Macro-, Micro- and Trace Elements in Plant Tissues
2.2. Macro-, Micro- and Trace Elements in Honey Samples
2.3. Macro-, Micro- and Trace Element Traceability in FJ Plant–Honey Intractions (Translocation Factor)
3. Materials and Methods
3.1. Research Location—Description
3.2. Plant and Honey Sampling
3.3. Standards and Reagents
3.4. Preparation of Plant and Honey Samples for Micro- and Macro-Element Analysis with Atomic Absorption Spectrometry (AAS)
3.5. Translocation Factor (TF)
3.6. Statistical Analysis
4. Limitations of the Study
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Park, B.; Lee, I.S.; Hyun, S.-W.; Jo, K.; Lee, T.G.; Kim, J.S.; Kim, C.-S. The Protective Effect of Polygonum cuspidatum (PCE) Aqueous Extract in a Dry Eye Model. Nutrients 2018, 10, 1550. [Google Scholar] [CrossRef]
- Nentwig, W.; Bacher, S.; Kumschick, S.; Pyšek, P.; Vilà, M. More than “100 worst” Alien Species in Europe. Biol. Invasions 2018, 20, 1611–1621. [Google Scholar] [CrossRef]
- Fennell, M.; Wade, M.; Bacon, K.L. Japanese knotweed (Fallopia japonica): An analysis of capacity to cause structural damage (compared to other plants) and typical rhizome extension. PeerJ 2018, 6, e5246. [Google Scholar] [CrossRef]
- Simberloff, D.; Martin, J.-L.; Genovesi, P.; Maris, V.; Wardle, D.A.; Aronson, J.; Courchamp, F.; Galil, B.; García-Berthou, E.; Pascal, M.; et al. Impacts of biological invasions: What’s what and the way forward. Trends Ecol. Evol. 2013, 28, 58–66. [Google Scholar] [CrossRef]
- Pyšek, P.; Lambdon, P.W.; Arianoutsou, M.; Kühn, I.; Pino, J.; Winter, M. Alien Vascular Plants of Europe. In Handbook of Alien Species in Europe; Springer: Berlin/Heidelberg, Germany, 2009; pp. 43–61. [Google Scholar] [CrossRef]
- De Almeida, T.; Forey, E.; Chauvat, M. Alien Invasive Plant Effect on Soil Fauna Is Habitat Dependent. Diversity 2022, 14, 61. [Google Scholar] [CrossRef]
- Hepper, F.N.; Tutin, T.G. Flora Europaea Vol. 3 Diapensiaceae to Myoporaceae. Kew Bull. 1973, 28, 541. [Google Scholar] [CrossRef]
- Aguilera, A.G.; Alpert, P.; Dukes, J.S.; Harrington, R. Impacts of the invasive plant Fallopia japonica (Houtt.) on plant communities and ecosystem processes. Biol. Invasions 2010, 12, 1243–1252. [Google Scholar] [CrossRef]
- Bensa, M.; Glavnik, V.; Vovk, I. Flavan-3-ols and Proanthocyanidins in Japanese, Bohemian and Giant Knotweed. Plants 2021, 10, 402. [Google Scholar] [CrossRef] [PubMed]
- Pyšek, P.; Jarošík, V.; Hulme, P.E.; Pergl, J.; Hejda, M.; Schaffner, U.; Vilà, M. A global assessment of invasive plant impacts on resident species, communities and ecosystems: The interaction of impact measures, invading species’ traits and environment. Glob. Chang. Biol. 2012, 18, 1725–1737. [Google Scholar] [CrossRef]
- Mandák, B.; Pyšek, P.; Bímová, K. History of the Invasion and Distribution of Reynoutria Taxa in the Czech Republic: A Hybrid Spreading Faster than Its Parents. Preslia 2004, 76, 15–64. [Google Scholar]
- Chapman, D.S.; Makra, L.; Albertini, R.; Bonini, M.; Páldy, A.; Rodinkova, V.; Šikoparija, B.; Weryszko-Chmielewska, E.; Bullock, J.M. Modelling the introduction and spread of non-native species: International trade and climate change drive ragweed invasion. Glob. Chang. Biol. 2016, 22, 3067–3079. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Oduor, A.M.O.; Zhang, Z.; Manea, A.; Tooth, I.M.; Leishman, M.R.; Xu, X.; van Kleunen, M. Do invasive alien plants benefit more from global environmental change than native plants? Glob. Chang. Biol. 2017, 23, 3363–3370. [Google Scholar] [CrossRef] [PubMed]
- Wittlinger, L.; Petrikovičová, L.; Petrovič, F.; Petrikovič, J. Geographical distribution and spatio-temporal changes in the occurrence of invasive plant species in Slovak Republic. Biosyst. Divers. 2022, 30, 105–118. [Google Scholar] [CrossRef]
- Ciocârlan, V. Flora Ilustrata A Romaniei.Pteridophyta et Spermatophyta; Edit. Ceres: Bucuresti, Romania, 2000. [Google Scholar]
- Dumitraşcu, M.; Kucsicsa, G.; Grigorescu, I.; Dragotă, C.-S.; Năstase, M. Invasive Terrestrial Plant Species in the Romanian Protected Areas. a Geographical Approach. Rom. J. Geogr. Rev. Roum. Géographie 2014, 58, 145–160. [Google Scholar]
- Barudanović, S.; Zečić, E.; Macanović, A.; Duraković, B.; Mašić, E. Invasive Alien Plant Species in Global Perspectives with Special References to Bosnia and Herzegovina. Invasive Alien Species 2021, 3, 215–252. [Google Scholar] [CrossRef]
- Quinty, V.; Colas, C.; Nasreddine, R.; Nehmé, R.; Piot, C.; Draye, M.; Destandau, E.; Da Silva, D.; Chatel, G. Screening and Evaluation of Dermo-Cosmetic Activities of the Invasive Plant Species Polygonum cuspidatum. Plants 2023, 12, 83. [Google Scholar] [CrossRef] [PubMed]
- Holden, C.A.; Morais, C.L.M.; Taylor, J.E.; Martin, F.L.; Beckett, P.; McAinsh, M. Regional differences in clonal Japanese knotweed revealed by chemometrics-linked attenuated total reflection Fourier-transform infrared spectroscopy. BMC Plant Biol. 2021, 21, 1–20. [Google Scholar] [CrossRef]
- Drazan, D.; Smith, A.G.; Anderson, N.O.; Becker, R.; Clark, M. History of knotweed (Fallopia spp.) invasiveness. Weed Sci. 2021, 69, 617–623. [Google Scholar] [CrossRef]
- Kato-Noguchi, H. Allelopathy of Knotweeds as Invasive Plants. Plants 2022, 11, 3. [Google Scholar] [CrossRef]
- Siemens, T.J.; Blossey, B. An evaluation of mechanisms preventing growth and survival of two native species in invasive Bohemian knotweed (Fallopia × bohemica, Polygonaceae). Am. J. Bot. 2007, 94, 776–783. [Google Scholar] [CrossRef] [PubMed]
- Stoll, P.; Gatzsch, K.; Rusterholz, H.-P.; Baur, B. Response of plant and gastropod species to knotweed invasion. Basic Appl. Ecol. 2012, 13, 232–240. [Google Scholar] [CrossRef]
- Abgrall, C.; Forey, E.; Mignot, L.; Chauvat, M. Invasion by Fallopia japonica Alters Soil Food Webs through Secondary Metabolites. Soil Biol. Biochem. 2018, 127, 100–109. [Google Scholar] [CrossRef]
- Robinson, B.S.; Inger, R.; Gaston, K.J. A Rose by Any Other Name: Plant Identification Knowledge & Socio-Demographics. PLoS ONE 2016, 11, e0156572. [Google Scholar] [CrossRef]
- Bartz, R.; Kowarik, I. Assessing the environmental impacts of invasive alien plants: A review of assessment approaches. NeoBiota 2019, 43, 69–99. [Google Scholar] [CrossRef]
- Colleran, B.; Lacy, S.N.; Retamal, M.R. Invasive Japanese knotweed (Reynoutria japonica Houtt.) and related knotweeds as catalysts for streambank erosion. River Res. Appl. 2020, 36, 1962–1969. [Google Scholar] [CrossRef]
- Shackleton, R.T.; Shackleton, C.M.; Kull, C.A. The role of invasive alien species in shaping local livelihoods and human well-being: A review. J. Environ. Manag. 2019, 229, 145–157. [Google Scholar] [CrossRef] [PubMed]
- Wilson, M.; Freundlich, A.; Martine, C. Understory dominance and the new climax: Impacts of Japanese knotweed (Fallopia japonica) invasion on native plant diversity and recruitment in a riparian woodland. Biodivers. Data J. 2017, 5, e20577. [Google Scholar] [CrossRef]
- Gippet, J.M.W.; Piola, F.; Rouifed, S.; Viricel, M.-R.; Puijalon, S.; Douady, C.J.; Kaufmann, B. Multiple invasions in urbanized landscapes: Interactions between the invasive garden ant Lasius neglectus and Japanese knotweeds (Fallopia spp.). Arthropod-Plant Interact. 2018, 12, 351–360. [Google Scholar] [CrossRef]
- Rouifed, S.; Cottet, M.; de Battista, M.; Le Lay, Y.-F.; Piola, F.; Rateau, P.; Rivière-Honegger, A. Landscape perceptions and social representations of Fallopia spp. in France. Sci. Nat. 2018, 105, 67. [Google Scholar] [CrossRef] [PubMed]
- Cucu, A.-A.; Baci, G.-M.; Dezsi, Ş.; Nap, M.-E.; Beteg, F.I.; Bonta, V.; Bobiş, O.; Caprio, E.; Dezmirean, D.S. New Approaches on Japanese Knotweed (Fallopia japonica) Bioactive Compounds and Their Potential of Pharmacological and Beekeeping Activities: Challenges and Future Directions. Plants 2021, 10, 2621. [Google Scholar] [CrossRef]
- Russo, L.; Nichol, C.; Shea, K. Pollinator floral provisioning by a plant invader: Quantifying beneficial effects of detrimental species. Divers. Distrib. 2016, 22, 189–198. [Google Scholar] [CrossRef]
- Johnson, L.R.; Breger, B.; Drummond, F. Novel plant–insect interactions in an urban environment: Enemies, protectors, and pollinators of invasive knotweeds. Ecosphere 2019, 10, e02885. [Google Scholar] [CrossRef]
- Ferrazzi, P.; Marletto, F. Bee Value of Reynoutria japonica Houtt. Apic. Mod. 1990, 81, 71–76. [Google Scholar]
- Jabłoński, B.; Kołtowski, Z. Nectar Secretion and Honey Potential of Honey-Plants Growing under Poland’s Conditions. Part XII. J. Apic. Sci. 2001, 45, 29–35. [Google Scholar]
- Bailey, J.P.; Bímová, K.; Mandák, B. Asexual spread versus sexual reproduction and evolution in Japanese Knotweed s.l. sets the stage for the “Battle of the Clones”. Biol. Invasions 2009, 11, 1189–1203. [Google Scholar] [CrossRef]
- Lawson, J.W.; Fennell, M.; Smith, M.W.; Bacon, K.L. Regeneration and growth in crowns and rhizome fragments of Japanese knotweed (Reynoutria japonica) and desiccation as a potential control strategy. PeerJ 2021, 9, e11783. [Google Scholar] [CrossRef] [PubMed]
- Peng, W.; Qin, R.; Li, X.; Zhou, H. Botany, phytochemistry, pharmacology, and potential application of Polygonum cuspidatum Sieb.et Zucc.: A review. J. Ethnopharmacol. 2013, 148, 729–745. [Google Scholar] [CrossRef]
- Dassonville, N.; Vanderhoeven, S.; Gruber, W.; Meerts, P. Invasion by Fallopia japonica increases topsoil mineral nutrient concentrations. Écoscience 2007, 14, 230–240. [Google Scholar] [CrossRef]
- Rahmonov, O.; Czylok, A.; Orczewska, A.; Majgier, L.; Parusel, T. Chemical composition of the leaves of Reynoutria japonica Houtt. and soil features in polluted areas. Cent. Eur. J. Biol. 2014, 9, 320–330. [Google Scholar] [CrossRef]
- Ibrahimpašić, J.; Jogić, V.; Toromanović, M.; Džaferović, A.; Makić, H.; Dedić, S. Japanese Knotweed (Reynoutria japonica) as a Phytoremediator of Heavy Metals. J. Agric. Food Environ. Sci. 2020, 74, 45–53. [Google Scholar] [CrossRef]
- Sołtysiak, J.K. Heavy Metals Tolerance in an Invasive Weed (Fallopia japonica) under Different Levels of Soils Contamination. J. Ecol. Eng. 2020, 21, 81–91. [Google Scholar] [CrossRef]
- Michalet, S.; Rouifed, S.; Pellassa-Simon, T.; Fusade-Boyer, M.; Meiffren, G.; Nazaret, S.; Piola, F. Tolerance of Japanese knotweed s.l. to soil artificial polymetallic pollution: Early metabolic responses and performance during vegetative multiplication. Environ. Sci. Pollut. Res. 2017, 24, 20897–20907. [Google Scholar] [CrossRef]
- Rahmonov, O.; Banaszek, J.; Pukowiec-Kurda, K. Relationships Between Heavy Metal Concentrations in Japanese Knotweed (Reynoutria Japonica Houtt.) Tissues and Soil in Urban Parks in Southern Poland. IOP Conf. Ser. Earth Environ. Sci. 2019, 221, 012145. [Google Scholar] [CrossRef]
- Širka, V.H.; Jakovljević, K.; Mihailović, N.; Jovanović, S. Heavy metal accumulation in invasive Reynoutria × bohemica Chrtek & Chrtková in polluted areas. Environ. Earth Sci. 2016, 75, 951. [Google Scholar] [CrossRef]
- Big, C.L.; Lǎcǎtuşu, R.; Damian, F. Heavy Metals in Soil-Plant System around Baia Mare City, Romania. Carpathian J. Earth Environ. Sci. 2012, 7, 219–230. [Google Scholar]
- Mihali, C.; Oprea, G.; Michnea, A.; Jelea, S.G.; Jelea, M.; Man, C.; Şenilǎ, M.; Grigor, L. Assessment of Heavy Metals Content and Pollution Level in Soil and Plants in Baia Mare Area, NW Romania. Carpathian J. Earth Environ. Sci. 2013, 8, 143–152. [Google Scholar]
- Lerch, S.; Sirguey, C.; Michelot-Antalik, A.; Jurjanz, S. Accumulation of metallic trace elements in Reynoutria japonica: A risk assessment for plant biomass valorization. Environ. Sci. Pollut. Res. 2022, 29, 67390–67401. [Google Scholar] [CrossRef]
- Vidican, R.; Mihăiescu, T.; Pleșa, A.; Mălinaș, A.; Pop, B.-A. Investigations Concerning Heavy Metals Dynamics in Reynoutria japonica Houtt.-Soil Interactions. Toxics 2023, 11, 323. [Google Scholar] [CrossRef]
- Levei, E.; Frentiu, T.; Ponta, M.; Senila, M.; Miclean, M.; Roman, C.; Cordos, E. Characterisation of soil quality and mobility of Cd, Cu, Pb and Zn in the Baia Mare area Northwest Romania following the historical pollution. Int. J. Environ. Anal. Chem. 2009, 89, 635–649. [Google Scholar] [CrossRef]
- European Environment Agency. Healthy Environment, Healthy Lives; European Environment Agency: Copenhagen, Denmark, 2019; Available online: https://www.eea.europa.eu/publications/healthy-environment-healthy-lives (accessed on 28 November 2023).
- Street, R. Heavy metals in medicinal plant products—An African perspective. S. Afr. J. Bot. 2012, 82, 67–74. [Google Scholar] [CrossRef]
- Aghamirlou, H.M.; Khadem, M.; Rahmani, A.; Sadeghian, M.; Mahvi, A.H.; Akbarzadeh, A.; Nazmara, S. Heavy metals determination in honey samples using inductively coupled plasma-optical emission spectrometry. J. Environ. Health Sci. Eng. 2015, 13, 1–8. [Google Scholar] [CrossRef]
- Martin, M.B.; Reiter, R.; Pham, T.; Avellanet, Y.R.; Camara, J.; Lahm, M.; Pentecost, E.; Pratap, K.; Gilmore, B.A.; Divekar, S.; et al. Estrogen-Like Activity of Metals in Mcf-7 Breast Cancer Cells. Endocrinology 2003, 144, 2425–2436. [Google Scholar] [CrossRef] [PubMed]
- Singh, C.; Shubharani, R.; Sivaram, V. Assessment of Heavy Metals in Honey by Atomic Absorption Spectrometer. World J. Pharm. Pharm. Sci. 2014, 3, 509–515. [Google Scholar]
- Zhu, G.; Li, Z.; Tang, L.; Shen, M.; Zhou, Z.; Wei, Y.; Zhao, Y.; Bai, S.; Song, L. Associations of Dietary Intakes with Gynecological Cancers: Findings from a Cross-Sectional Study. Nutrients 2022, 14, 5026. [Google Scholar] [CrossRef]
- Hegedus, C.; Pașcalău, S.-N.; Andronie, L.; Rotaru, A.-S.; Cucu, A.-A.; Dezmirean, D.S. The Journey of 1000 Leagues towards the Decontamination of the Soil from Heavy Metals and the Impact on the Soil–Plant–Animal–Human Chain Begins with the First Step: Phytostabilization/Phytoextraction. Agriculture 2023, 13, 735. [Google Scholar] [CrossRef]
- Kateel, R.; Adhikari, P.; Augustine, A.J.; Ullal, S. Topical honey for the treatment of diabetic foot ulcer: A systematic review. Complement. Ther. Clin. Pract. 2016, 24, 130–133. [Google Scholar] [CrossRef]
- Abuelgasim, H.; Albury, C.; Lee, J. Effectiveness of honey for symptomatic relief in upper respiratory tract infections: A systematic review and meta-analysis. BMJ Evid.-Based Med. 2020, 26, 57–64. [Google Scholar] [CrossRef]
- Fernandes, L.; Oliveira, A.; Henriques, M.; Rodrigues, M.E. Honey as a Strategy to Fight Candida tropicalis in Mixed-Biofilms with Pseudomonas aeruginosa. Antibiotics 2020, 9, 43. [Google Scholar] [CrossRef]
- Cucu, A.-A.; Baci, G.-M.; Moise, A.R.; Dezsi, Ş.; Marc, B.D.; Stângaciu, Ş.; Dezmirean, D.S. Towards a Better Understanding of Nutritional and Therapeutic Effects of Honey and Their Applications in Apitherapy. Appl. Sci. 2021, 11, 4190. [Google Scholar] [CrossRef]
- FAO. Codex Alimentarius International Food Standards. 2001. Available online: https://www.fao.org/fao-who-codexalimentarius/sh-proxy/en/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FStandards%252FCXS%2B193-1995%252FCXS_193e.pdf (accessed on 28 November 2023).
- European Commission. Commission Regulation (EU) 2015/1006 of 25 June 2015 Amending Regulation (EC) No 1881/2006 as Regards Maximum Levels of Lead in Foodstuff. Off. J. Eur. Union 2015, 2015, 1–5. [Google Scholar]
- Escuredo, O.; Seijo, M.C. Honey: Chemical Composition, Stability and Authenticity. Foods 2019, 8, 577. [Google Scholar] [CrossRef]
- White, P.J.; Broadley, M.R. Calcium in Plants. Ann. Bot. 2003, 92, 487–511. [Google Scholar] [CrossRef]
- Cordos, E.; Rautiu, R.; Roman, C.; Ponta, M.; Frentiu, T.; Sarkany, A.; Fodorpataki, L.; Macalik, K.; Mccormick, C.; Weiss, D. Characterization of the Rivers System in the Mining and Industrial Area of Baia Mare, Romania. Eur. J. Miner. Process. Environ. Prot. 2003, 3, 324–335. [Google Scholar]
- Zhou, M.; Kiamarsi, Z.; Han, R.; Kafi, M.; Lutts, S. Effect of NaCl and EDDS on Heavy Metal Accumulation in Kosteletzkya pentacarpos in Polymetallic Polluted Soil. Plants 2023, 12, 1656. [Google Scholar] [CrossRef]
- Frota, J.N.E.; O’Leary, J.W. Arizona-Nevada Academy of Science Calcium Loss from Plant Roots during Osmotic Adjustment. J. Ariz. Acad. Sci. 2014, 8, 26–28. [Google Scholar] [CrossRef]
- Viegas, F.J.; Rodrigues Cruz, R.L.; da Cruz Ferreira, S.S.; Conceição, E.U.; Lima, C.; Ferreira de Oliveira Neto, J.; Rodrigues Galvão, S.; da Cunha Lopes, I.J.M. Copper Toxicity in Plants: Nutritional, Physiological, and Biochemical Aspects. In Advances in Plant Defense Mechanisms; Kimatu, J.N., Ed.; IntechOpen: London, UK, 2022; Volume 1, p. 13. [Google Scholar] [CrossRef]
- Gräber, I.; Hansen, J.F.; Olesen, S.E.; Petersen, J.; Østergaard, H.S.; Krogh, L. Accumulation of Copper and Zinc in Danish Agricultural Soils in Intensive Pig Production Areas. Geogr. Tidsskr. J. Geogr. 2005, 105, 15–22. [Google Scholar] [CrossRef]
- Miotto, A.; Ceretta, C.A.; Brunetto, G.; Nicoloso, F.T.; Girotto, E.; Farias, J.G.; Tiecher, T.L.; De Conti, L.; Trentin, G. Copper uptake, accumulation and physiological changes in adult grapevines in response to excess copper in soil. Plant Soil 2014, 374, 593–610. [Google Scholar] [CrossRef]
- Schmitz, D.; Girardi, J.; Jamin, J.; Bundschuh, M.; Geng, B.; Feldmann, R.; Rösch, V.; Riess, K.; Schirmel, J. Copper Uptake and Its Effects on Two Riparian Plant Species, the Native Urtica dioica, and the Invasive Fallopia japonica. Plants 2023, 12, 481. [Google Scholar] [CrossRef]
- Stefanowicz, A.M.; Stanek, M.; Nobis, M.; Zubek, S. Few effects of invasive plants Reynoutria japonica, Rudbeckia laciniata and Solidago gigantea on soil physical and chemical properties. Sci. Total. Environ. 2017, 574, 938–946. [Google Scholar] [CrossRef]
- Barberis, L.; Chevalier, W.; Toussaint, M.-L.; Binet, P.; Piola, F.; Michalet, S. Responses of the species complex Fallopia × bohemica to single-metal contaminations to Cd, Cr or Zn: Growth traits, metal accumulation and secondary metabolism. Environ. Monit. Assess. 2020, 192, 673. [Google Scholar] [CrossRef]
- Sun, J.; Khattak, W.A.; Abbas, A.; Nawaz, M.; Hameed, R.; Javed, Q.; Bo, Y.; Khan, K.A.; Du, D. Ecological adaptability of invasive weeds under environmental pollutants: A review. Environ. Exp. Bot. 2023, 215, 105492. [Google Scholar] [CrossRef]
- Solayman, M.; Islam, M.A.; Paul, S.; Ali, Y.; Khalil, M.I.; Alam, N.; Gan, S.H. Physicochemical Properties, Minerals, Trace Elements, and Heavy Metals in Honey of Different Origins: A Comprehensive Review. Compr. Rev. Food Sci. Food Saf. 2016, 15, 219–233. [Google Scholar] [CrossRef]
- Cianciosi, D.; Forbes-Hernández, T.Y.; Afrin, S.; Gasparrini, M.; Reboredo-Rodriguez, P.; Manna, P.P.; Zhang, J.; Bravo Lamas, L.; Martínez Flórez, S.; Agudo Toyos, P.; et al. Phenolic Compounds in Honey and Their Associated Health Benefits: A Review. Molecules 2018, 23, 2322. [Google Scholar] [CrossRef] [PubMed]
- Mititelu, M.; Udeanu, D.I.; Docea, A.O.; Tsatsakis, A.; Calina, D.; Arsene, A.L.; Nedelescu, M.; Neacsu, S.M.; Velescu, B.Ș.; Ghica, M. New method for risk assessment in environmental health: The paradigm of heavy metals in honey. Environ. Res. 2023, 236 Pt.1, 115194. [Google Scholar] [CrossRef]
- Corey, K.; Hamama, A.A.; Li, H.; Siddiqui, R.A.; Kim, C.; Bhardwaj, H.L. Composition of Buckwheat Honey. J. Agric. Sci. 2022, 14, 59. [Google Scholar] [CrossRef]
- Bobis, O.; Severus Dezmirean, D.; Bonta, V.; Moise, A.; Pașca, C.; Domokos, T.E.; Urcan, A.C. Japanese Knotweed (Fallopia japonica): Landscape Invasive Plant versus High Quality Honey Source. Sci. Pap. Ser. D Anim. Sci. 2019, 62, 231–235. [Google Scholar]
- Pătruică, S.; Alexa, E.; Obiștioiu, D.; Cocan, I.; Radulov, I.; Berbecea, A.; Lazăr, R.N.; Simiz, E.; Vicar, N.M.; Hulea, A.; et al. Chemical Composition, Antioxidant and Antimicrobial Activity of Some Types of Honey from Banat Region, Romania. Molecules 2022, 27, 4179. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Ballesta, M.C.; Dominguez-Perles, R.; Moreno, D.A.; Muries, B.; Alcaraz-López, C.; Bastías, E.; García-Viguera, C.; Carvajal, M. Minerals in plant food: Effect of agricultural practices and role in human health. A review. Agron. Sustain. Dev. 2010, 30, 295–309. [Google Scholar] [CrossRef]
- Obasi, P.N.; Akudinobi, B.B. Potential health risk and levels of heavy metals in water resources of lead–zinc mining communities of Abakaliki, southeast Nigeria. Appl. Water Sci. 2020, 10, 184. [Google Scholar] [CrossRef]
- Di, N.; Zhang, K.; Hladun, K.R.; Rust, M.; Chen, Y.-F.; Zhu, Z.-Y.; Liu, T.-X.; Trumble, J.T. Joint effects of cadmium and copper on Apis mellifera forgers and larvae. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2020, 237, 108839. [Google Scholar] [CrossRef]
- Jones, D.; Bruce, G.; Fowler, M.S.; Law-Cooper, R.; Graham, I.; Abel, A.; Street-Perrott, F.A.; Eastwood, D. Optimising physiochemical control of invasive Japanese knotweed. Biol. Invasions 2018, 20, 2091–2105. [Google Scholar] [CrossRef]
- Hernández-Zamora, M.; Rodríguez-Miguel, A.; Martínez-Jerónimo, L.; Martínez-Jerónimo, F. Combined Toxicity of Glyphosate (Faena®) and Copper to the American Cladoceran Daphnia exilis—A Two-Generation Analysis. Water 2023, 15, 2018. [Google Scholar] [CrossRef]
- Bărbulescu, A.; Barbeș, L.; Dumitriu, C. Impact of Soil Pollution on Melliferous Plants. Toxics 2022, 10, 239. [Google Scholar] [CrossRef] [PubMed]
- European Commission. Commission Regulation (EU) 2023/915 of 25 April 2023 on Maximum Levels for Certain Contaminants in Food and Repealing Regulation (EC) No 1881/2006. Off. J. Eur. Union 2023, 915, 48–119. [Google Scholar]
- Bogdanov, S.; Haldimann, M.; Luginbühl, W.; Gallmann, P. Minerals in Honey: Environmental, Geographical and Botanical Aspects. J. Apic. Res. 2007, 46, 269–275. [Google Scholar] [CrossRef]
- Ignjatijević, S.D.; Prodanović, R.V.; Bošković, J.Z.; Puvača, N.M.; Tomaš-Simin, M.J.; Peulić, T.A.; Đuragić, O.M. Comparative analysis of honey consumption in Romania, Italy and Serbia. Food Feed Res. 2019, 46, 125–136. [Google Scholar] [CrossRef]
- Sanjosé, I.; Navarro-Roldán, F.; Montero, Y.; Ramírez-Acosta, S.; Jiménez-Nieva, F.J.; Infante-Izquierdo, M.D.; Polo-Ávila, A.; Muñoz-Rodríguez, A.F. The Bioconcentration and the Translocation of Heavy Metals in Recently Consumed Salicornia ramosissima J. Woods in Highly Contaminated Estuary Marshes and Its Food Risk. Diversity 2022, 14, 452. [Google Scholar] [CrossRef]
- Bora, F.D.; Babeș, A.C.; Călugăr, A.; Jitea, M.I.; Hoble, A.; Filimon, R.V.; Bunea, A.; Nicolescu, A.; Bunea, C.I. Unravelling Heavy Metal Dynamics in Soil and Honey: A Case Study from Maramureș Region, Romania. Foods 2023, 12, 3577. [Google Scholar] [CrossRef]
- Romeh, A.A. Potential risks from the accumulation of heavy metals in canola plants. Environ. Sci. Pollut. Res. 2021, 28, 52529–52546. [Google Scholar] [CrossRef]
- Tomczyk, M.; Zaguła, G.; Kaczmarski, M.; Puchalski, C.; Dżugan, M. The Negligible Effect of Toxic Metal Accumulation in the Flowers of Melliferous Plants on the Mineral Composition of Monofloral Honeys. Agriculture 2023, 13, 273. [Google Scholar] [CrossRef]
- Dubey, V.K.; Sahoo, S.K.; Sujatha, B.; Das, A. Impact of Heavy Metals on Honey Bees. Vigyan Varta 2022, 3, 101–103. [Google Scholar]
- Monchanin, C.; Drujont, E.; Devaud, J.-M.; Lihoreau, M.; Barron, A.B. Metal pollutants have additive negative effects on honey bee cognition. J. Exp. Biol. 2021, 224, 241869. [Google Scholar] [CrossRef]
- Petrean, I.A.; Micle, V.; Sur, I.M.; Șenilă, M. Characterization of Sterile Mining Dumps by the ICP-OES Analytical Method: A Case Study from Baia Mare Mining Area (Maramures, Romania). Sustainability 2023, 15, 1158. [Google Scholar] [CrossRef]
- Pașca, C.; Mărghitaș, L.; Dezmirean, D.; Bobiș, O.; Bonta, V.; Chirilă, F.; Matei, I.; Fiț, N. Medicinal Plants Based Products Tested on Pathogens Isolated from Mastitis Milk. Molecules 2017, 22, 1473. [Google Scholar] [CrossRef]
- Socaciu, M.-I.; Semeniuc, C.A.; Mureşan, E.A.; Pușcaș, A.; Tanislav, A.; Ranga, F.; Dulf, F.; Páll, E.; Truță, A.M.; Paşca, C.; et al. Characterization of some Fagaceae kernels nutritional composition for potential use as novel food ingredients. Food Chem. 2023, 406, 135053. [Google Scholar] [CrossRef]
- Pașca, C.; Mărghitaș, L.A.; Matei, I.A.; Bonta, V.; Mărgăoan, R.; Copaciu, F.; Bobiș, O.; Campos, M.G.; Dezmirean, D.S. Screening of Some Romanian Raw Honeys and Their Probiotic Potential Evaluation. Appl. Sci. 2021, 11, 5816. [Google Scholar] [CrossRef]
- Skorbiłowicz, M.; Skorbiłowicz, E.; Cieśluk, I. Bees as Bioindicators of Environmental Pollution with Metals in an Urban Area. J. Ecol. Eng. 2018, 19, 229–234. [Google Scholar] [CrossRef]
- Zhou, X.; Taylor, M.P.; Davies, P.J.; Prasad, S. Identifying Sources of Environmental Contamination in European Honey Bees (Apis mellifera) Using Trace Elements and Lead Isotopic Compositions. Environ. Sci. Technol. 2018, 52, 991–1001. [Google Scholar] [CrossRef]
- Goretti, E.; Pallottini, M.; Rossi, R.; La Porta, G.; Gardi, T.; Goga, B.C.; Elia, A.; Galletti, M.; Moroni, B.; Petroselli, C.; et al. Heavy metal bioaccumulation in honey bee matrix, an indicator to assess the contamination level in terrestrial environments. Environ. Pollut. 2020, 256, 113388. [Google Scholar] [CrossRef]
- Lishchuk, A.; Parfenyk, A.; Horodyska, I.; Boroday, V.; Khitrenko, T.; Tymoshenko, L. Bioindication for Detecting Environmental Risks in Agrocenoses Contaminated with Heavy Metals. J. Ecol. Eng. 2023, 24, 175–182. [Google Scholar] [CrossRef]
- Quigley, T.P.; Amdam, G.V.; Harwood, G.H. Honey bees as bioindicators of changing global agricultural landscapes. Curr. Opin. Insect Sci. 2019, 35, 132–137. [Google Scholar] [CrossRef] [PubMed]
- Roman, A. Levels of Copper, Selenium, Lead, and Cadmium in Forager Bees. Pol. J. Environ. Stud. 2010, 19, 663–669. [Google Scholar]
- Hladun, K.R.; Parker, D.R.; Trumble, J.T. Cadmium, Copper, and Lead Accumulation and Bioconcentration in the Vegetative and Reproductive Organs of Raphanus sativus: Implications for Plant Performance and Pollination. J. Chem. Ecol. 2015, 41, 386–395. [Google Scholar] [CrossRef] [PubMed]
- Di, N.; Zhang, K.; Hladun, K.R.; Rust, M.; Chen, Y.-F.; Zhu, Z.-Y.; Liu, T.X.; Trumble, J.T. Laboratory Bioassays on the Impact of Cadmium, Copper and Lead on the Development and Survival of Honeybee (Apis mellifera L.) Larvae and Foragers. Chemosphere 2016, 152, 530–538. [Google Scholar] [CrossRef]
Indicator (Elements) | Samples (Plant Tissues) | Experimental Site | ||
---|---|---|---|---|
Merișor | Valea Vinului | Bocsig | ||
Ca | Roots | nd | nd | 8991.51 ± 59.904 a |
Rhizomes | nd | nd | 6047.75 ± 109.273 a | |
Stems | 6587.67 ± 624.125 b | 7865.97 ± 13.801 a | 7704.45 ± 35.214 a | |
Leaves | 2361.56 ± 80.063 c | 6614.36 ± 20.588 b | 6764.95 ± 59.805 a | |
K | Roots | 3478.21 ± 26.412 b | 3935.88 ± 20.588 a | 1125.99 ± 27.133 c |
Rhizomes | 3817.59 ± 24.691 a | 3628.35 ± 5.628 b | 1265.45 ± 5.922 c | |
Stems | 1703.20 ± 171.017 b | 3038.79 ± 15.526 a | 1273.65 ± 39.792 c | |
Leaves | 2522.72 ± 35.158 a | 1569.88 ± 153.041 b | 1501.49 ± 23.218 b | |
Mg | Roots | 195.76 ± 4.726 b | 273.26 ± 5.060 a | 129.64 ± 0.810 c |
Rhizomes | 520.53 ± 1.058 a | 355.50 ± 4.538 b | 130.76 ± 4.018 c | |
Stems | 143.99 ± 4.478 b | 520.90 ± 1.725 a | 93.85 ± 4.894 c | |
Leaves | nd | 140.37 ± 0.514 b | 160.77 ± 5.523 a |
Indicator (Elements) | Samples (Plant Tissues) | Experimental Site | ||
---|---|---|---|---|
Merișor | Valea Vinului | Bocsig | ||
Cu | Roots | 45.03 ± 0.223 a | 25.76 ± 0.189 b | 17.05 ± 0.015 c |
Rhizomes | 43.60 ± 0.375 a | 5.99 ± 0.051 b | 5.76 ± 0.017 b | |
Stems | 8.69 ± 0.007 a | 7.86 ± 0.098 b | 7.92 ± 0.008 b | |
Leaves | 23.95 ± 0.059 a | 10.13 ± 0.014 b | 23.27 ± 0.017 a | |
Fe | Roots | 16.38 ± 0.020 a | 14.16 ± 0.006 b | 4.97 ± 0.010 c |
Rhizomes | 17.48 ± 0.015 a | 16.44 ± 0.003 b | 12.57 ± 0.022 c | |
Stems | 14.29 ± 0.088 b | 21.06 ± 0.006 a | 12.07 ± 0.010 c | |
Leaves | 4.99 ± 0.034 c | 15.72 ± 0.065 a | 10.76 ± 0.014 b | |
Mn | Roots | 10.14 ± 0.069 a | 8.68 ± 0.100 b | 7.06 ± 0.077 c |
Rhizomes | 4.25 ± 0.039 b | 10.44 ± 0.116 a | 1.42 ± 0.032 c | |
Stems | 3.56 ± 0.024 b | 14.43 ± 0.186 a | 3.81 ± 0.055 b | |
Leaves | 11.43 ± 0.027 a | 8.14 ± 0.039 b | 6.704 ± 0.017 c | |
Se | Roots | 0.17 ± 0.002 b | 0.21 ± 0.000 a | 0.10 ± 0.000 c |
Rhizomes | 0.06 ± 0.000 b | 0.15 ± 0.000 a | 0.12 ± 0.000 a | |
Stems | 0.22 ± 0.000 a | 0.11 ± 0.002 b | 0.07 ± 0.000 b | |
Leaves | 0.12 ± 0.000 a | 0.11 ± 0.002 a | 0.11 ± 0.001 a |
Indicator (Elements) | Samples (Plant Tissues) | Experimental Site | ||
---|---|---|---|---|
Merișor | Valea Vinului | Bocsig | ||
Cd | Roots | 0.465 ± 0.017 b | 0.694 ± 0.021 a | 0.029 ± 0.000 c |
Rhizomes | 0.152 ± 0.003 b | 0.401 ± 0.002 a | 0.001 ± 0.000 c | |
Stems | 0.012 ± 0.000 b | 0.450 ± 0.048 a | 0.003 ± 0.000 b | |
Leaves | 0.124 ± 0.000 a | 0.020 ± 0.000 b | 0.004 ± 0.000 c | |
Cr | Roots | 1.587 ± 0.035 a | 1.177 ± 0.022 b | 0.929 ± 0.006 c |
Rhizomes | 0.146 ± 0.000 c | 1.586 ± 0.042 a | 0.956 ± 0.001 b | |
Stems | 0.093 ± 0.000 c | 1.283 ± 0.013 a | 0.755 ± 0.001 b | |
Leaves | 0.110 ± 0.000 c | 1.608 ± 0.008 a | 1.009 ± 0.000 b | |
Ni | Roots | 1.806 ± 0.008 b | 6.295 ± 0.032 a | 1.200 ± 0.000 c |
Rhizomes | 0.695 ± 0.006 b | 1.875 ± 0.021 a | 0.134 ± 0.000 c | |
Stems | 0.617 ± 0.003 b | 2.745 ± 0.011 a | 0.275 ± 0.001c | |
Leaves | 1.031 ± 0.004 a | 0.521 ± 0.000 c | 1.060 ± 0.003 a | |
Pb | Roots | 0.006 ± 0.001 c | 0.042 ± 0.003 b | 0.216 ± 0.016 a |
Rhizomes | nd | 0.014 ± 0.004 a | 0.011 ± 0.003 a | |
Stems | 0.001 ± 0.000 b | 0.003 ± 0.002 b | 0.044 ± 0.004 a | |
Leaves | 2.084 ± 0.008 a | 0.051 ± 0.002 c | 0.124 ± 0.004 b |
Element | Concentration in Honey Samples from the Three Experimental Sites | ||
---|---|---|---|
Merișor (n = 3) | Valea Vinului (n = 3) | Bocsig (n = 3) | |
Macro-elements | |||
Ca | 674.45 ± 0.702 c | 3281.39 ± 0.891 b | 5562.75 ± 0.971a |
K | 2132.72 ± 0.663 b | 4091.25 ± 0.911a | 2137.87 ± 0.833 b |
Mg | 785.35 ± 0.682 b | 972.44 ± 0.801a | 406.94 ± 0.642 c |
Micro-elements | |||
Cu | 1.29 ± 0.0166 a | 0.76 ± 0.025 b | 0.78 ± 0.006 b |
Fe | 2.28 ± 0.097 b | 3.35 ± 0.045 a | 1.91 ± 0.011 c |
Mn | 3.13 ± 0.010 a | 2.19 ± 0.072 b | 0.97 ± 0.022 c |
Se | 0.77 ± 0.021 a | 0.22 ± 0.031 b | 0.08 ± 0.002 c |
Trace elements | |||
Cd | 0.001 ± 0.000 a | 0.001 ± 0.000 a | 0.001 ± 0.000 a |
Cr | 0.044 ± 0.002 c | 0.103 ± 0.000 a | 0.090 ± 0.001 b |
Ni | 0.840 ± 0.006 a | 0.269 ± 0.001b | 0.235 ± 0.009 c |
Pb | nd | nd | nd |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cucu, A.-A.; Pașca, C.; Cucu, A.-B.; Moise, A.R.; Bobiş, O.; Dezsi, Ș.; Blaga Petrean, A.; Dezmirean, D.S. Evaluation of the Main Macro-, Micro- and Trace Elements Found in Fallopia japonica Plants and Their Traceability in Its Honey: A Case Study from the Northwestern and Western Part of Romania. Plants 2024, 13, 428. https://doi.org/10.3390/plants13030428
Cucu A-A, Pașca C, Cucu A-B, Moise AR, Bobiş O, Dezsi Ș, Blaga Petrean A, Dezmirean DS. Evaluation of the Main Macro-, Micro- and Trace Elements Found in Fallopia japonica Plants and Their Traceability in Its Honey: A Case Study from the Northwestern and Western Part of Romania. Plants. 2024; 13(3):428. https://doi.org/10.3390/plants13030428
Chicago/Turabian StyleCucu, Alexandra-Antonia, Claudia Pașca, Alexandru-Bogdan Cucu, Adela Ramona Moise, Otilia Bobiş, Ștefan Dezsi, Anamaria Blaga Petrean, and Daniel Severus Dezmirean. 2024. "Evaluation of the Main Macro-, Micro- and Trace Elements Found in Fallopia japonica Plants and Their Traceability in Its Honey: A Case Study from the Northwestern and Western Part of Romania" Plants 13, no. 3: 428. https://doi.org/10.3390/plants13030428
APA StyleCucu, A. -A., Pașca, C., Cucu, A. -B., Moise, A. R., Bobiş, O., Dezsi, Ș., Blaga Petrean, A., & Dezmirean, D. S. (2024). Evaluation of the Main Macro-, Micro- and Trace Elements Found in Fallopia japonica Plants and Their Traceability in Its Honey: A Case Study from the Northwestern and Western Part of Romania. Plants, 13(3), 428. https://doi.org/10.3390/plants13030428