The Role of Naphthaleneacetic Acid and 1-Methylcyclopropene in Preventing Preharvest Berry Dropping in Vitis vinifera L.
Abstract
:1. Introduction
2. Results
2.1. Effects of NAA and 1-MCP on Berry Dropping
2.2. Effects of NAA and 1-MCP on Transcription of Genes Involved in ET Biosynthesis and Signaling
2.3. Effect of NAA and 1-MCP on Transcription of Genes Involved in AUX Homeostasis
2.4. Effects of NAA and 1-MCP on Yield and Leaf Area (LA)
2.5. Effects of NAA and 1-MCP on Berry Fresh Weight and Ripening
3. Discussion
3.1. PGRs Effects
3.2. PGRs and PHBD Interaction Through Gene Expression
4. Materials and Methods
4.1. Plant Materials
4.2. Experimental Design and Treatments Application
4.2.1. Naphthaleneacetic Acid (NAA)
4.2.2. 1-Methylciclopropene (1-MCP)
4.3. Monitoring of Phenological Stages
4.4. Leaf Area (LA) Assessment
4.5. Berry Growth and Quality Traits
4.6. Berry Dropping Assessment
4.7. RNA Extraction and Transcript Analysis via q-RTPCR
4.8. Data Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, J.; Su, S. Abscission in plants: From mechanism to applications. Adv. Biotechnol. 2024, 2, 27. [Google Scholar] [CrossRef]
- Olsson, V.; Butenko, M.A. Abscission in plants. Curr. Biol. 2018, 288, R338–R339. [Google Scholar] [CrossRef]
- Kühn, N.; Abello, C.; Godoy, F.; Delrot, S.; Arce-Johnson, P. Differential behavior within a grapevine cluster: Decreased ethylene-related gene expression dependent on auxin transport is correlated with low abscission of first developed berries. PLoS ONE 2014, 911, e111258. [Google Scholar] [CrossRef] [PubMed]
- Domingos, S.; Fino, J.; Cardoso, V.; Sánchez, C.; Ramalho, J.C.; Larcher, R.; Paulo, O.S.; Oliveira, C.M.; Goulao, L.F. Shared and divergent pathways for flower abscission are triggered by gibberellic acid and carbon starvation in seedless Vitis vinifera L. BMC Plant Biol. 2016, 16, 38. [Google Scholar] [CrossRef]
- Patharkar, O.R.; Walker, J.C. Advances in abscission signaling. J. Exp. Bot. 2018, 694, 733–740. [Google Scholar] [CrossRef] [PubMed]
- Bonghi, C.; Tonutti, P.; Ramina, A. Biochemical and molecular aspects of fruitlet abscission. Plant Growth Regul. 2000, 31, 35–42. [Google Scholar] [CrossRef]
- Botton, A.; Ruperti, B. The yes and no of the ethylene involvement in abscission. Plants 2019, 86, 187. [Google Scholar] [CrossRef]
- Deng, Y.; Wu, Y.; Li, Y.; Yang, M.; Shi, C.; Zheng, C. Studies of postharvest berry abscission of ‘Kyoho’table grapes during cold storage and high oxygen atmospheres. Postharvest Boil. Technol. 2007, 431, 95–101. [Google Scholar] [CrossRef]
- Spiegel-Roy, P.; Goldschmidt, E.E. The Biology of Citrus; Cambridge University Press: Cambridge, UK, 1996. [Google Scholar]
- Zanchin, A.; Marcato, C.; Trainotti, L.; Casadoro, G.; Rascio, N. Characterization of abscission zones in the flowers and fruits of peach Prunus persica L. Batsch. New Phytol. 1995, 1292, 345–354. [Google Scholar] [CrossRef] [PubMed]
- Dal Cin, V.; Danesin, M.; Botton, A.; Boschetti, A.; Dorigoni, A.; Ramina, A. Ethylene and preharvest drop: The effect of AVG and NAA on fruit abscission in apple Malus domestica L. Borkh. Plant Growth Regul. 2008, 56, 317–325. [Google Scholar] [CrossRef]
- Brown, K.M. Ethylene and abscission. Physiol. Plant. 2006, 1003, 567–576. [Google Scholar]
- Taylor, J.E.; Whitelaw, C.A. Signals in abscission. New Phytol. 2001, 1512, 323–340. [Google Scholar] [CrossRef]
- Li, J.; Yuan, R. NAA and ethylene regulate expression of genes related to ethylene biosynthesis, perception, and cell wall degradation during fruit abscission and ripening in ‘Delicious’ apples. J. Plant Growth Regul. 2008, 273, 283–295. [Google Scholar] [CrossRef]
- Ordoñez Trejo, E.; Brizzolara, S.; Cardillo, V.; Ruperti, B.; Bonghi, C.; Tonutti, P. The impact of PGRs applied in the field on the postharvest behavior of fruit crops. Sci. Hortic. 2023, 318, 112103. [Google Scholar] [CrossRef]
- Ferrara, G.; Mazzeo, A.; Matarrese, A.M.; Pacucci, C.; Trani, A.; Fidelibus, M.W.; Gambacorta, G. Ethephon as a potential abscission agent for table grapes: Effects on pre-harvest abscission, fruit quality, and residue. Front. Plant Sci. 2016, 7, 620. [Google Scholar] [CrossRef]
- Blankenship, S.M.; Dole, J.M. 1-Methylcyclopropene: A review. Postharvest Biol. Technol. 2003, 281, 1–25. [Google Scholar] [CrossRef]
- Hilt, C.; Bessis, R. Abscission of grapevine fruitlets in relation to ethylene biosynthesis. VITIS 2003, 421, 1. [Google Scholar]
- García-Rojas, M.; Meneses, M.; Oviedo, K.; Carrasco, C.; Defilippi, B.; González-Agüero, M.; León, G.; Hinrichsen, P. Exogenous gibberellic acid application induces the overexpression of key genes for pedicel lignification and an increase in berry drop in table grape. Plant Physiol. Biochem. 2018, 126, 32–38. [Google Scholar] [CrossRef] [PubMed]
- Burger, D.A.; Jacobs, G.; Huysamer, M.; Taylor, M.A. Berry abscission in Vitis vinifera L. cv. Waltham Cross: Changes in abscission-related factors during berry development. S. Afr. J. Enol. Vitic. 2005, 262, 71–74. [Google Scholar]
- Silva, R.S.; Silva, S.M.; Rocha, A.; Dantas, R.L.; Schunemann, A.P.P.; Pereira, W.E. Influence of 1-MCP on Berry Drop and Quality of Isabel Grape. In Proceedings of the VII International Postharvest Symposium, Kuala Lumpur, Malaysia, 25–29 June 2012; Volume 1012, pp. 509–513. [Google Scholar]
- Zhu, M.; Zheng, L.; Zeng, Y.; Yu, J. Susceptibility of two grape varieties to berry abscission. Sci. Hortic. 2022, 304, 111280. [Google Scholar] [CrossRef]
- Schneider, A.; Montacchini, F. Aspetti morfologici e istologici della zona di ascissione nei frutti di Vitis vinifera L. Allionia 1978, 23, 109–118. [Google Scholar]
- Botta, R.; Vallania, R.; Me, G.; Luzzati, A.; Siragusa, N. Investigation on Factors Affecting Early Dropping in Dolcetto Vitis vinifera L. In Proceedings of the International Symposium on Quality of Fruit and Vegetables: Influence of Pre- and Post-Harvest Factors and Technology, Chania, Greece, 20–24 September 1993; Volume 379, pp. 97–104. [Google Scholar]
- Gangemi, L. Pre-Harvest Berry Dropping in Vitis vinifera L. cv ‘Dolcetto’ N. Ph.D. Thesis, University of Turin, Torino, Italy, 2005. [Google Scholar]
- Schneider, A.; Gay, G. Mechanical harvesting and abscission of the berries in grapevine grown for wine. Ann. Della Fac. Di Sci. Agrar. Della Univ. Degli Studi Di Torino 1979, 11, 107–115. [Google Scholar]
- Zhao, M.; Shi, C.L.; Li, J. Abscission cues generated within the abscising organ and perceived by the abscission zone in woody fruit crops. Fruit Res. 2024, 41, e014. [Google Scholar] [CrossRef]
- Davies, C.; Böttcher, C.; Nicholson, E.L.; Burbidge, C.A.; Boss, P.K. Timing of auxin treatment affects grape berry growth, ripening timing and the synchronicity of sugar accumulation. Aust. J. Grape Wine Res. 2022, 282, 232–241. [Google Scholar] [CrossRef]
- Costantini, E.; Landi, L.; Silvestroni, O.; Pandolfini, T.; Spena, A.; Mezzetti, B. Auxin synthesis-encoding transgene enhances grape fecundity. Plant Physiol. 2007, 143, 1689–1694. [Google Scholar] [CrossRef]
- Merelo, P.; Agustí, J.; Arbona, V.; Costa, M.L.; Estornell, L.H.; Gómez-Cadenas, A.; Coimbra, S.; Gómez, M.D.; Pérez-Amador, M.A.; Domingo, C.; et al. Cell wall remodeling in abscission zone cells during ethylene-promoted fruit abscission in citrus. Front. Plant Sci. 2017, 8, 126. [Google Scholar]
- Ziliotto, F.; Corso, M.; Rizzini, F.M.; Rasori, A.; Botton, A.; Bonghi, C. Grape berry ripening delay induced by a pre-véraison NAA treatment is paralleled by a shift in the expression pattern of auxin-and ethylene-related genes. BMC Plant Biol. 2012, 12, 185. [Google Scholar] [CrossRef] [PubMed]
- Böttcher, C.; Boss, P.K.; Davies, C. Acyl substrate preferences of an IAA-amido synthetase account for variations in grape Vitis vinifera L. berry ripening caused by different auxinic compounds indicating the importance of auxin conjugation in plant development. J. Exp. Bot. 2011, 62, 4267–4280. [Google Scholar] [CrossRef] [PubMed]
- Yuan, R.; Carbaugh, D.H. Effects of NAA, AVG, and 1-MCP on ethylene biosynthesis, preharvest fruit drop, fruit maturity, and quality of ‘Golden Supreme’ and ‘Golden Delicious’ apples. HortScience 2007, 421, 101–105. [Google Scholar] [CrossRef]
- Yuan, R.; Li, J. Effect of sprayable 1-MCP, AVG, and NAA on ethylene biosynthesis, preharvest fruit drop, fruit maturity, and quality of ‘Delicious’ apples. HortScience 2008, 435, 1454–1460. [Google Scholar] [CrossRef]
- Chervin, C.; El-Kereamy, A.; Roustan, J.P.; Latché, A.; Lamon, J.; Bouzayen, M. Ethylene seems required for the berry development and ripening in grape, a non-climacteric fruit. Plant Sci. 2004, 1676, 1301–1305. [Google Scholar] [CrossRef]
- Wang, K.L.C.; Li, H.; Ecker, J.R. Ethylene biosynthesis and signalling networks. Plant Cell 2002, 14 (Suppl. S1), S131–S151. [Google Scholar] [CrossRef] [PubMed]
- Binder, B.M. Ethylene signaling in plants. J. Biol. Chem. 2002, 29522, 7710–7725. [Google Scholar] [CrossRef]
- Coombe, B.G.; McCarthy, M.G. Dynamics of grape berry growth and physiology of ripening. Aust. J. Grape Wine Res. 2000, 6, 131–135. [Google Scholar] [CrossRef]
- Nartvaranant, P. The influence of exogenously applied 2, 4-D and NAA on fruit drop reduction in pummelo cv. Thong Dee. Int. J. Fruit Sci. 2018, 182, 215–225. [Google Scholar] [CrossRef]
- Varela, C.; Dry, P.R.; Kutyna, D.R.; Francis, I.L.; Henschke, P.A.; Curtin, C.D.; Chambers, P.J. Strategies for reducing alcohol concentration in wine. Aust. J. Grape Wine Res. 2015, 21, 670–679. [Google Scholar] [CrossRef]
- Freiman, Z.E.; Rodov, V.; Yablovitz, Z.; Horev, B.; Flaishman, M.A. Preharvest application of 1-methylcyclopropene inhibits ripening and improves keeping quality of ‘Brown Turkey’ figs Ficus carica L. Sci. Hortic. 2012, 138, 266–272. [Google Scholar] [CrossRef]
- Hunter, J.J.; Volschenk, C.G.; Novello, V.; Strever, A.E.; Fouché, G.W. Integrative effects of vine water relations and grape ripeness level of Vitis vinifera L. cv. Shiraz/Richter 99. I. Physiological changes and vegetative-reproductive growth balances. S. Afr. J. Enol. Vitic. 2014, 35, 332–358. [Google Scholar] [CrossRef]
- Knipfer, T.; Wilson, N.; Jorgensen-Bambach, N.E.; McElrone, A.J.; Bartlett, M.K.; Castellarin, S.D. Cessation of berry growth coincides with leaf complete stomatal closure at pre-veraison for grapevine Vitis vinifera subjected to progressive drought stress. Ann. Bot. 2023, 1325, 979–988. [Google Scholar] [CrossRef] [PubMed]
- Greenspan, M.D.; Schultz, H.R.; Matthews, M.A. Field evaluation of water transport in grape berries during water deficits. Physiol. Plant. 1996, 971, 55–62. [Google Scholar] [CrossRef]
- Carlomagno, A.; Novello, V.; Ferrandino, A.; Genre, A.; Lovisolo, C.; Hunter, J.J. Pre-harvest berry shrinkage in cv ‘Shiraz’ Vitis vinifera L.: Understanding sap flow by means of tracing. Sci. Hort. 2018, 233, 394–406. [Google Scholar] [CrossRef]
- McCarthy, M.G.; Coombe, B.G. Is weight loss in ripening grape berries cv. Shiraz caused by impeded phloem transport? Aust. J. Grape Wine Res. 1999, 5, 17–21. [Google Scholar] [CrossRef]
- Huang, W.; Tan, C.; Guo, H. Ethylene in fruits: Beyond ripening control. Hortic. Res. 2024, 1110, uhae229. [Google Scholar] [CrossRef]
- Wang, P.; Yu, A.; Ji, X.; Mu, Q.; Haider, M.S.; Wei, R.; Leng, X.; Fang, J. Transcriptome and Metabolite Integrated Analysis Reveals That Exogenous Ethylene Controls Berry Ripening Processes in Grapevine. Food Res. Int. 2022, 155, 111084. [Google Scholar] [CrossRef] [PubMed]
- Doerflinger, F.C.; Al Shoffe, Y.; Sutanto, G.; Nock, J.F.; Watkins, C.B. Preharvest 1-methylcyclopropene (1-MCP) treatment effects on quality of spot and strip picked ‘Gala’ apples at harvest and after storage as affected by postharvest 1-MCP and temperature conditioning treatments. Sci. Hortic. 2024, 325, 112682. [Google Scholar] [CrossRef]
- Zhang, J.; Ma, Y.; Dong, C.; Terry, L.A.; Watkins, C.B.; Yu, Z.; Cheng, Z.M.M. Meta-analysis of the effects of 1-methylcyclopropene (1-MCP) treatment on climacteric fruit ripening. Hortic. Res. 2020, 7, 208. [Google Scholar] [CrossRef] [PubMed]
- Vilhena, N.Q.; Cervera-Chiner, L.; Moreno, A.; Salvador, A. Recent Development in the Preharvest 1-MCP Application to Improve Postharvest Fruit Quality. New Adv. Postharvest Technol. 2023, 1–18. [Google Scholar]
- Kou, X.; Feng, Y.; Yuan, S.; Zhao, X.; Wu, C.; Wang, C.; Xue, Z. Different regulatory mechanisms of plant hormones in the ripening of climacteric and non-climacteric fruits: A review. Plant Mol. Biol. 2021, 107, 477–497. [Google Scholar] [CrossRef]
- Kliewer, W.M.; Dokoozlian, N.K. Leaf area/crop weight ratios of grapevines: Influence on fruit composition and wine quality. Am. J. Enol. Vitic. 2005, 56, 170–181. [Google Scholar] [CrossRef]
- Keller, M.; Mills, L.J.; Wample, R.L.; Spayd, S.E. Cluster thinning effects on three deficit-irrigated Vitis vinifera cultivars. Am. J. Enol. Vitic. 2005, 562, 91–103. [Google Scholar] [CrossRef]
- Etchebarne, F.; Ojeda, H.; Hunter, J.J. Leaf: Fruit ratio and vine water status effects on Grenache Noir Vitis vinifera L. berry composition: Water, sugar, organic acids and cations. S. Afr. J. Enol. Vitic. 2010, 31, 106–115. [Google Scholar]
- Botton, A.; Girardi, F.; Ruperti, B.; Brilli, M.; Tijero, V.; Eccher, G.; Populin, F.; Schievano, E.; Riello, T.; Munné-Bosch, S.; et al. Grape Berry Responses to Sequential Flooding and Heatwave Events: A Physiological, Transcriptional, and Metabolic Overview. Plants 2022, 11, 3574. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Gu, X.; Zhou, Q.; Huang, J.; Liu, Z.; Zhou, Y.; Zheng, Y. Molecular and physiological mechanisms of advanced ripening by trunk girdling at early veraison of Summer Black’ grape. Front. Plant Sci. 2022, 13, 1012741. [Google Scholar] [CrossRef] [PubMed]
- Clayton-Cuch, D.; Yu, L.; Shirley, N.; Bradley, D.; Bulone, V.; Böttcher, C. Auxin Treatment Enhances Anthocyanin Production in the Non-Climacteric Sweet Cherry Prunus avium L. Int. J. Mol. Sci. 2021, 22, 10760. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Aziz, R.B.; Wang, Y.; Xuan, X.; Yu, M.; Qi, Z.; Chen, X.; Wu, Q.; Qu, Z.; Dong, T.; et al. Identification of VvAGL Genes Reveals Their Network’s Involvement in the Modulation of Seed Abortion via Responding Multi-Hormone Signals in Grapevines. Int. J. Mol. Sci. 2024, 2518, 9849. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Song, B.; Liang, Q.; Su, D.; Lu, W.; Liu, Y.; Li, Z. Molecular regulatory events of flower and fruit abscission in horticultural plants. Hortic. Plant J. 2023, 95, 867–883. [Google Scholar] [CrossRef]
- Tian, Y.; Xin, W.; Lin, J.; Ma, J.; He, J.; Wang, X.; Xu, T.; Tang, W. Auxin coordinates achene and receptacle development during fruit initiation in Fragaria vesca. Front. Plant Sci. 2022, 13, 929831. [Google Scholar] [CrossRef]
- Trainotti, L.; Pavanello, A.; Casadoro, G. Different ethylene receptors show an increased expression during the ripening of strawberries: Does such an increment imply a role for ethylene in the ripening of these non-climacteric fruits? J. Exp. Bot. 2005, 56418, 2037–2046. [Google Scholar] [CrossRef]
- Lorenz, D.H.; Eichhorn, K.W.; Bleiholder, H.; Klose, R.; Meier, U.; Weber, E. Growth Stages of the Grapevine: Phenological growth stages of the grapevine Vitis vinifera L. ssp. vinifera—Codes and descriptions according to the extended BBCH scale. Aust. J. Grape Wine Res. 1995, 12, 100–103. [Google Scholar] [CrossRef]
- Vitali, M.; Tamagnone, M.; La Iacona, T.; Lovisolo, C. Measurement of grapevine canopy leaf area by using an ultrasonic-based method. Oeno One 2013, 473, 183–189. [Google Scholar] [CrossRef]
- Castellarin, S.D.; Pfeiffer, A.; Sivilotti, P.; Degan, M.; Peterlunger, E.; Di Gaspero, G. Transcriptional regulation of anthocyanin biosynthesis in ripening fruits of grapevine under seasonal water deficit. Plant Cell Environ. 2007, 3011, 1381–1399. [Google Scholar] [CrossRef]
- Simon, P. Q-Gene: Processing quantitative real-time RT–PCR data. Bioinformatics 2003, 19, 1439–1440. [Google Scholar] [CrossRef] [PubMed]
Treatment | Bunches | Bunch Fresh Weight | Yield | Leaf Area | Leaf Area/Yield |
---|---|---|---|---|---|
Units | (n vine−1) | (g) | (kg vine−1) | (m2 vine−1) | (m2 kg−1) |
CTRL | 5.97 ± 0.20 | 229.17 ± 23.78 | 1.38 ± 0.18 | 2.83 ± 0.17 | 2.06 a ± 0.05 |
NAA | 6.78 ± 0.72 | 281.53 ± 2.89 | 1.91 ± 0.19 | 2.63 ± 0.16 | 1.39 b ± 0.11 |
1-MCP | 6.27 ± 0.58 | 281.67 ± 9.28 | 1.69 ± 0.06 | 2.42 ± 0.17 | 1.43 b ± 0.03 |
Phenological Stage | BBCH Stage | Date | DAA |
---|---|---|---|
Anthesis | 65 | 12 June | 0 |
Veraison | 81 | 30 July | 48 |
Harvest | 89 | 16 September | 96 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carlomagno, A.; Bonghi, C.; Montanaro, G.; Ferrandino, A.; Rasori, A.; Nuzzo, V.; Novello, V. The Role of Naphthaleneacetic Acid and 1-Methylcyclopropene in Preventing Preharvest Berry Dropping in Vitis vinifera L. Plants 2025, 14, 280. https://doi.org/10.3390/plants14020280
Carlomagno A, Bonghi C, Montanaro G, Ferrandino A, Rasori A, Nuzzo V, Novello V. The Role of Naphthaleneacetic Acid and 1-Methylcyclopropene in Preventing Preharvest Berry Dropping in Vitis vinifera L. Plants. 2025; 14(2):280. https://doi.org/10.3390/plants14020280
Chicago/Turabian StyleCarlomagno, Antonio, Claudio Bonghi, Giuseppe Montanaro, Alessandra Ferrandino, Angela Rasori, Vitale Nuzzo, and Vittorino Novello. 2025. "The Role of Naphthaleneacetic Acid and 1-Methylcyclopropene in Preventing Preharvest Berry Dropping in Vitis vinifera L." Plants 14, no. 2: 280. https://doi.org/10.3390/plants14020280
APA StyleCarlomagno, A., Bonghi, C., Montanaro, G., Ferrandino, A., Rasori, A., Nuzzo, V., & Novello, V. (2025). The Role of Naphthaleneacetic Acid and 1-Methylcyclopropene in Preventing Preharvest Berry Dropping in Vitis vinifera L. Plants, 14(2), 280. https://doi.org/10.3390/plants14020280