Global Transcriptomic Analysis of Inbred Lines Reveal Candidate Genes for Response to Maize Lethal Necrosis
Abstract
:1. Introduction
2. Results and Discussion
2.1. Overview of the RNA-Seq Results
2.2. Gene Expression Levels in Response to MLN in Maize
2.3. Gene Ontology (GO) Enrichment Analysis of Differentially Expressed Genes (DEGs)
2.4. Differentially Expressed Genes (DEGs) Involved in Stress-Related Pathways
2.5. Innate Plant Immune Response
Redox Signaling
2.6. RNAi and Ubiquitin–Proteasome System (UPS)
2.7. Cell Cycle Regulation and DNA Damage and Repair
2.8. Eukaryotic Translation Initiation Factor Expression Under MLN
3. Materials and Methods
3.1. Plant Materials and Stress Treatment
3.2. RNA Sequencing and Data Analysis
3.3. RNA-Seq Transcript Quantification and Identification of Differentially Expressed Genes (DEGs)
3.4. DEG Functional Annotation and Enrichment Analysis
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Boddupalli, P.; Suresh, L.M.; Mwatuni, F.; Beyene, Y.; Makumbi, D.; Gowda, M.; Olsen, M.S.; Hodson, D.; Worku, M.; Mezzalama, M. Maize lethal necrosis (MLN): Efforts toward containing the spread and impact of a devastating transboundary disease in sub-Saharan Africa. Virus Res. 2020, 282, 197943. [Google Scholar] [CrossRef]
- Mwatuni, F.M.N.; Nyende, A.B.; Njuguna, J.; Xiong, Z.; Machuka, E.; Francesca, S. Occurrence, genetic diversity, and recombination of maize lethal necrosis disease-causing viruses in Kenya. Virus Res. 2020, 286, 198081. [Google Scholar] [CrossRef] [PubMed]
- Redinbaugh, M.G.; Stewart, L.R. Maize lethal necrosis: An emerging, synergistic viral disease. Annu. Rev. Virol. 2018, 5, 301–322. [Google Scholar] [CrossRef] [PubMed]
- Mahuku, G.; Lockhart, B.E.; Wanjala, B.; Jones, M.W.; Kimunye, J.N.; Stewart, L.R.; Cassone, B.J.; Sevgan, S.; Nyasani, J.O.; Kusia, E.; et al. Maize Lethal Necrosis (MLN), an Emerging Threat to Maize-Based Food Security in Sub-Saharan Africa. Phytopathology 2015, 105, 956–965. [Google Scholar] [CrossRef] [PubMed]
- Adams, I.P.; Miano, D.W.; Kinyua, Z.M.; Wangai, A.; Kimani, E.; Phiri, N.; Reeder, R.; Harju, V.; Glover, R.; Hany, U.; et al. Use of next-generation sequencing for the identification and characterization of Maize chlorotic mottle virus and Sugarcane mosaic virus causing maize lethal necrosis in Kenya. Plant Pathol. 2013, 62, 741–749. [Google Scholar] [CrossRef]
- Wangai, A.W.; Redinbaugh, M.G.; Kinyua, Z.M.; Miano, D.W.; Leley, P.K.; Kasina, M.; Mahuku, G.; Scheets, K.; Jeffers, D. First Report of Maize chlorotic mottle virus and Maize Lethal Necrosis in Kenya. APS Publ. 2012, 96, 1582. [Google Scholar] [CrossRef]
- Semagn, K.; Beyene, Y.; Babu, R.; Nair, S.; Gowda, M.; Das, B.; Tarekegne, A.; Mugo, S.; Mahuku, G.; Worku, M.; et al. Quantitative Trait Loci Mapping and Molecular Breeding for Developing Stress Resilient Maize for Sub-Saharan Africa. Crop Sci. 2015, 55, 1449–1459. [Google Scholar] [CrossRef]
- Gowda, M.; Beyene, Y.; Makumbi, D.; Semagn, K.; Olsen, M.S.; Bright, J.M.; Das, B.; Mugo, S.; Suresh, L.M.; Prasanna, B.M. Discovery and validation of genomic regions associated with resistance to maize lethal necrosis in four biparental populations. Mol. Breed. 2018, 38, 66. [Google Scholar] [CrossRef]
- Gowda, M.; Das, B.; Makumbi, D.; Babu, R.; Semagn, K.; Mahuku, G.; Olsen, M.S.; Bright, J.M.; Beyene, Y.; Prasanna, B.M. Genome-wide association and genomic prediction of resistance to maize lethal necrosis disease in tropical maize germplasm. Theor. Appl. Genet. 2015, 128, 1957–1968. [Google Scholar] [CrossRef] [PubMed]
- Sitonik, C.A.; Suresh, L.M.; Beyene, Y.; Olsen, M.S.; Makumbi, D.; Oliver, K.; Das, B.; Bright, J.M.; Mugo, S.; Crossa, J.; et al. Genetic architecture of maize chlorotic mottle virus and maize lethal necrosis through GWAS, linkage analysis and genomic prediction in tropical maize germplasm. Theor. Appl. Genet. 2019, 132, 2381–2399. [Google Scholar] [CrossRef] [PubMed]
- Murithi, A.; Olsen, M.S.; Kwemoi, D.B.; Veronica, O.; Ertiro, B.T.; Suresh, L.M.; Beyene, Y.; Das, B.; Prasanna, B.M.; Gowda, M. Discovery and validation of a recessively inherited major-effect QTL conferring resistance to Maize Lethal Necrosis (MLN) disease. Front. Genet. 2021, 12, 2269. [Google Scholar] [CrossRef] [PubMed]
- Brewbaker, J.L. Registration of Nine Maize Populations Resistant to Tropical Diseases. J. Plant Regist. 2009, 3, 10–13. [Google Scholar] [CrossRef]
- Jampatong, S.; Thung-Ngean, M.; Balla, C.; Boonrumpun, P.; Mekarun, A.; Jompuk, C.; Kaveeta, R. Evaluation of improved maize populations and their diallel crosses for yield. Agric. Nat. Resour. 2010, 44, 523–528. [Google Scholar]
- Leng, P.; Ji, Q.; Asp, T.; Frei, U.K.; Ingvardsen, C.; Xing, Y.; Studer, B.; Redinbaugh, M.G.; Jones, M.W.; Gajjar, P.; et al. Auxin binding protein 1 reinforces resistance to Sugarcane mosaic virus in maize. Mol. Plant 2017, 10, 1357–1360. [Google Scholar] [CrossRef]
- Leng, P.; Ji, Q.; Tao, Y.; Ibrahim, R.; Pan, G.; Xu, M.; Lübberstedt, T. Characterization of Sugarcane Mosaic Virus Scmv1 and Scmv2 Resistance Regions by Regional Association Analysis in Maize. PLoS ONE 2015, 10, e0140617. [Google Scholar] [CrossRef] [PubMed]
- Tao, Y.; Jiang, L.; Liu, Q.; Zhang, Y.; Zhang, R.; Ingvardsen, C.R.; Frei, U.K.; Wang, L.; Lai, J.; Lübberstedt, T.; et al. Combined linkage and association mapping reveals candidates for scmv1, a major locus involved in resistance to sugarcane mosaic virus (SCMV) in maize. BMC Plant Biol. 2013, 13, 162. [Google Scholar] [CrossRef] [PubMed]
- Wen, Z.; Lu, F.; Jung, M.; Humbert, S.; Marshall, L.; Hastings, C.; Wu, E.; Jones, T.; Pacheco, M.; Martinez, I.; et al. Edited eukaryotic translation initiation factors confer resistance against maize lethal necrosis. Plant Biotechnol. J. 2024, 22, 3523–3535. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Zhao, J.; Song, J.; Han, S.; Du, Y.; Qiao, Y.; Liu, Z.; Qiao, J.; Li, W.; Li, J. Influence of graphene on the multiple metabolic pathways of Zea mays roots based on transcriptome analysis. PLoS ONE 2021, 16, e0244856. [Google Scholar] [CrossRef] [PubMed]
- Stelpflug, S.C.; Sekhon, R.S.; Vaillancourt, B.; Hirsch, C.N.; Buell, C.R.; Leon, N.; Kaeppler, S.M. An Expanded Maize Gene Expression Atlas based on RNA Sequencing and its Use to Explore Root Development. Plant Genome 2016, 9, plantgenome2015. [Google Scholar] [CrossRef] [PubMed]
- Ben Ali, S.-E.; Draxler, A.; Poelzl, D.; Agapito-Tenfen, S.; Hochegger, R.; Haslberger, A.G.; Brandes, C. Analysis of transcriptomic differences between NK603 maize and near-isogenic varieties using RNA sequencing and RT-qPCR. Environ. Sci. Eur. 2020, 32, 132. [Google Scholar] [CrossRef]
- Lambarey, H.; Moola, N.; Veenstra, A.; Murray, S.; Suhail, R.M. Transcriptomic Analysis of a Susceptible African Maize Line to Fusarium verticillioides Infection. Plants 2020, 9, 1112. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wang, Y.; Yan, Y.; Peng, H.; Long, Y.; Zhang, Y.; Jiang, Z.; Liu, P.; Zou, C.; Peng, H.; et al. Transcriptome sequencing analysis of maize embryonic callus during early redifferentiation. BMC Genom. 2019, 20, 159. [Google Scholar] [CrossRef] [PubMed]
- Barua, D.; Mishra, A.; Kirti, P.B.; Barah, P. Identifying Signal-Crosstalk Mechanism in Maize Plants during Combined Salinity and Boron Stress Using Integrative Systems Biology Approaches. BioMed Res. Int. 2022, 2022, 1027288. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Liu, H.; Gong, Y.; Tao, Y.; Jiang, L.; Zuo, W.; Yang, Q.; Ye, J.; Lai, J.; Wu, J.; et al. An Atypical Thioredoxin Imparts Early Resistance to Sugarcane Mosaic Virus in Maize. Mol. Plant 2017, 10, 483–497. [Google Scholar] [CrossRef] [PubMed]
- Shi, C.; Ingvardsen, C.; Thümmler, F.; Melchinger, A.E.; Wenzel, G.; Lübberstedt, T. Identification by suppression subtractive hybridization of genes that are differentially expressed between near-isogenic maize lines in association with sugarcane mosaic virus resistance. Mol. Genet. Genom. 2005, 273, 450–461. [Google Scholar] [CrossRef] [PubMed]
- Shi, C.; Thümmler, F.; Melchinger, A.E.; Wenzel, G.; Lübberstedt, T. Association between SCMV Resistance and Macroarray-based Expression Patterns in Maize Inbreds. Mol. Breed. 2005, 16, 173–184. [Google Scholar] [CrossRef]
- Shi, C.; Thümmler, F.; Albrecht, E.M.; Wenzel, G.; Lübberstedt, T. Comparison of transcript profiles between near-isogenic maize lines in association with SCMV resistance based on unigene-microarrays. Plant Sci. 2006, 170, 159–169. [Google Scholar] [CrossRef]
- Dang, M.; Parkash, J.; Mehra, R.; Sharma, N.; Singh, B.; Raigond, P.; Joshi, A.; Chopra, S.; Singh, B.P. Proteomic Changes during MCMV Infection Revealed by iTRAQ Quantitative Proteomic Analysis in Maize. Int. J. Mol. Sci. 2019, 21, 35. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Gerstein, M.; Snyder, M. RNA-Seq: A revolutionary tool for transcriptomics. Nat. Rev. Genet. 2009, 10, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Zhang, B.; Zhang, Y.; Gordon, W.; Du, S.; Paradis, T.; Vincent, M.; von Schack, D. Bioinformatics for RNA-Seq Data Analysis. In Bioinformatics; Abdurakhmonov, I.Y., Ed.; IntechOpen: Rijeka, Croatia, 2016. [Google Scholar]
- Kaundal, R.; Parkash, J.; Mehra, R.; Sharma, N.; Singh, B.; Raigond, P.; Joshi, A.; Chopra, S.; Singh, B.P. Transcriptional profiling of two contrasting genotypes uncovers molecular mechanisms underlying salt tolerance in alfalfa. Sci. Rep. 2021, 11, 5210. [Google Scholar] [CrossRef] [PubMed]
- Calil, I.P.; Fontes, E.P. Plant immunity against viruses: Antiviral immune receptors in focus. Ann. Bot. 2017, 119, 711–723. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Ruiz, H. Susceptibility Genes to Plant Viruses. Viruses 2018, 10, 484. [Google Scholar] [CrossRef] [PubMed]
- Biswal, A.K.; Alakonya, A.E.; Mottaleb K., A.; Hearne, S.J.; Sonder, K.; Molnar, T.L.; Jones, A.M.; Pixley, K.; Boddupalli, P. Maize Lethal Necrosis disease: Review of molecular and genetic resistance mechanisms, socio-economic impacts, and mitigation strategies in sub-Saharan Africa. BMC Plant Biol. 2022, 22, 542. [Google Scholar] [CrossRef]
- Yuan, X.; Wang, H.; Cai, J.; Li, D.; Song, F. NAC transcription factors in plant immunity. Phytopathol. Res. 2019, 1, 3. [Google Scholar] [CrossRef]
- Mestre, P.; Baulcombe, D.C. Elicitor-mediated oligomerization of the tobacco N disease resistance protein. Plant Cell 2006, 18, 491–501. [Google Scholar] [CrossRef]
- Ross, B.T.; Zidack, N.H.; Flenniken, M.L. Extreme Resistance to Viruses in Potato and Soybean. Front. Plant Sci. 2021, 12, 658981. [Google Scholar] [CrossRef]
- Slavokhotova, A.; Korostyleva, T.; Shelenkov, A.; Pukhalskiy, V.; Korottseva, I.; Slezina, M.; Istomina, E.; Odintsova, T. Transcriptomic analysis of genes involved in plant defense response to the cucumber green mottle mosaic virus infection. Life 2021, 11, 1064. [Google Scholar] [CrossRef]
- Akbar, S.; Wei, Y.; Khan, M.T.; Qin, L.; Powell, C.A.; Chen, B.; Zhang, M. Gene expression profiling of reactive oxygen species (ROS) and antioxidant defense system following Sugarcane mosaic virus (SCMV) infection. BMC Plant Biol. 2020, 20, 532. [Google Scholar] [CrossRef]
- Chen, L.; Chen, L.; Zhang, L.; Li, D.; Wang, F.; Yu, D. WRKY8 transcription factor functions in the TMV-cg defense response by mediating both abscisic acid and ethylene signaling in Arabidopsis. Proc. Natl. Acad. Sci. USA 2013, 110, E1963–E1971. [Google Scholar] [CrossRef]
- Liu, Y.; Schiff, M.; Dinesh-Kumar, S.P. Involvement of MEK1 MAPKK, NTF6 MAPK, WRKY/MYB transcription factors, COI1 and CTR1 in N-mediated resistance to tobacco mosaic virus. Plant J. 2004, 38, 800–809. [Google Scholar] [CrossRef]
- Hernández, J.A.; Gulliner, G.; Clemente-Moreno, M.J.; Künstler, A.; Juhász, C.; Díaz-Vivancos, P.; Király, L. Oxidative stress and antioxidative responses in plant–virus interactions. Physiol. Mol. Plant Pathol. 2016, 94, 134–148. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, S.; Zhang, M.; Jiao, G.; Jiang, T. The role of reactive oxygen species in plant-virus interactions. Plant Cell Rep. 2024, 43, 197. [Google Scholar] [CrossRef] [PubMed]
- Gullner, G.; Gullner, G.; Komives, T.; Király, L.; Schröder, P. Glutathione S-Transferase Enzymes in Plant-Pathogen Interactions. Front. Plant Sci. 2018, 9, 1836. [Google Scholar] [CrossRef] [PubMed]
- Alcaide-Loridan, C.; Jupin, I. Ubiquitin and Plant Viruses, Let’s Play Together! Plant Physiol. 2012, 160, 72–82. [Google Scholar] [CrossRef]
- Correa, R.L.; Bruckner, F.P.; De Souza C., R.; Alfenas-Zerbini, P. The role of F-box proteins during viral infection. Int. J. Mol. Sci. 2013, 14, 4030–4049. [Google Scholar] [CrossRef]
- Bateman, A. The SGS3 protein involved in PTGS finds a family. BMC Bioinform. 2002, 3, 21. [Google Scholar] [CrossRef]
- Cheng, X.; Wang, A. The potyvirus silencing suppressor protein VPg mediates degradation of SGS3 via ubiquitination and autophagy pathways. J. Virol. 2017, 91, e01478-16. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Wu, Z.; Li, Y.; Wu, J. Biogenesis, function, and applications of virus-derived small RNAs in plants. Front. Microbiol. 2015, 6, 1237. [Google Scholar] [CrossRef] [PubMed]
- Csorba, T.; Kontra, L.; Burgyán, J. Viral silencing suppressors: Tools forged to fine-tune host-pathogen coexistence. Virology 2015, 479–480, 85–103. [Google Scholar] [CrossRef]
- Wieczorek, P.; Obrępalska-Stęplowska, A. Suppress to Survive-Implication of Plant Viruses in PTGS. Plant Mol. Biol. 2015, 33, 335–346. [Google Scholar] [CrossRef]
- Fan, Y.; Sanyal, S.; Bruzzone, R. Breaking Bad: How Viruses Subvert the Cell Cycle. Front. Cell. Infect. Microbiol. 2018, 8, 396. [Google Scholar] [CrossRef] [PubMed]
- Frick, D.N.; Lam, A.M.I. Understanding Helicases as a Means of Virus Control. Curr. Pharm. Des. 2013, 12, 1315–1338. [Google Scholar] [CrossRef] [PubMed]
- Babu, G.S.; Gohil, D.S.; Choudhury, S.R. Genome-wide identification, evolutionary and expression analysis of the cyclin-dependent kinase gene family in peanut. BMC Plant Biol. 2023, 23, 43. [Google Scholar]
- Cui, X.; Fan, B.; Scholz, J.; Chen, Z. Roles of Arabidopsis Cyclin-Dependent Kinase C Complexes in Cauliflower Mosaic Virus Infection, Plant Growth, and Development. Plant Cell 2007, 19, 1388–1402. [Google Scholar] [CrossRef] [PubMed]
- Stern-Ginossar, N.; Thompson, S.R.; Mathews, M.B.; Mohr, I. Translational Control in Virus-Infected Cells. Cold Spring Harb. Perspect. Biol. 2019, 11, a033001. [Google Scholar] [CrossRef] [PubMed]
- Sanfaçon, H. Plant Translation Factors and Virus Resistance. Viruses 2015, 7, 3392–3419. [Google Scholar] [CrossRef] [PubMed]
- Schmitt-Keichinger, C. Manipulating cellular factors to combat viruses: A case study from the plant eukaryotic translation initiation factors eIF4. Front. Microbiol. 2019, 10, 17. [Google Scholar] [CrossRef]
- Dutt, S.; Parkash, J.; Mehra, R.; Sharma, N.; Singh, B.; Raigond, P.; Joshi, A.; Chopra, S.; Singh, B.P. Translation initiation in plants: Roles and implications beyond protein synthesis. Biol. Plant. 2015, 59, 401–412. [Google Scholar] [CrossRef]
- Merchante, C.; Stepanova, A.N.; Alonso, J.M. Translation regulation in plants: An interesting past, an exciting present and a promising future. Plant J. 2017, 90, 628–653. [Google Scholar] [CrossRef] [PubMed]
- Awata, L.A.O.; Beyene, Y.; Gowda, M.; L. M., S.; Jumbo, M.B.; Tongoona, P.; Danquah, E.; Ifie, B.E.; Marchelo-Dragga, P.W.; Olsen, M.; et al. Genetic Analysis of QTL for Resistance to Maize Lethal Necrosis in Multiple Mapping Populations. Genes 2019, 11, 32. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Ichihashi, Y.; Kimura, S.; Chitwood, D.H.; Headland, L.R.; Peng, J.; Maloof, J.N.; Sinha, N.R. A High-Throughput Method for Illumina RNA-Seq Library Preparation. Front. Plant Sci. 2012, 3, 28988. [Google Scholar] [CrossRef] [PubMed]
- Patro, R.; Duggal, G.; Love, M.I.; Irizarry, R.A.; Kingsford, C. Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods 2017, 14, 417–419. [Google Scholar] [CrossRef] [PubMed]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Dye, T.D.; Goniewicz, M.L.; Rahman, I.; Xie, Z. An evaluation of RNA-seq differential analysis methods. PLoS ONE 2022, 17, e0264246. [Google Scholar] [CrossRef] [PubMed]
- Tian, T.; Liu, Y.; Yan, H.; You, Q.; Yi, X.; Du, Z.; Xu, W.; Su, Z. agriGO v2. 0: A GO analysis toolkit for the agricultural community, 2017 update. Nucleic Acids Res. 2017, 45, W122–W129. [Google Scholar] [CrossRef] [PubMed]
Gene_Name | Gene_ID | KS23 | CML543 | CKL05004 | CKL05022 | CML536 | Protein Name | Chr |
---|---|---|---|---|---|---|---|---|
eIF4B_10 | Zm00001d025692 | −0.22 | −0.21 | −0.09 | −0.01 | −0.07 | Eukaryotic translation initiation factor 4B1 | Chr10 |
eIF4B2_1 | Zm00001d003288 | −0.01 | −0.22 | 0.08 | 0.14 | −0.15 | Eukaryotic translation initiation factor 4B1 | Chr2 |
eIF4E1_3 | Zm00001d041682 | −0.20 | −0.16 | 0.06 | 0.12 | −0.06 | Eukaryotic translation initiation factor 4E | Chr3 |
eIF4E2_3 | Zm00001d041973 | 0.32 | −0.12 | −0.06 | 0.34 | −0.01 | Eukaryotic translation initiation factor 4E | Chr3 |
eIF(iso)4E2_1 | Zm00001d032775 | −0.23 | −0.24 | 0.10 | −0.05 | −0.30 | Eukaryotic initiation factor 4E protein | Chr1 |
eIF4G_2 | Zm00001d006573 | −0.21 | −0.02 | 0.17 | 0.12 | 0.24 | Eukaryotic translation initiation factor 4G | Chr2 |
eIF4G_5 | Zm00001d017310 | 0.03 | 0.00 | −0.02 | −0.14 | −0.12 | Eukaryotic translation initiation factor 4G | Chr5 |
eIF4G_7 | Zm00001d021741 | −0.38 | −0.17 | 0.09 | 0.10 | 0.15 | Eukaryotic translation initiation factor 4G | Chr7 |
eIF4G_10 | Zm00001d025979 | −0.36 | −0.07 | 0.07 | 0.04 | 0.18 | Eukaryotic translation initiation factor 4G | Chr10 |
eIF(Iso)4G_2 | Zm00001d003147 | −0.14 | 0.00 | 0.07 | 0.07 | 0.08 | MIF4G domain-containing protein | Chr2 |
eIF(Iso)4G_10 | Zm00001d025777 | −0.06 | 0.00 | 0.06 | 0.16 | 0.12 | MIF4G domain-containing protein | Chr10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Murithi, A.; Panangipalli, G.; Wen, Z.; Olsen, M.S.; Lübberstedt, T.; Dhugga, K.S.; Jung, M. Global Transcriptomic Analysis of Inbred Lines Reveal Candidate Genes for Response to Maize Lethal Necrosis. Plants 2025, 14, 295. https://doi.org/10.3390/plants14020295
Murithi A, Panangipalli G, Wen Z, Olsen MS, Lübberstedt T, Dhugga KS, Jung M. Global Transcriptomic Analysis of Inbred Lines Reveal Candidate Genes for Response to Maize Lethal Necrosis. Plants. 2025; 14(2):295. https://doi.org/10.3390/plants14020295
Chicago/Turabian StyleMurithi, Ann, Gayathri Panangipalli, Zhengyu Wen, Michael S. Olsen, Thomas Lübberstedt, Kanwarpal S. Dhugga, and Mark Jung. 2025. "Global Transcriptomic Analysis of Inbred Lines Reveal Candidate Genes for Response to Maize Lethal Necrosis" Plants 14, no. 2: 295. https://doi.org/10.3390/plants14020295
APA StyleMurithi, A., Panangipalli, G., Wen, Z., Olsen, M. S., Lübberstedt, T., Dhugga, K. S., & Jung, M. (2025). Global Transcriptomic Analysis of Inbred Lines Reveal Candidate Genes for Response to Maize Lethal Necrosis. Plants, 14(2), 295. https://doi.org/10.3390/plants14020295