Shoot Extracts from Two Low Nodulation Mutants Significantly Reduce Nodule Number in Pea
Abstract
:1. Introduction
2. Results
2.1. Detailed Characterization of Nodulation Phenotype
2.1.1. Root Architecture of Nodulated Plants
2.1.2. Nodule Distribution and Nodulation Efficiency
2.2. Effect of Crude Plant Extracts on WT Symbiosis
3. Discussion
4. Materials and Methods
4.1. Plant Growth Conditions
4.2. Nodule Distribution and Nodulation Efficiency
4.3. Assessing the Effect of Crude Plant Extracts on WT Symbiosis
4.3.1. Making the Crude Extracts
4.3.2. Nodulation Bioassay with Plant Crude Extracts
4.3.3. Bacterial Viability Assay with Plant Shoot Extracts
4.4. Statistical Analyses
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lebedeva, M.A.; Yashenkova, Y.S.; Dodueva, I.E.; Lutova, L.A. Molecular dialog between root and shoot via regulatory peptides and its role in systemic control of plant development. Russ. J. plant Physiol. 2020, 67, 985–1002. [Google Scholar] [CrossRef]
- Roy, S.; Liu, W.; Nandety, R.S.; Crook, A.; Mysore, K.S.; Pislariu, C.I.; Frugoli, J.; Dickstein, R.; Udvardi, M.K. Celebrating 20 years of genetic discoveries in legume nodulation and symbiotic nitrogen Fixation. plant Cell 2020, 32, 15–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.; Wang, L.; Wang, Y.; Li, X. The NMN module conducts nodule number orchestra. iScience 2020, 23, 100825. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Osipova, M.A.; Mortier, V.; Demchenko, K.N.; Tsyganov, V.E.; Tikhonovich, I.A.; Lutova, L.A.; Dolgikh, E.A.; Goormachtig, S. WUSCHEL-RELATED HOMEOBOX5 gene expression and interaction of CLE peptides with components of the systemic control add two pieces to the puzzle of autoregulation of nodulation. plant Physiol. 2012, 158, 1329–1341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hastwell, A.H.; Corcilius, L.; Williams, J.T.; Gresshoff, P.M.; Payne, R.J.; Ferguson, B.J. Triarabinosylation is required for nodulation-suppressive CLE peptides to systemically inhibit nodulation in Pisum sativum. plant Cell Environ. 2019, 42, 188–197. [Google Scholar] [CrossRef] [Green Version]
- Huault, E.; Laffont, C.; Wen, J.; Mysore, K.S.; Ratet, P.; Duc, G.; Frugier, F. Local and systemic regulation of plant root system architecture and symbiotic nodulation by a receptor-like kinase. PLoS Genet. 2014, 10, e1004891. [Google Scholar] [CrossRef]
- Gautrat, P.; Laffont, C.; Frugier, F. Compact root architecture 2 promotes root competence for nodulation through the miR2111 systemic effector. Curr. Biol. 2020, 30, 1339–1345. [Google Scholar] [CrossRef]
- Laffont, C.; Ivanovici, A.; Gautrat, P.; Brault, M.; Djordjevic, M.A.; Frugier, F. The NIN transcription factor coordinates CEP and CLE signaling peptides that regulate nodulation antagonistically. Nat. Comm. 2020, 11, 3167. [Google Scholar] [CrossRef]
- Yoro, E.; Nishida, H.; Ogawa-Ohnishi, M.; Yoshida, C.; Suzaki, T.; Matsubayashi, Y.; Kawaguchi, M. PLENTY, a hydroxyproline O-arabinosyltransferase, negatively regulates root nodule symbiosis in Lotus japonicus. J. Exp. Bot. 2019, 70, 507–517. [Google Scholar] [CrossRef] [Green Version]
- Laffont, C.; Huault, E.; Gautrat, P.; Endre, G.; Kalo, P.; Bourion, V.; Duc, G.; Frugier, F. Independent regulation of symbiotic nodulation by the SUNN negative and CRA2 positive systemic pathways. plant Physiol. 2019, 180, 570–599. [Google Scholar] [CrossRef]
- Krusell, L.; Madsen, L.H.; Sato, S.; Aubert, G.; Genua, A.; Szczyglowski, K.; Duc, G.; Kaneko, T.; Tabata, S.; De Bruijn, F.; et al. Shoot control of root development and nodulation is mediated by a receptor-like kinase. Nature 2002, 420, 422–426. [Google Scholar] [CrossRef]
- Tsikou, D.; Yan, Z.; Holt, D.B.; Abel, N.B.; Reid, D.E.; Madsen, L.H.; Bhasin, H.; Sexauer, M.; Stougaard, J.; Markmann, K. Systemic control of legume susceptibility to rhizobial infection by a mobile microRNA. Science 2018, 362, 233–236. [Google Scholar] [CrossRef] [PubMed]
- Takahara, M.; Magori, S.; Soyano, T.; Okamoto, S.; Yoshida, C.; Yano, K.; Sato, S.; Tabata, S.; Yamaguchi, K.; Shigenobu, S.; et al. TOO MUCH LOVE, a novel Kelch repeat-containing F-box protein, functions in the long-distance regulation of the legume-Rhizobium symbiosis. plant Cell Physiol. 2013, 54, 433–447. [Google Scholar] [CrossRef] [Green Version]
- Magori, S.; Oka-Kira, E.; Shibata, S.; Umehara, Y.; Kouchi, H.; Hase, Y.; Tanaka, A.; Sato, S.; Tabata, S.; Kawaguchi, M. TOO MUCH LOVE, a root regulator associated with the long-distance control of nodulation in Lotus japonicus. MPMI 2009, 22, 259–268. [Google Scholar] [CrossRef] [Green Version]
- Novak, K. On the efficiency of legume supernodulating mutants. Ann. Appl. Biol. 2010, 157, 321–342. [Google Scholar] [CrossRef]
- Guinel, F.C.; LaRue, T.A. Ethylene inhibitors partly restore nodulation to pea mutant E107 (brz). plant Physiol. 1992, 99, 515–518. [Google Scholar] [CrossRef] [Green Version]
- Markwei, C.M.; LaRue, T.A. Phenotypic characterization of sym21, a gene conditioning shoot-controlled inhibition of nodulation in Pisum sativum cv. Sparkle. Physiol. plant 1997, 100, 927–932. [Google Scholar] [CrossRef]
- Kneen, B.E.; LaRue, T.A.; Welch, R.M.; Weeden, N.F. Pleiotropic effects of brz: A mutation in Pisum sativum (L) cv. Sparkle’ conditioning decreased nodulation and increased iron uptake and leaf necrosis. plant Physiol. 1990, 93, 717–722. [Google Scholar] [CrossRef] [Green Version]
- Kneen, B.E.; vam Vikites, D.; LaRue, T.A. Induced symbiosis mutants of Pisum sativum. In Molecular Genetics of Plant-Microbe Interactions; Verma, D.P.S., Brisson, N., Eds.; Martinus Nijhoff: Dordrecht, The Netherlands, 1987; pp. 79–84. [Google Scholar]
- Resendes, C.M.; Geil, R.D.; Guinel, F.C. Mycorrhizal development in a low nodulating pea mutant. New Phytol. 2001, 150, 563–572. [Google Scholar] [CrossRef]
- Guinel, F.C.; LaRue, T.A. Excessive aluminium accumulation in the pea mutant E107 (brz). plant Soil 1993, 157, 75–82. [Google Scholar] [CrossRef]
- Gresshoff, P.M.; Gualtieri, G.; Laniya, T.; Indrasumunar, A.; Miyahara, A.; Nontachaiyapoom, S.; Wells, T.; Biswas, B.; Chan, P.K.; Scott, P.; et al. Functional genomics of the regulation of nodule number in legumes. In Biological Nitrogen Fixation, Sustainable Agriculture and the Environment. Current Plant Science and Biotechnology in Agriculture; Wang, Y.P., Lin, M., Tian, Z.X., Elmerich, C., Newton, W.E., Eds.; Springer: Dordrecht, The Netherlands, 2005; pp. 173–178. [Google Scholar]
- Oono, R.; Denison, R.F. Comparing symbiotic efficiency between swollen versus non-swollen rhizobial bacteroids. plant Physiol. 2010, 154, 1541–1548. [Google Scholar] [CrossRef] [Green Version]
- Huynh, C.A. E107 and E132 Shoot-Controlled Low Nodulating Pea Mutants: Tools to Study the Regulation of Legume Symbioses. Master’s Thesis, Wilfrid Laurier University, Waterloo, ON, Canada, 2012. [Google Scholar]
- Ferguson, B.J.; Mens, C.; Hastwell, A.H.; Zhang, M.; Su, H.; Jones, C.H.; Chu, X.; Gresshoff, P.M. Legume nodulation: The host controls the party. plant Cell Environ. 2018, 42, 41–51. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.H.; Ferguson, B.J.; Kereszt, A.; Gresshoff, P.M. Suppression of hypernodulation in soybean by a leaf-extracted, NARK- and Nod factor-dependent, low molecular mass fraction. New Phytol. 2010, 185, 1074–1086. [Google Scholar] [CrossRef]
- Nakagawa, T.; Kawaguchi, M. Shoot-applied MeJA suppresses root nodulation in Lotus japonicus. plant Cell Physiol. 2006, 47, 176–180. [Google Scholar] [CrossRef] [Green Version]
- Sasaki, T.; Suzaki, T.; Soyano, T.; Kojima, M.; Sakakibara, H.; Kawaguchi, M. Shoot-derived cytokinins systemically regulate root nodulation. Nat. Commun. 2014, 5, 4983. [Google Scholar] [CrossRef] [Green Version]
- Gautrat, P.; Mortier, V.; Laffont, C.; De Keyser, A.; Fromentin, J.; Frugier, F.; Goormachtig, S. Unraveling new molecular players involved in the autoregulation of nodulation in Medicago truncatula. J. Exp. Bot. 2019, 70, 1407–1417. [Google Scholar] [CrossRef]
- Müller, L.M.; Flokova, K.; Schnabel, E.; Sun, X.; Fei, Z.; Frugoli, J.; Bouwmeester, H.J.; Harrison, M.J. A CLE-SUNN module regulates strigolactone content and fungal colonization in arbuscular mycorrhiza. Nat. Plants 2019, 5, 933–939. [Google Scholar] [CrossRef]
- Mohd-Radzman, N.A.; Laffont, C.; Ivanovici, A.; Patel, N.; Reid, D.; Stougaard, J.; Frugier, F.; Imin, N.; Djordjevic, A. Different pathways act downstream of the CEP peptide receptor CRA2 to regulate lateral root and nodule development. plant Physiol. 2016, 171, 2536–2548. [Google Scholar] [CrossRef] [Green Version]
- Zhu, F.; Deng, J.; Chen, H.; Liu, P.; Zheng, L.; Ye, Q.; Li, R.; Brault, M.; Wen, J.; Frugier, F.; et al. A CEP peptide receptor-like kinase regulates auxin biosynthesis and ethylene signaling to coordinate root growth and symbiotic nodulation in Medicago truncatula. plant Cell 2020, 32, 2855–2877. [Google Scholar] [CrossRef]
- Guinel, F.C. Ethylene, a hormone at the center-stage of nodulation. Front. plant Sci. 2015, 6, 1121. [Google Scholar] [CrossRef] [Green Version]
- Kreplak, J.; Madoui, M.A.; Cápal, P.; Novák, P.; Labadie, K.; Aubert, G.; Bayer, P.E.; Gali, K.K.; Syme, R.A.; Main, D.; et al. A reference genome for pea provides insight into legume genome evolution. Nat. Genet. 2019, 51, 1411–1422. [Google Scholar] [CrossRef]
- Guinel, F.C.; Sloetjes, L.L. Ethylene is involved in the nodulation phenotype of Pisum sativum R50 (sym16), a pleiotropic mutant that nodulates poorly and has pale green leaves. J. Exp. Bot. 2000, 51, 885–894. [Google Scholar] [PubMed] [Green Version]
- Macdonald, E.S. E151 (sym15), a Low Nodulating Mutant of Pisum sativum L.: A Study of its Nodulation Phenotype, Nodule Functioning, and Nodule Development. Master’s Thesis, Wilfrid Laurier University, Waterloo, ON, Canada, 2011. [Google Scholar]
- Quade, D. Rank analysis of covariance. J. Am. Stat. Assoc. 1967, 62, 1187–1200. [Google Scholar] [CrossRef]
Parameter 5 | 14 DAI 1 | 21 DAI | 28 DAI | 35 DAI | 42 DAI |
---|---|---|---|---|---|
PR1 Length (cm) | |||||
WT | 20.2 ± 1.3 | 23.4 ± 1.5 | 24.7 ± 1.4 | 24.1 ± 1.0 | 21.9 ± 1.2 |
E107 | 22.2 ± 1.9 | 22.6 ± 1.1 | 20.7 ± 1.7 | 21.2 ± 0.4 * | 23.6 ± 1.1 |
E132 | 17.7 ± 1.5 * | 17.7 ± 0.9 * | 17.4 ± 0.7 * | 18.7 ± 0.8 * | 19.7 ± 0.8 |
Length of LSR 1 (cm) | |||||
WT | 18.2 ± 1.0 a | 23.7 ± 0.9 b | 25.0 ± 0.9 b | 25.3 ± 0.8 b | 22.4 ± 1.4 b |
E107 | 14.4 ± 1.3 a* | 20.4 ± 1.1 ab* | 21.7 ± 1.3 b* | 20.2 ± 0.7 b* | 18.2 ± 1.4 b* |
E132 | 12.1 ± 0.7 * | 12.6 ± 0.7 * | 13.2 ± 0.6 * | 15.0 ± 0.6 * | 15.6 ± 1.0 * |
Nodule Number | |||||
WT | 81.9 ± 10.4 a | 194.0 ± 11.6 b | 174.4 ± 18.0 b | 190.1 ±13.4 b | 220.5 ± 20.6 b |
E107 | 4.5 ± 1.8 a* | 19.5 ± 4.5 b* | 19.1 ± 2.5 b* | 20.7 ± 2.0 b* | 24.9 ± 3.6 b* |
E132 | 5.3 ± 2.5 a* | 37.3 ± 5.4 b* | 37.9 ± 6.4 b* | 44.9 ± 3.9 b* | 41.8 ± 5.8 b* |
Nodule DW 2 (mg) | |||||
WT | 0.048 ± 0.007 a | 0.111 ± 0.010 b | 0.151 ± 0.024 b | 0.205 ± 0.034 b | 0.166 ± 0.024 b |
E107 | ND 3 | 0.101 ± 0.072 | 0.170 ± 0.077 | 0.330 ± 0.130 | 0.242 ± 0.061 |
E132 | ND 3 | 0.200 ± 0.130 a* | 0.132 ± 0.030 a | 0.216 ± 0.040 ab | 0.499 ± 0.090 b* |
Plant Return on Nodule Construction Cost 4 | |||||
WT | ND 3 | 16.76 ± 1.84 a | 19.61 ± 3.06 a | 30.16 ± 5.23 ab | 47.98 ± 1.97 c |
E107 | ND 3 | 64.48 ± 14.97 | 127.95 ± 41.12 * | 169.64 ± 76.24 * | 119.01 ± 52.64 * |
E132 | ND 3 | 130.73 ± 28.12 a* | 55.41 ± 12.92 b | 74.84 ± 13.01 * | 60.88 ± 11.98 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huynh, C.A.; Guinel, F.C. Shoot Extracts from Two Low Nodulation Mutants Significantly Reduce Nodule Number in Pea. Plants 2020, 9, 1505. https://doi.org/10.3390/plants9111505
Huynh CA, Guinel FC. Shoot Extracts from Two Low Nodulation Mutants Significantly Reduce Nodule Number in Pea. Plants. 2020; 9(11):1505. https://doi.org/10.3390/plants9111505
Chicago/Turabian StyleHuynh, Christian A., and Frédérique C. Guinel. 2020. "Shoot Extracts from Two Low Nodulation Mutants Significantly Reduce Nodule Number in Pea" Plants 9, no. 11: 1505. https://doi.org/10.3390/plants9111505
APA StyleHuynh, C. A., & Guinel, F. C. (2020). Shoot Extracts from Two Low Nodulation Mutants Significantly Reduce Nodule Number in Pea. Plants, 9(11), 1505. https://doi.org/10.3390/plants9111505