Nematicidal Activity of Essential Oils on a Psychrophilic Panagrolaimus sp. (Nematoda: Panagrolaimidae)
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Nematode Culture and Direct Contact Bioassay
4.2. Chemical Analyses
4.3. Statistical Data Analysis
Author Contributions
Funding
Conflicts of Interest
References
- Koul, O.; Walia, S.; Dhaliwal, G.S. Essential oils as green pesticides: Potential and constraints. Biopestic. Int. 2008, 4, 63–84. [Google Scholar]
- Santos, A.; Flores, M. Effects of glyphosate on nitrogen fixation of free-living heterotrophic bacteria. Lett. Appl. Microbiol. 1995, 20, 349–352. [Google Scholar] [CrossRef]
- Saygideger, S.D.; Okkay, O. Effect of 2,4-dichlorophenoxyacetic acid on growth, protein and chlorophyll—A content of Chlorella vulgaris and Spirulina platensis cells. J. Environ. Biol. 2008, 29, 175–178. [Google Scholar] [PubMed]
- Zaller, J.G.; Heigl, F.; Ruess, L.; Grabmaier, A. Glyphosate herbicide affects belowground interactions between earthworms and symbiotic mycorrhizal fungi in a model ecosystem. Sci. Rep. 2014, 4, 5634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ibrahim, L.; Preuss, T.G.; Ratte, H.T.; Hommen, U. A list of fish species that are potentially exposed to pesticides in edge-of-field water bodies in the European Union—A first step towards identifying vulnerable representatives for risk assessment. Environ. Sci. Pollut. Res. 2013, 20, 2679–2687. [Google Scholar] [CrossRef]
- Leonards, P.E.; Zierikzee, Y.; Brinkman, U.A.T.; Cofino, W.P.; van Straalen, N.M.; van Hattum, B. The selective dietary accumulation of planar polychlorinated biphenyls in the otter (Lutra lutra). Environ. Toxicol. Chem. 1997, 16, 1807–1815. [Google Scholar] [CrossRef]
- Brain, R.A.; Anderson, J.C. The agro-enabled urban revolution, pesticides, politics, and popular culture: A case study of land use, birds, and insecticides in the USA. Environ. Sci. Pollut. Res. 2019, 26, 21717–21735. [Google Scholar] [CrossRef] [Green Version]
- Abdel-Maksoud, G.; El-Amin, A.-R.; Afifi, F. Insecticidal activity of Cinnamomum cassia extractions against the common Egyptian mummies’ insect pest (Dermestes maculatus). Int. J. Conserv. Sci. 2014, 5, 355–368. [Google Scholar]
- Oka, Y.; Nacar, S.; Putievsky, E.; Ravid, U.; Yaniv, Z.; Spiegel, Y. Nematicidal activity of essential oils and their components against the root-knot nematode. Phytopathology 2000, 90, 710–715. [Google Scholar] [CrossRef] [Green Version]
- Pérez, M.P.; Navas-Cortés, J.A.; Pascual-Villalobos, M.J.; Castillo, P. Nematicidal activity of essential oils and organic amendments from Asteraceae against root-knot nematodes. Plant Path 2003, 52, 395–401. [Google Scholar] [CrossRef] [Green Version]
- Park, I.; Park, J.; Kim, K.; Choi, K.; Choi, I.; Kim, C. Nematicidal activity of plant EOs and components from garlic (Allium sativum) and cinnamon (Cinnamomum verum) oils against the pine wood nematode (Bursaphelenchus xylophilus). Nematology 2005, 7, 767–774. [Google Scholar] [CrossRef]
- Elbadri, G.A.; Lee, D.W.; Park, J.C.; Yu, H.B.; Choo, H.Y.; Lee, S.M.; Lim, T.H. Nematocidal screening of essential oils and herbal extracts against Bursaphelenchus xylophilus. Plant Pathol. J. 2008, 24, 178–182. [Google Scholar] [CrossRef] [Green Version]
- Barbosa, P.; Lima, A.S.; Vieira, P.; Dias, L.S.; Tinoco, M.T.; Barroso, J.G.; Pedro, J.G.; Figueriedo, A.C.; Mota, M. Nematicidal activity of essential oils and volatiles derived from Portuguese aromatic flora against the pinewood nematode, Bursaphelenchus xylophilus. J. Nematol. 2010, 42, 8–16. [Google Scholar] [PubMed]
- Ntalli, N.G.; Ferrari, F.; Giannakou, I.; Menkissoglu-Spiroudi, U. Phytochemistry and nematicidal activity of the essential oils from 8 Greek Lamiaceae aromatic plants and 13 terpene components. J. Agric. Food Chem. 2010, 58, 7856–7863. [Google Scholar] [CrossRef]
- Andrés, M.F.; González-Coloma, A.; Sanz, J.; Burillo, J.; Sainz, P. Nematicidal activity of essential oils: A review. Phytochem. Rev. 2012, 11, 371–390. [Google Scholar] [CrossRef] [Green Version]
- Caboni, P.; Saba, M.; Tocco, G.; Casu, L.; Murgia, A.; Maxia, A.; Spiroudi, U.M.; Ntalli, N. Nematicidal activity of mint aqueous extracts against the root-knot nematode Meloidogyne incognita. J. Agric. Food Chem. 2013, 61, 9784–9788. [Google Scholar] [CrossRef]
- Kim, S.I.; Lee, J.K.; Na, Y.E.; Yoon, S.T.; Oh, Y.J. Nematicidal and ovicidal activities of Dryobalanops aromatica and Mentha haplocalyx var. piperascens-derived materials and their formulations against Meloidogyne incognita second-stage juveniles and eggs. Nematology 2014, 16, 193–200. [Google Scholar] [CrossRef]
- Faria, J.M.S.; Sena, I.; Ribeiro, B.; Rodrigues, A.M.; Maleita, C.M.N.; Abrantes, I.; Bennett, R.; Mota, M.; Da Silva Figueiredo, A.C. First report on Meloidogyne chitwoodi hatching inhibition activity of essential oils and essential oils fractions. J. Pest Sci. 2016, 89, 207–217. [Google Scholar] [CrossRef]
- André, W.P.P.; Ribeiro, W.L.C.; Oliveira, L.M.B.D.; Macedo, I.T.F.; Rondon, F.C.M.; Bevilaqua, C.M.L. Óleos essenciais e seus compostos bioativos no controle de nematoides gastrintestinais de pequenos ruminantes. Acta Sci. Vet. 2018, 46, 1514–1522. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, L.E.; Benincasa, B.I.; Fachin, A.L.; Contini, S.H.T.; França, S.C.; Chagas, A.C.S.; Beleboni, R.O. Essential oils of Citrus aurantifolia, Anthemis nobile and Lavandula officinalis: In Vitro anthelmintic activities against Haemonchus contortus. Parasites Vectors 2018, 11, 269. [Google Scholar] [CrossRef] [Green Version]
- Saha, S.; Lachance, S. Effect of essential oils on cattle gastrointestinal nematodes assessed by egg hatch, larval migration and mortality testing. J. Helminthol. 2020, 94, e111. [Google Scholar] [CrossRef] [PubMed]
- Pardavella, I.; Nasiou, E.; Daferera, D.; Trigas, P.; Giannakou, I. The use of essential oil and hydrosol extracted from Satureja hellenica for the Control of Meloidogyne incognita and M. javanica. Plants 2020, 7, 856. [Google Scholar] [CrossRef]
- Oka, Y.; Ben-Daniel, B.; Cohen, Y. Nematicidal activity of the leaf powder and extracts of Myrtus communis against the root-knot nematode Meloidogyne javanica. Plant Path 2012, 1–9. [Google Scholar] [CrossRef]
- Ferris, H.; Venette, R.C.; Van der Meulen, H.R.; Lau, S.S. Nitrogen mineralization by bacterial–feeding nematodes: Verification and measurement. Plant Soil 1998, 203, 159–171. [Google Scholar] [CrossRef]
- Oro, V.; Knezevic, M.; Dinic, Z.; Delic, D. Bacterial microbiota isolated from cysts of Globodera rostochiensis (Nematoda: Heteroderidae). Plants 2020, 9, 1146. [Google Scholar] [CrossRef]
- Seybold, A.C.; Wharton, D.A.; Thorne, M.A.; Marshall, C.J. Establishing RNAi in a non–model organism: The Antarctic nematode Panagrolaimus sp. DAW1. PLoS ONE 2016, 11, e0166228. [Google Scholar] [CrossRef] [Green Version]
- Shatilovich, A.V.; Tchesunov, A.V.; Neretina, T.V.; Grabarnik, I.P.; Gubin, S.V.; Vishnivetskaya, T.A.; Onstott, T.C.; Rivkina, E.M. Viable nematodes from late Pleistocene permafrost of the Kolyma river lowland. Dokl. Biol. Sci. 2018, 480, 100–102. [Google Scholar] [CrossRef]
- Su, Y.-C.; Ho, C.-L. Essential oil compositions and antimicrobial activities of various parts of Litsea cubeba from Taiwan. Nat. Prod. Comm. 2016, 11, 4515–4518. [Google Scholar] [CrossRef] [Green Version]
- Ebani, V.V.; Nardoni, S.; Bertelloni, F.; Giovanelli, S.; Rocchigiani, G.; Pistelli, L.; Mancianti, F. Antibacterial and antifungal activity of essential oils against some pathogenic bacteria and yeasts shed from poultry. Flavour Fragr. J. 2016, 31, 302–309. [Google Scholar] [CrossRef]
- Jeon, Y.-J.; Lee, H.-S. Chemical composition and acaricidal activities of essential oils of Litsea cubeba fruits and Mentha arvensis leaves against house dust and stored food mites. J. Essent. Oil Bear. 2016, 19, 1721–1728. [Google Scholar] [CrossRef]
- Park, I.-K.; Kim, J.; Lee, S.-G.; Shin, S.-C. Nematicidal activity of plant essential oils and components from ajowan (Trachyspermum ammi), allspice (Pimenta dioica) and litsea (Litsea cubeba) essential oils against pine wood nematode (Bursaphelenchus xylophilus). J. Nematol. 2007, 39, 275–279. [Google Scholar] [PubMed]
- Di Mola, A.; Massa, A.; De Feo, V.; Basile, A.; Pascale, M.; Aquino, R.P.; De Caprariis, P. Effect of citral and citral related compounds on viability of pancreatic and human B-lymphoma cell lines. Med. Chem. Res. 2017, 26, 631–639. [Google Scholar] [CrossRef]
- Singh, G.; Maurya, S.; De Lampasona, M.P.; Catalan, C. Chemical constituents, antifungal and antioxidative potential of Foeniculum vulgare volatile oil and its acetone extract. Food Control 2006, 17, 745–752. [Google Scholar] [CrossRef]
- Kaur, G.J.; Arora, D.S. Antibacterial and phytochemical screening of Anethum graveolens, Foeniculum vulgare and Trachyspermum ammi. BMC Complement. Altern. Med. 2009, 9, 30. [Google Scholar] [CrossRef] [Green Version]
- Orhan, I.E.; Ozcelik, B.; Kartal, M.; Kan, Y. Antimicrobial and antiviral effects of essential oils from selected Umbelliferae and Labiatae plants and individual essential oil components. Turk. J. Biol. 2012, 36, 239–246. [Google Scholar]
- Kim, S.G.; Liem, A.; Stewart, B.C.; Miller, J.A. New studies on trans-anethole oxide and trans-asarone oxide. Carcinogenesis 1999, 20, 1303–1307. [Google Scholar] [CrossRef] [Green Version]
- Kakarla, S.; Ganjewala, D. Antimicrobial activity of essential oils of four lemongrass (Cymbopogon flexuosus Steud) varieties. Med. Aromat. Plant Sci. Biotechnol. 2009, 3, 107–109. [Google Scholar]
- Sarma, A.; Saikia, R.; Sarma, T.C.; Boruah, P. Lemongrass [Cymbopogon flexuosus (Steud) Wats] inflorescence oil: A potent anti fungal agent. J. Essent. Oil Bear. 2004, 7, 87–90. [Google Scholar] [CrossRef]
- Han, X.; Parker, T.L. Lemongrass (Cymbopogon flexuosus) essential oil demonstrated anti–inflammatory effect in pre-inflamed human dermal fibroblasts. Biochim. Open 2017, 4, 107–111. [Google Scholar] [CrossRef]
- Mandal, S.; Mandal, M. Coriander (Coriandrum sativum L.) essential oil: Chemistry and biological activity. Asian Pac. J. Trop. Biomed. 2015, 5, 421–428. [Google Scholar] [CrossRef] [Green Version]
- Ratha bai, V.; Kanimozhi, D. Evaluation of antimicrobial activity of Coriandrum sativum. IJSRR 2012, 1, 1–10. [Google Scholar]
- Chung, I.M.; Ahmad, A.; Kim, S.J.; Naik, P.M.; Nagella, P. Composition of the essential oil constituents from leaves and stems of Korean Coriandrum sativum and their immunotoxicity activity on the Aedes aegypti L. Immunopharmacol. Immunotoxicol. 2012, 34, 152–156. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Seo, S.M.; Lee, S.G.; Shin, S.C.; Park, I.K. Nematicidal activity of plant essential oils and components from coriander (Coriandrum sativum), oriental sweetgum (Liquidambar orientalis), and valerian (Valeriana wallichii) essential oils against pinewood nematode (Bursaphelenchus xylophilus). J. Agric. Food Chem. 2008, 56, 7316–7320. [Google Scholar] [CrossRef] [PubMed]
- Potter, T.L.; Fagerson, I.S. Composition of coriander leaf volatiles. J. Agric. Food Chem. 1990, 38, 2054–2056. [Google Scholar] [CrossRef]
- Bhuiyan, N.I.; Begum, J.; Sultana, M. Chemical composition of leaf and seed essential oil of Coriandrum sativum L. from Bangladesh. Bangladesh J. Pharmacol. 2009, 4, 150–153. [Google Scholar] [CrossRef]
- Kocevski, D.; Du, M.; Kan, J.; Jing, C.; Lacanin, I.; Pavlovic, H. Antifungal effect of Allium tuberosum, Cinnamomum cassia, and Pogostemon cablin essential oils and their components against population of Aspergillus species. J. Food Sci. 2013, 78, M731–M737. [Google Scholar] [CrossRef]
- Huang, D.F.; Xu, J.-G.; Liu, J.-X.; Zhang, H.; Hu, Q.P. Chemical constituents, antibacterial activity and mechanism of action of the essential oil from Cinnamomum cassia bark against four food related bacteria. Microbiology 2014, 83, 357–365. [Google Scholar] [CrossRef]
- Munazza, F.; Najam-us-Sahar, S.Z.; Deeba, A.; Farhan, A. In vitro antiviral activity of Cinnamomum cassia and its nanoparticles against H7N3 influenza A virus. J. Microbiol. Biotechnol. 2016, 26, 151–159. [Google Scholar] [CrossRef]
- Yang, Y.; Isman, M.B.; Tak, J.-H. Insecticidal activity of 28 essential oils and a commercial product containing Cinnamomum cassia bark essential oil against Sitophilus zeamais Motschulsky. Insects 2020, 11, 474. [Google Scholar] [CrossRef]
- Liu, X.C.; Cheng, J.; Zhao, N.N.; Liu, Z.L. Insecticidal activity of essential oil of Cinnamomum cassia and its main constituent, trans-cinnamaldehyde, against the booklice, Liposcelis bostrychophila. Trop. J. Pharm. Res. 2014, 13, 1697–1702. [Google Scholar] [CrossRef] [Green Version]
- Kong, J.-O.; Lee, S.-M.; Moon, Y.-S.; Lee, S.-G.; Ahn, Y.-J. Nematicidal activity of cassia and cinnamon oil compounds and related compounds toward Bursaphelenchus xylophilus (Nematoda: Parasitaphelenchidae). J. Nematol. 2007, 39, 31–36. [Google Scholar] [PubMed]
- Shan, B.; Cai, Y.-Z.; Brooks, J.D.; Corke, H. Antibacterial properties and major bioactive components of cinnamon stick (Cinnamomum burmannii): Activity against foodborne pathogenic bacteria. J. Agric. Food Chem. 2007, 55, 5484–5490. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.R.; Choi, M.S.; Choi, G.W.; Park, I.K.; Oh, C.S. Antibacterial activity of cinnamaldehyde and estragole extracted from plant essential oils against Pseudomonas syringae pv. actinidiae causing bacterial canker disease in kiwifruit. Plant Pathol. J. 2016, 32, 363–370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.; Kim, H.K.; Tao, W.; Wang, M.; Ahn, Y.-J. Contact and fumigant toxicity of cinnamaldehyde and cinnamic acid and related compounds to Dermatophagoides farinae and Dermatophagoides pteronyssinus (Acari: Pyroglyphidae). J. Med. Entomol. 2011, 48, 366–371. [Google Scholar] [CrossRef] [Green Version]
- Echeverrigaray, S.; Zacaria, J.; Beltrão, R. Nematicidal activity of monoterpenoids against the root-knot nematode Meloidogyne incognita. Phytopathology 2010, 100, 199–203. [Google Scholar] [CrossRef] [Green Version]
- Perveen, S. Terpenes and Terpenoids; IntechOpen: Rijeka, Croatia, 2018; pp. 1–13. [Google Scholar] [CrossRef]
- Daintith, J. A Dictionary of Chemistry, 6th ed.; Oxford University Press: Oxford, UK, 2008; pp. 16–17. [Google Scholar]
- Lindahl, R. Aldehyde dehydrogenases and their role in carcinogenesis. Crit. Rev. Biochem. Mol. Biol. 1992, 27, 283–335. [Google Scholar] [CrossRef]
- Laskar, A.A.; Younus, H. Aldehyde toxicity and metabolism: The role of aldehyde dehydrogenases in detoxification, drug resistance and carcinogenesis. Drug Metab. Rev. 2019, 1–23. [Google Scholar] [CrossRef]
- Lopachin, R.M.; Gavin, T. Molecular mechanisms of aldehyde toxicity: A chemical perspective. Chem. Res. Toxicol. 2014, 27, 1081–1091. [Google Scholar] [CrossRef]
- Avato, P.; Laquale, S.; Argentieri, M.P.; Lamiri, A.; Radicci, V.; D’Addabbo, T. Nematicidal activity of essential oils from aromatic plants of Morocco. J. Pest Sci. 2017, 90, 711–722. [Google Scholar] [CrossRef]
- Santana, O.; Andrés, M.F.; Sanz, J.; Errahmani, N.; Abdeslam, L.; González-Coloma, A. Valorization of essential oils from Moroccan aromatic plants. NPC 2014, 9, 1109–1114. [Google Scholar] [CrossRef] [Green Version]
- Ibrahim, S.K.; Traboulsi, A.F.; El-Haj, S. Effect of essential oils and plant extracts on hatching, migration and mortality of Meloidogyne incognita. Phytopathol. Mediterr. 2006, 45, 238–246. [Google Scholar] [CrossRef]
- Kim, J.; Seo, S.-M.; Park, I.-K. Nematicidal activity of plant essential oils and components from Gaultheria fragrantissima and Zanthoxylum alatum against the pine wood nematode, Bursaphelenchus xylophilus. Nematology 2011, 13, 87–93. [Google Scholar] [CrossRef]
- Napoli, E.; Giovino, A.; Carrubba, A.; Siong, V.H.Y.; Rinoldo, C.; Nina, O.; Ruberto, G. Variations of essential oil constituents in oregano (Origanum vulgare subsp. viridulum (= O. heracleoticum) over cultivation cycles. Plants 2020, 9, 1174. [Google Scholar] [CrossRef] [PubMed]
- Hooper, D.J. Extraction of free-living stages from soil. In Laboratory Methods for Work with Plant and Soil Nematodes, 6th ed.; Southey, J.F., Ed.; Ministry of Agriculture, Fisheries and Food: London, UK, 1986; pp. 5–30. [Google Scholar]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 4th ed.; Allured Publishing Corporation: Carol Stream, IL, USA, 2007; pp. 1–804. [Google Scholar]
- Daum, R.J. Revision of two computer programs for Probit analysis. Bull. Entomol. Soc. Am. 1970, 16, 10–15. [Google Scholar] [CrossRef]
- Abbott, W.S. A method of computing the effectiveness of an insecticide. J. Am. Mosq. Control Assoc. 1987, 3, 302–303. [Google Scholar] [CrossRef]
Species Name | Plant Part | Family | LC50 (95% CL) | Slope |
---|---|---|---|---|
Pogostemon cablin | leaves | Lamiaceae | 5.641 (3.18–17.10) | 2.14 |
Pinus pinaster | needles | Pinaceae | 5.078 (3.38–9.65) | 1.65 |
Santalum album | wood | Santalaceae | 4.781 (3.45–6.34) | 2.12 |
Azadirachta indica | seeds | Meliaceae | 4.482 (2.52–10.01) | 2.02 |
Boswellia serrata | resin | Burseraceae | 4.394 (3.44–5.53) | 3.03 |
Commiphora myrrha | resin | Burseraceae | 4.301 (2.81–6.98) | 2.79 |
Juniperus virginiana | wood | Juniperaceae | 3.782 (2.43–5.48) | 1.81 |
Cupressus sempervirens | needles | Cupressaceae | 3.360 (2.47–4.82) | 1.85 |
Abies sibirica | needles | Pinaceae | 3.269 (2.14–5.41) | 1.58 |
Cedrus atlantica | wood | Pinaceae | 2.943 (2.04–4.43) | 1.62 |
Juniperus communis | berries | Juniperaceae | 2.513 (1.64–3.83) | 1.68 |
Eucalyptus globulus | leaves | Myrtaceae | 1.994 (1.47–2.56) | 3.70 |
Myrtus communis | leaves | Myrtaceae | 1.933 (1.34–2.65) | 2.27 |
Piper nigrum | peppercorns | Piperaceae | 1.775 (1.37–2.25) | 2.37 |
Petroselinum crispum | seeds | Apiaceae | 1.704 (1.14–2.38) | 4.08 |
Zingiber officinale | roots | Zingiberaceae | 1.633 (1.28–2.09) | 1.98 |
Turnera diffusa | leaves/flowers | Passifloraceae | 1.550 (1.14–2.04) | 3.11 |
Abies alba | needles | Pinaceae | 1.444 (1.03–1.95) | 1.87 |
Taxandria fragrans | leaves | Myrtaceae | 1.437 (0.99–1.93) | 2.49 |
Melaleuca alternifolia | leaves | Myrtaceae | 1.150 (0.76–1.57) | 4.83 |
Vanilla planifolia | beans | Orchidaceae | 1.135 (0.83–1.50) | 2.08 |
Salvia rosmarinus | leaves/flowers | Lamiaceae | 1.128 (0.88–1.41) | 3.04 |
Curcuma longa | rhizomes | Zingiberaceae | 1.116 (0.70–1.62) | 1.50 |
Lavandula sp. | leaves/flowers | Lamiaceae | 0.810 (0.62–1.01) | 3.49 |
Laurus nobilis | leaves | Lauraceae | 0.594 (0.31–0.92) | 4.80 |
Melaleuca quinquenervia | leaves | Myrtaceae | 0.593 (0.40–0.82) | 1.76 |
Origanum vulgare | leaves/flowers | Lamiaceae | 0.508 (0.38–0.65) | 3.33 |
Mentha spicata | leaves/flowers | Lamiaceae | 0.505 (0.39–0.64) | 2.78 |
Pimpinella anisum | seeds | Apiaceae | 0.450 (0.26–0.63) | 4.87 |
Salvia sclarea | leaves/flowers | Lamiaceae | 0.430 (0.31–0.57) | 1.81 |
Anethum graveolens | seeds | Apiaceae | 0.428 (0.32–0.56) | 3.00 |
Mentha piperita | leaves/flowers | Lamiaceae | 0.405 (0.23–0.58) | 3.93 |
Thymus vulgaris | leaves/flowers | Lamiaceae | 0.391 (0.29–0.50) | 2.22 |
Gaultheria procumbens | leaves | Ericaceae | 0.367 (0.26–0.48) | 2.25 |
Myristica fragrans | seeds | Myristicaceae | 0.345 (0.23–0.48) | 4.24 |
Pelargonium asperum | leaves | Geraniaceae | 0.279 (0.20–0.37) | 3.03 |
Cymbopogon martini | grass blades | Poaceae | 0.275 (0.20–0.35) | 4.06 |
Syzygium aromaticum | buds | Myrtaceae | 0.272 (0.20–0.34) | 3.91 |
Ocimum basilicum | leaves/flowers | Lamiaceae | 0.263 (0.19–0.35) | 2.65 |
Uncaria tomentosa | bark | Rubiaceae | 0.222 (0.17–0.29) | 2.47 |
Illicium verum | seeds | Schisandraceae | 0.191 (0.14–0.25) | 2.94 |
Cinnamomum verum | leaves | Lauraceae | 0.172 (0.12–0.23) | 5.00 |
Cananga odorata | flowers | Annonaceae | 0.145 (0.10–0.19) | 5.00 |
Mellisa officinalis | leaves | Lamiaceae | 0.124 (0.09–0.16) | 2.74 |
Litsea citrata | fruits | Lauraceae | 0.091 (0.06–0.12) | 3.14 |
Foeniculum vulgare | seeds | Apiaceae | 0.080 (0.05–0.11) | 3.68 |
Cymbopogon flexuosus | grass blades | Poaceae | 0.071 (0.05–0.09) | 2.92 |
Coriandrum sativum | leaves | Apiaceae | 0.044 (0.02–0.04) | 3.95 |
Cinnamomum cassia | bark | Lauraceae | 0.034 (0.02–0.04) | 2.00 |
Cinnamomum burmanii | bark | Lauraceae | 0.033 (0.02–0.04) | 2.73 |
RT * | Compound | Molecular Formula | RIexp ** | RIlit *** | % |
---|---|---|---|---|---|
18.23 | Geranial (=E–citral) | C10H16O | 1274 | 1267 | 43.4 |
16.94 | Neral (=Z-citral) | C10H16O | 1243 | 1238 | 32.2 |
8.49 | Limonene | C10H16 | 1028 | 1029 | 9.4 |
8.57 | 1,8-Cineole | C10H18O | 1030 | 1031 | 1.9 |
24.27 | (E)-Caryophyllene | C15H24 | 1419 | 1419 | 1.6 |
13.17 | Citronellal | C10H18O | 1153 | 1153 | 1.4 |
11.03 | Linalool | C10H18O | 1100 | 1096 | 1.2 |
5.70 | α-Pinene | C10H16 | 933 | 939 | 1.1 |
14.40 | (E)-Isocitral | C10H16O | 1183 | 1180 | 1.1 |
17.42 | Geraniol | C10H18O | 1255 | 1252 | 0.9 |
6.87 | β-Pinene | C10H16 | 977 | 979 | 0.8 |
7.10 | 6-Methyl-5-hepten-2-one | C8H14O | 985 | 985 | 0.8 |
13.63 | (Z)-Isocitral | C10H16O | 1164 | 1164 | 0.8 |
6.76 | Sabinene | C10H16 | 973 | 975 | 0.6 |
14.71 | α-Terpineol | C10H18O | 1190 | 1188 | 0.6 |
16.31 | Nerol | C10H18O | 1229 | 1229 | 0.4 |
6.10 | Camphene | C10H16 | 948 | 954 | 0.3 |
7.25 | Dehydro-1,8-cineole | C10H16O | 991 | 991 | 0.2 |
23.10 | β-Elemene | C15H24 | 1392 | 1390 | 0.2 |
12.84 | exo-Isocitral | C10H16O | 1144 | 1144 | 0.1 |
14.17 | Terpinen-4-ol | C10H18O | 1177 | 1177 | 0.1 |
25.65 | α-Humulene | C15H24 | 1453 | 1454 | 0.1 |
5.51 | α-Thujene | C10H16 | 926 | 930 | tr |
8.35 | o-Cymene | C10H14 | 1024 | 1026 | tr |
Total identified | 99.2 |
RT * | Compound | Molecular Formula | RIexp ** | RIlit *** | % |
---|---|---|---|---|---|
18.93 | (E)-Anethole | C10H12O2 | 1291 | 1284 | 74.3 |
11.28 | α-Pinene oxide | C10H16O | 1106 | 1099 | 9.0 |
15.06 | Methyl chavicol (=Estragol) | C10H12O | 1199 | 1196 | 2.9 |
5.71 | α-Pinene | C10H16 | 933 | 939 | 2.3 |
8.48 | Limonene | C10H16 | 1028 | 1029 | 2.3 |
10.62 | Fenchone | C10H16O | 1088 | 1086 | 2.1 |
16.94 | Carvone | C10H14O | 1244 | 1243 | 2.1 |
17.39 | p-Anis aldehyde | C8H8O2 | 1254 | 1250 | 1.3 |
8.33 | o-Cymene | C10H14 | 1024 | 1026 | 0.7 |
12.81 | Camphor | C10H16O | 1144 | 1146 | 0.6 |
8.57 | 1,8-Cineole | C10H18O | 1030 | 1031 | 0.5 |
11.07 | Linalool | C10H18O | 1001 | 1096 | 0.4 |
9.53 | γ-Terpinene | C10H16 | 1058 | 1059 | 0.3 |
6.10 | Camphene | C10H16 | 948 | 954 | 0.1 |
6.87 | β-Pinene | C10H16 | 977 | 979 | 0.1 |
11.79 | α-Campholenal | C10H16O | 1119 | 1126 | 0.1 |
6.76 | Sabinene | C10H16 | 973 | 975 | tr |
7.24 | Myrcene | C10H16 | 991 | 990 | tr |
Total identified | 99.1 |
RT * | Compound | Molecular Formula | RIexp ** | RIlit *** | % |
---|---|---|---|---|---|
18.24 | Geranial (=E-citral) | C10H16O | 1274 | 1267 | 40.3 |
16.94 | Neral (=Z-citral) | C10H16O | 1244 | 1238 | 30.9 |
22.86 | Geranyl acetate | C12H20O2 | 1385 | 1381 | 5.4 |
17.45 | Geraniol | C10H18O | 1255 | 1252 | 4.5 |
7.10 | 6-Methyl-5-hepten-2-one | C8H14O | 985 | 985 | 2.7 |
24.27 | (E)-Caryophyllene | C15H24 | 1419 | 1419 | 2.1 |
11.03 | Linalool | C10H18O | 1101 | 1096 | 1.4 |
28.08 | γ-Cadinene | C15H24 | 1514 | 1513 | 1.4 |
14.38 | (E)-Isocitral | C10H16O | 1182 | 1180 | 1.3 |
6.10 | Camphene | C10H16 | 948 | 954 | 1.1 |
8.48 | Limonene | C10H16 | 1028 | 1029 | 1.1 |
10.00 | 4-Nonanone | C9H18O | 1071 | - | 0.9 |
13.64 | (Z)-Isocitral | C10H16O | 1164 | 1164 | 0.9 |
5.71 | α-Pinene | C10H16 | 933 | 939 | 0.3 |
7.24 | 1,8-Dehydro-cineole | C10H16O | 991 | 990 | 0.3 |
8.56 | 1,8-Cineole | C10H18O | 1030 | 1031 | 0.3 |
13.03 | trans-α-Necrodol | C10H18O | 1149 | 1148 | 0.3 |
13.16 | Citronellal | C10H18O | 1152 | 1153 | 0.3 |
28.45 | δ-Cadinene | C15H24 | 1523 | 1523 | 0.3 |
30.72 | Caryophyllene oxide | C15H24O | 1582 | 1582 | 0.3 |
8.76 | (Z)-β-Ocimene | C10H16 | 1036 | 1037 | 0.2 |
25.64 | α-Humulene | C15H24 | 1453 | 1454 | 0.2 |
5.43 | Tricyclene | C10H16 | 922 | 926 | 0.1 |
8.34 | o-Cymene | C10H14 | 1024 | 1026 | 0.1 |
9.14 | (E)-β-Ocimene | C10H16 | 1046 | 1050 | 0.1 |
10.62 | Terpinolene | C10H16 | 1088 | 1088 | 0.1 |
12.84 | exo-Isocitral | C10H16O | 1144 | 1144 | 0.1 |
14.08 | Rosefuran epoxide | C10H14O2 | 1175 | 1177 | 0.1 |
14.72 | α-Terpineol | C10H18O | 1191 | 1188 | 0.1 |
16.32 | Nerol | C10H18O | 1229 | 1229 | 0.1 |
6.87 | β-Pinene | C10H16 | 977 | 979 | tr |
7.60 | n-Octanal | C8H16O | 1003 | 998 | tr |
Total identified | 97.3 |
RT * | Compound | Molecular Formula | RIexp ** | RIlit *** | % |
---|---|---|---|---|---|
17.78 | (2E)-Decenal | C10H18O | 1263 | 1263 | 28.2 |
18.10 | (2E)-Decen-1-ol | C10H20O | 1271 | 1271 | 16.3 |
11.08 | Linalool | C10H18O | 1101 | 1096 | 18.4 |
26.20 | (2E)-Dodecenal | C12H22O | 1467 | 1466 | 8.8 |
15.35 | n-Decanal | C10H20O | 1206 | 1201 | 6.2 |
18.19 | n-Decanol | C10H22O | 1273 | 1269 | 5.4 |
34.07 | n-Tetradecanol | C14H30O | 1673 | 1672 | 4.0 |
21.97 | (2E)-Undecenal | C11H20O | 1363 | 1360 | 1.7 |
12.80 | Camphor | C10H16O | 1143 | 1146 | 1.2 |
23.85 | Dodecanal | C12H24O | 1409 | 1408 | 1.1 |
8.34 | o-Cymene | C10H14 | 1024 | 1026 | 0.9 |
5.71 | α-Pinene | C10H16 | 933 | 939 | 0.7 |
15.00 | (4E)-Decenal | C10H18O | 1198 | 1196 | 0.6 |
17.43 | Geraniol | C10H18O | 1255 | 1252 | 0.6 |
10.03 | cis-Linalool oxide | C10H18O2 | 1072 | 1072 | 0.4 |
10.62 | trans-Linalool oxide | C10H18O2 | 1088 | 1086 | 0.4 |
19.62 | Undecanal | C11H22O | 1307 | 1306 | 0.4 |
22.85 | Geranyl acetate | C12H20O2 | 1384 | 1381 | 0.4 |
7.60 | n-Octanal | C8H16O | 1003 | 998 | 0.3 |
8.48 | Limonene | C10H16 | 1028 | 1029 | 0.3 |
31.86 | Tetradecanal | C14H28O | 1613 | 1612 | 0.3 |
8.57 | 1,8-Cineole | C10H18O | 1030 | 1031 | 0.2 |
9.53 | γ-Terpinene | C10H16 | 1058 | 1059 | 0.2 |
14.85 | (4Z)-Decenal | C10H18O | 1194 | 1194 | 0.2 |
6.10 | Camphene | C10H16 | 948 | 954 | 0.1 |
6.88 | β-Pinene | C10H16 | 977 | 979 | 0.1 |
14.71 | α-Terpineol | C10H18O | 1190 | 1188 | 0.1 |
13.69 | Borneol | C10H18O | 1165 | 1169 | tr |
14.17 | Terpinen-4-ol | C10H18O | 1177 | 1177 | tr |
Total identified | 97.5 |
RT * | Compound | Molecular Formula | RIexp ** | RIlit *** | % |
---|---|---|---|---|---|
24.54 | (E)-Cinnamaldehyde | C9H8O | 1272 | 1267 | 76.7 |
33.02 | Eugenol acetate | C12H14O3 | 1535 | 1521 | 7.4 |
32.39 | δ-Cadinene | C15H24 | 1517 | 1522 | 6.2 |
29.95 | (E)-Cinnamyl acetate | C11H12O2 | 1448 | 1443 | 4.0 |
17.88 | Phenethyl alcohol | C8H10O | 1126 | 1106 | 0.8 |
11.96 | Benzaldehyde | C7H6O | 962 | 952 | 0.7 |
21.91 | (Z)-Cinnamaldehyde | C9H8O | 1220 | 1217 | 0.6 |
22.78 | Carvone | C10H14O | 1243 | 1239 | 0.4 |
19.69 | Hydrocinnamaldehyde | C9H10O | 1163 | 1163 | 0.3 |
25.28 | α-Methylcinnamaldehyde | C10H10O | 1332 | 1318 | 0.3 |
30.51 | Coumarin | C9H6O2 | 1456 | 1432 | 0.3 |
15.10 | γ-Terpinene | C10H16 | 1056 | 1054 | 0.2 |
23.20 | 2-Phenyl ethyl acetate | C10H12O2 | 1259 | 1254 | 0.2 |
27.57 | α-Copaene | C15H24 | 1368 | 1374 | 0.2 |
10.93 | α-Pinene | C10H16 | 929 | 932 | 0.1 |
10.93 | Camphene | C10H16 | 943 | 946 | 0.1 |
14.39 | 1,8-Cineole | C10H18O | 1027 | 1026 | 0.1 |
19.88 | Borneol | C10H18O | 1168 | 1165 | 0.1 |
20.19 | Terpinen-4-ol | C10H18O | 1174 | 1174 | 0.1 |
26.98 | Eugenol | C10H12O2 | 1359 | 1356 | 0.1 |
30.99 | γ-Muurolene | C15H24 | 1470 | 1478 | 0.1 |
31.11 | β-Selinene | C15H24 | 1478 | 1489 | 0.1 |
32.51 | trans-Cadina-1,4-diene | C15H24 | 1526 | 1533 | 0.1 |
25.90 | 1-epi-Cubenol | C15H26O | 1622 | 1627 | 0.1 |
12.48 | β-Pinene | C10H16 | 973 | 974 | tr |
14.25 | β-Phellandrene | C10H16 | 1025 | 1025 | tr |
16.93 | Terpinolene | C10H16 | 1087 | 1086 | tr |
27.27 | Cyclosativene | C15H24 | 1357 | 1358 | tr |
28.10 | Sativene | C15H24 | 1382 | 1374 | tr |
28.84 | Isosativene | C15H24 | 1401 | 1417 | tr |
29.14 | (E)-Caryophyllene | C15H24 | 1413 | 1417 | tr |
31.76 | α-Muurolene | C15H24 | 1494 | 1500 | tr |
Total identified | 99.3 |
RT * | Compound | Molecular Formula | RIexp ** | RIlit *** | % |
---|---|---|---|---|---|
24.51 | (E)-Cinnamaldehyde | C9H8O | 1272 | 1267 | 80.5 |
20.70 | α-Terpineol | C10H18O | 1189 | 1186 | 1.9 |
32.51 | δ-Cadinene | C15H24 | 1517 | 1522 | 1.7 |
27.57 | α-Copaene | C15H24 | 1368 | 1374 | 1.5 |
21.82 | (Z)-Cinnamaldehyde | C9H8O | 1220 | 1217 | 1.5 |
19.60 | Hydrocinnamaldehyde | C9H10O | 1163 | 1163 | 1.3 |
19.79 | Borneol | C10H18O | 1168 | 1165 | 1.2 |
20.17 | Terpinen-4-ol | C10H18O | 1174 | 1174 | 1.2 |
31.74 | α-Muurolene | C15H24 | 1494 | 1500 | 1.2 |
29.05 | (E)-Caryophyllene | C15H24 | 1413 | 1417 | 0.8 |
17.10 | Linalool | C10H18O | 1100 | 1095 | 0.5 |
11.87 | Benzaldehyde | C7H6O | 962 | 952 | 0.4 |
24.54 | Safrole | C10H10O2 | 1288 | 1285 | 0.4 |
28.76 | Isosativene | C15H24 | 1401 | 1417 | 0.4 |
31.32 | α-Selinene | C15H24 | 1487 | 1498 | 0.4 |
24.75 | Tridecane | C13H28 | 1295 | 1300 | 0.3 |
14.29 | β-Phellandrene | C10H16 | 1025 | 1025 | 0.2 |
15.84 | cis-Linalool oxide | C10H18O2 | 1071 | 1067 | 0.2 |
20.54 | Cryptone | C9H14O | 1185 | 1183 | 0.2 |
28.03 | Sativene | C15H24 | 1382 | 1374 | 0.2 |
30.92 | γ-Muurolene | C15H24 | 1470 | 1478 | 0.2 |
31.15 | β-Selinene | C15H24 | 1478 | 1489 | 0.2 |
30.21 | (E)-Cinnamyl acetate | C11H12O2 | 1448 | 1443 | 0.2 |
36.26 | epi-α-Murrolol | C15H26O | 1639 | 1640 | 0.2 |
13.37 | α-Phellandrene | C10H16 | 1002 | 1002 | 0.1 |
14.42 | 1,8-Cineole | C10H18O | 1027 | 1026 | 0.1 |
14.96 | γ-Terpinene | C10H16 | 1056 | 1054 | 0.1 |
16.62 | p-Cymenene | C10H14 | 1087 | 1089 | 0.1 |
16.99 | Terpinolene | C10H16 | 1087 | 1086 | 0.1 |
18.87 | trans-Limonene oxide | C10H16O | 1137 | 1137 | 0.1 |
25.24 | α-Methylcinnamaldehyde | C10H10O | 1332 | 1318 | 0.1 |
27.18 | Cyclosativene | C15H24 | 1357 | 1358 | 0.1 |
28.25 | β-Elemene | C15H24 | 1386 | 1389 | 0.1 |
28.54 | (Z)-Caryophyllene | C15H24 | 1400 | 1408 | 0.1 |
29.82 | Humulene | C15H24 | 1446 | 1452 | 0.1 |
30.51 | Coumarin | C9H6O2 | 1456 | 1432 | 0.1 |
36.35 | α-Muurolol (Torreyol) | C15H26O | 1643 | 1644 | 0.1 |
12.83 | Myrcene | C10H16 | 994 | 998 | tr |
17.70 | Phenethyl alcohol | C8H10O | 1126 | 1106 | tr |
19.45 | Isoborneol | C10H18O | 1154 | 1155 | tr |
32.80 | trans-Cadina-1,4-diene | C15H24 | 1526 | 1533 | tr |
33.15 | α-Calacorene | C15H20 | 1538 | 1544 | tr |
32.92 | Benzyl benzoate | C14H12O2 | 1772 | 1759 | tr |
Total identified | 98.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oro, V.; Krnjajic, S.; Tabakovic, M.; Stanojevic, J.S.; Ilic-Stojanovic, S. Nematicidal Activity of Essential Oils on a Psychrophilic Panagrolaimus sp. (Nematoda: Panagrolaimidae). Plants 2020, 9, 1588. https://doi.org/10.3390/plants9111588
Oro V, Krnjajic S, Tabakovic M, Stanojevic JS, Ilic-Stojanovic S. Nematicidal Activity of Essential Oils on a Psychrophilic Panagrolaimus sp. (Nematoda: Panagrolaimidae). Plants. 2020; 9(11):1588. https://doi.org/10.3390/plants9111588
Chicago/Turabian StyleOro, Violeta, Slobodan Krnjajic, Marijenka Tabakovic, Jelena S. Stanojevic, and Snezana Ilic-Stojanovic. 2020. "Nematicidal Activity of Essential Oils on a Psychrophilic Panagrolaimus sp. (Nematoda: Panagrolaimidae)" Plants 9, no. 11: 1588. https://doi.org/10.3390/plants9111588
APA StyleOro, V., Krnjajic, S., Tabakovic, M., Stanojevic, J. S., & Ilic-Stojanovic, S. (2020). Nematicidal Activity of Essential Oils on a Psychrophilic Panagrolaimus sp. (Nematoda: Panagrolaimidae). Plants, 9(11), 1588. https://doi.org/10.3390/plants9111588