Unraveling the Multiple Drivers of Greening-Browning and Leaf Area Variability in a Socioeconomically Sensitive Drought-Prone Region
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data and Methodology
2.2.1. MODIS LAI Product (MCD15A2H)
2.2.2. MODIS Land Cover Product (MCD12Q1)
2.2.3. Trend Analysis and Net Change in Leaf Area
2.2.4. Precipitation Data
2.2.5. Groundwater Data
2.2.6. Statistical Data of Irrigation, Agriculture, Forest Cover, and Farmer Suicides
3. Results and Discussion
3.1. Trends in Leaf Area Index (LAI)
3.1.1. Trend in Monthly Composite LAI
3.1.2. Trend in Seasonal LAI
3.2. Leaf Area Variability during 2003–2019
3.3. Spatiotemporal Characteristics and Trend in Precipitation
3.4. Groundwater Storage and Leaf Area Variability
3.5. Irrigation Infrastructure, CA, CP, and LA Variability during 2003–2004 to 2018–2019
3.5.1. Irrigation Infrastructure and Water Availability
3.5.2. Annual CA and CP
3.5.3. Greening in Western Maharashtra and Role of Sugarcane Production
3.5.4. Greening-Browning in Central and Eastern Maharashtra
3.5.5. Suggested Measures for Better Water Management in Browning Regions
4. Factors Affecting Socioeconomic Security of Farmers and Need for Institutional Interventions
5. Conclusions
- (1)
- Land use for agriculture primarily caused greening as well as browning trends (>70%) in LAI, and the state was found to be greening at a rate of approximately 91 km2 per month during the period of analysis.
- (2)
- Increased crop productivity and cropping intensity, better quality seeds and increased use of fertilizers, access to irrigation, and water availability (both precipitation and groundwater) helped in greening the state. In contrast, poor irrigation coverage and frequent droughts were primarily responsible for browning. The difference in crop productivity between western regions (Pune and Nashik) and the rest of Maharashtra highlights the importance of assured water availability for irrigation.
- (3)
- Spatial and interannual variations in precipitation and GWS are the primary drivers of LA variability in Maharashtra. Their seasonal variations play a more dominant role than their long-term trends, affecting crop production, LA variability, and, consequently, the socioeconomic status of farmers.
- (4)
- Despite the observed greening and institutional efforts for abatement of farmers’ distress issues, the widespread distress among farmers, along with the number of farmer suicides, does not seem to be significantly improved, which is largely associated with agricultural failures. Hence, there is an urgent need to prioritize the provision of assured water supply for irrigation and establish concrete plans for resource management, together with comprehensive policy interventions.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xue, J.; Su, B. Significant Remote Sensing Vegetation Indices: A Review of Developments and Applications. J. Sensors. 2017, 2017, 1353691. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Z.; Piao, S.; Myneni, R.B.; Huang, M.; Zeng, Z.; Canadell, J.G.; Ciais, P.; Sitch, S.; Friedlingstein, P.; Arneth, A.; et al. Greening of the Earth and Its Drivers. Nat. Clim. Chang. 2016, 6, 791–795. [Google Scholar] [CrossRef]
- Chakraborty, A.; Seshasai, M.V.R.; Reddy, C.S.; Dadhwal, V.K. Persistent Negative Changes in Seasonal Greenness over Different Forest Types of India Using MODIS Time Series NDVI Data (2001–2014). Ecol. Indic. 2018, 85, 887–903. [Google Scholar] [CrossRef]
- de Jong, R.; de Bruin, S.; de Wit, A.; Schaepman, M.E.; Dent, D.L. Analysis of Monotonic Greening and Browning Trends from Global NDVI Time-Series. Remote Sens. Environ. 2011, 115, 692–702. [Google Scholar] [CrossRef] [Green Version]
- de Jong, R.; Verbesselt, J.; Schaepman, M.E.; de Bruin, S. Trend Changes in Global Greening and Browning: Contribution of Short-Term Trends to Longer-Term Change. Glob. Chang. Biol. 2012, 18, 642–655. [Google Scholar] [CrossRef]
- Emmett, K.D.; Renwick, K.M.; Poulter, B. Disentangling Climate and Disturbance Effects on Regional Vegetation Greening Trends. Ecosystems 2019, 22, 873–891. [Google Scholar] [CrossRef] [Green Version]
- Gemitzi, A.; Banti, M.; Lakshmi, V. Vegetation Greening Trends in Different Land Use Types: Natural Variability versus Human-Induced Impacts in Greece. Environ. Earth Sci. 2019, 78, 172. [Google Scholar] [CrossRef]
- Murthy, K.; Bagchi, S. Spatial Patterns of Long-Term Vegetation Greening and Browning Are Consistent across Multiple Scales: Implications for Monitoring Land Degradation. Land Degrad. Dev. 2018, 29, 2485–2495. [Google Scholar] [CrossRef]
- Sarmah, S.; Jia, G.; Zhang, A. Satellite View of Seasonal Greenness Trends and Controls in South Asia. Environ. Res. Lett. 2018, 13, 034026. [Google Scholar] [CrossRef]
- Mishra, N.B.; Crews, K.A.; Neeti, N.; Meyer, T.; Young, K.R. MODIS Derived Vegetation Greenness Trends in African Savanna: Deconstructing and Localizing the Role of Changing Moisture Availability, Fire Regime and Anthropogenic Impact. Remote Sens. Environ. 2015, 169, 192–204. [Google Scholar] [CrossRef]
- Parida, B.R.; Pandey, A.C.; Patel, N.R. Greening and Browning Trends of Vegetation in India and Their Responses to Climatic and Non-Climatic Drivers. Climate 2020, 8, 92. [Google Scholar] [CrossRef]
- Chen, C.; Park, T.; Wang, X.; Piao, S.; Xu, B.; Chaturvedi, R.K.; Fuchs, R.; Brovkin, V.; Ciais, P.; Fensholt, R.; et al. China and India Lead in Greening of the World through Land-Use Management. Nat. Sustain. 2019, 2, 122–129. [Google Scholar] [CrossRef]
- Mishra, N.B.; Mainali, K.P. Greening and Browning of the Himalaya: Spatial Patterns and the Role of Climatic Change and Human Drivers. Sci. Total Environ. 2017, 587–588, 326–339. [Google Scholar] [CrossRef]
- Baudena, M.; D’Andrea, F.; Provenzale, A. A Model for Soil-Vegetation-Atmosphere Interactions in Water-Limited Ecosystems. Water Resour. Res. 2008, 44, W12429. [Google Scholar] [CrossRef] [Green Version]
- Tadesse, T.; Demisse, G.B.; Zaitchik, B.; Dinku, T. Satellite-Based Hybrid Drought Monitoring Tool for Prediction of Vegetation Condition in Eastern Africa: A Case Study for Ethiopia. Water Resour. Res. 2014, 50, 2176–2190. [Google Scholar] [CrossRef]
- Zhong, L.; Ma, Y.; Xue, Y.; Piao, S. Climate Change Trends and Impacts on Vegetation Greening Over the Tibetan Plateau. J. Geophys. Res. Atmos. 2019, 124, 7540–7552. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, W.; Fu, J. Vegetation Response to Precipitation Anomalies under Different Climatic and Biogeographical Conditions in China. Sci. Rep. 2020, 10, 830. [Google Scholar] [CrossRef] [Green Version]
- Guhathakurta, P.; Rajeevan, M. Trends in the Rainfall Pattern over India. Int. J. Climatol. 2008, 28, 1453–1469. [Google Scholar] [CrossRef]
- Guhathakurta, P.; Saji, E. Detecting Changes in Rainfall Pattern and Seasonality Index Vis-à-Vis Increasing Water Scarcity in Maharashtra. J. Earth Syst. Sci. 2013, 122, 639–649. [Google Scholar] [CrossRef] [Green Version]
- Mallya, G.; Mishra, V.; Niyogi, D.; Tripathi, S.; Govindaraju, R.S. Trends and Variability of Droughts over the Indian Monsoon Region. Weather Clim. Extrem. 2016, 12, 43–68. [Google Scholar] [CrossRef] [Green Version]
- Niranjan Kumar, K.; Rajeevan, M.; Pai, D.S.; Srivastava, A.K.; Preethi, B. On the Observed Variability of Monsoon Droughts over India. Weather Clim. Extrem. 2013, 1, 42–50. [Google Scholar] [CrossRef] [Green Version]
- Trenberth, K.E.; Dai, A.; Van Der Schrier, G.; Jones, P.D.; Barichivich, J.; Briffa, K.R.; Sheffield, J. Global Warming and Changes in Drought. Nat. Clim. Chang. 2014, 4, 17–22. [Google Scholar] [CrossRef]
- GoI, Government of India. Manual for Drought Management. 2016. Available online: https://agricoop.nic.in/sites/default/files/Manual%20Drought%202016.pdf (accessed on 10 November 2021).
- Aadhar, S.; Mishra, V. Impact of Climate Change on Drought Frequency over India. Clim. Chang. Water Resour. India 2018, 117–129. [Google Scholar]
- Mishra, V.; Tiwari, A.D.; Aadhar, S.; Shah, R.; Xiao, M.; Pai, D.S.; Lettenmaier, D. Drought and Famine in India, 1870–2016. Geophys. Res. Lett. 2019, 46. [Google Scholar] [CrossRef]
- NCRB National Crime Record Bureau. Accidental Deaths and Suicides in India 2003–2018. Available online: https://ncrb.gov.in/en/accidental-deaths-suicides-in-india (accessed on 11 November 2021).
- Udmale, P.; Ichikawa, Y.; Manandhar, S.; Ishidaira, H.; Kiem, A.S. Farmers’ Perception of Drought Impacts, Local Adaptation and Administrative Mitigation Measures in Maharashtra State, India. Int. J. Disaster Risk Reduct. 2014, 10, 250–269. [Google Scholar] [CrossRef] [Green Version]
- Kulkarni, A.; Gadgil, S.; Patwardhan, S. Monsoon Variability, the 2015 Marathwada Drought and Rainfed Agriculture. Curr. Sci. 2016, 111, 1182–1193. [Google Scholar] [CrossRef]
- Asoka, A.; Gleeson, T.; Wada, Y.; Mishra, V. Relative Contribution of Monsoon Precipitation and Pumping to Changes in Groundwater Storage in India. Nat. Geosci. 2017, 10, 109–117. [Google Scholar] [CrossRef] [Green Version]
- Asoka, A.; Mishra, V. A Strong Linkage between Seasonal Crop Growth and Groundwater Storage Variability in India. J. Hydrometeorol. 2020, 22, 125–138. [Google Scholar] [CrossRef]
- Abhishek; Kinouchi, T. Multidecadal Land Water and Groundwater Drought Evaluation in Peninsular India. Remote Sens. 2022, 14, 1486. [Google Scholar] [CrossRef]
- Abhishek; Kinouchi, T. Synergetic Application of GRACE Gravity Data, Global Hydrological Model, and in-Situ Observations to Quantify Water Storage Dynamics over Peninsular India during 2002–2017. J. Hydrol. 2021, 596, 126069. [Google Scholar] [CrossRef]
- Zhang, Y.; Song, C.; Band, L.E.; Sun, G.; Li, J. Reanalysis of Global Terrestrial Vegetation Trends from MODIS Products: Browning or Greening? Remote Sens. Environ. 2017, 191, 145–155. [Google Scholar] [CrossRef] [Green Version]
- Myneni, R.; Knyazikhin, Y.; Park, T. Mcd15a2h Modis/Terra+aqua Leaf Area Index/Fpar 8-Day L4 Global 500m Sin Grid V006. In NASA EOSDIS; Land Processes DAAC: Sioux Falls, SD, USA, 2015. [Google Scholar] [CrossRef]
- Lyapustin, A.; Wang, Y.; Xiong, X.; Meister, G.; Platnick, S.; Levy, R.; Franz, B.; Korkin, S.; Hilker, T.; Tucker, J.; et al. Scientific Impact of MODIS C5 Calibration Degradation and C6+ Improvements. Atmos. Meas. Tech. 2014, 7, 4353–4365. [Google Scholar] [CrossRef] [Green Version]
- Team, AppEEARS. Application for Extracting and Exploring Analysis Ready Samples (AppEEARS) Version2.66, NASA EOSDIS Land Processes Distributed Active Archive Center (LP DAAC), USGS/Earth Resources Observation and Science (EROS) Center; Sioux Falls, SD, USA. Available online: https://lpdaac.usgs.gov/tools/appeears/ (accessed on 31 October 2021).
- Didan, K.; Munoz, A.B.; Tucker, C.; Pinzon, J. Vegetation Indices Climate Signals and Error Bars & Transition to VIIRS. In Proceedings of the MODIS/VIIRS Science Team Meeting, Silver Spring, MD, USA, 6–10 June 2016; Available online: https://modis.gsfc.nasa.gov/sci_team/meetings/ (accessed on 5 October 2021).
- Yan, K.; Pu, J.; Park, T.; Xu, B.; Zeng, Y.; Yan, G.; Weiss, M.; Knyazikhin, Y.; Myneni, R.B. Performance Stability of the MODIS and VIIRS LAI Algorithms Inferred from Analysis of Long Time Series of Products. Remote Sens. Environ. 2021, 260, 112438. [Google Scholar] [CrossRef]
- Eklundh, L.; Jonsson, P. Timesat 3.3 with Seasonal Trend Decomposition and Parallel Processing Software Manual (Computer Software Manual). 2017. Available online: https://web.nateko.lu.se/timesat/docs/TIMESAT33_SoftwareManual.pdf (accessed on 19 April 2022).
- Jönsson, P.; Eklundh, L. TIMESAT—A Program for Analyzing Time-Series of Satellite Sensor Data. Comput. Geosci. 2004, 30, 833–845. [Google Scholar] [CrossRef] [Green Version]
- Jonsson, P.; Eklundh, L. Seasonality Extraction and Noise Removal by Function Fitting to Time-Series of Satellite Sensor Data. IEEE Transactions of Geoscience and Remote Sensing. IEEE Trans. Geosci. Remote Sens. 2017, 30, 1824–1832. [Google Scholar]
- Kandasamy, S.; Baret, F.; Verger, A.; Neveux, P.; Weiss, M. A Comparison of Methods for Smoothing and Gap Filling Time Series of Remote Sensing Observations—Application to MODIS LAI Products. Biogeosciences 2013, 10, 4055–4071. [Google Scholar] [CrossRef] [Green Version]
- Friedl, M.; Sulla-Menashe, D. Mcd12q1 Modis/Terra+aqua Land Cover Type Yearly L3 Global 500m Sin Grid V006 Distributed. In Nasa Eosdis; Land Processes DAAC: Sioux Falls, SD, USA, 2019. [Google Scholar] [CrossRef]
- Dhorde, A.G.; Korade, M.S.; Dhorde, A.A. Spatial Distribution of Temperature Trends and Extremes over Maharashtra and Karnataka States of India. Theor. Appl. Climatol. 2017, 130, 191–204. [Google Scholar] [CrossRef]
- Yue, S.; Wang, C.Y. The Mann-Kendall Test Modified by Effective Sample Size to Detect Trend in Serially Correlated Hydrological Series. Water Resour. Manag. 2004, 18, 201–218. [Google Scholar] [CrossRef]
- Patakamuri, S.K.; O’Brien, M.P.; Modiedmk, N. Computer Software Manual, R Package Version 1.5.0. 2020. Available online: https://cran.r-project.org/web/packages/modifiedmk/modifiedmk.pdf (accessed on 19 April 2022).
- Kumar Sen, P. Estimates of the Regression Coefficient Based on Kendall’s Tau. J. Am. Stat. Assoc. 1968, 63, 324. [Google Scholar]
- Pai, D.S.; Sridhar, L.; Rajeevan, M.; Sreejith, O.P.; Satbhai, N.S.; Mukhopadhyay, B. Development of a New High Spatial Resolution (0.25° × 0.25°) Long Period (1901–2010) Daily Gridded Rainfall Data Set over India and Its Comparison with Existing Data Sets over the Region. Mausam 2014, 65, 73655814. [Google Scholar] [CrossRef]
- Shepard, D.S. Computer Mapping: The SYMAP Interpolation Algorithm. In Spatial Statistics and Models; Springer: Dordrecht, The Netherlands, 1984. [Google Scholar]
- Li, B.; Beaudoing, H.; Rodell, M. GLDAS Catchment Land Surface Model L4 Daily 0.25 × 0.25 Degree GRACE-DA1 V2.2, Greenbelt, Maryland, USA, Goddard Earth Sciences Data and Information Services Center (GES DISC). Goddard Earth Sci. Data Inf. Serv. Cent. GES DISC 2020, 16. [Google Scholar]
- Rodell, M.; Houser, P.R.; Jambor, U.; Gottschalck, J.; Mitchell, K.; Meng, C.J.; Arsenault, K.; Cosgrove, B.; Radakovich, J.; Bosilovich, M.; et al. The Global Land Data Assimilation System. Bull. Am. Meteorol. Soc. 2004, 85, 381–394. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Rodell, M.; Kumar, S.; Beaudoing, H.K.; Getirana, A.; Zaitchik, B.F.; de Goncalves, L.G.; Cossetin, C.; Bhanja, S.; Mukherjee, A.; et al. Global GRACE Data Assimilation for Groundwater and Drought Monitoring: Advances and Challenges. Water Resour. Res. 2019, 55, 7564–7586. [Google Scholar] [CrossRef] [Green Version]
- Stefan, S.; Verena, H.; Karen, F.; Jacob, B. Global Map of Irrigation Areas Version 5; Rheinische Friedrich-Wilhelms-University: Bonn, Germany; Food and Agriculture Organization of the United Nations: Rome, Italy, 2013. [Google Scholar]
- Milesi, C.; Samanta, A.; Hashimoto, H.; Kumar, K.K.; Ganguly, S.; Thenkabail, P.S.; Srivastava, A.N.; Nemani, R.R.; Myneni, R.B. Decadal Variations in NDVI and Food Production in India. Remote Sens. 2010, 2, 758–776. [Google Scholar] [CrossRef] [Green Version]
- Mondal, P.; Jain, M.; Robertson, A.W.; Galford, G.L.; Small, C.; DeFries, R.S. Winter Crop Sensitivity to Inter-Annual Climate Variability in Central India. Clim. Chang. 2014, 126, 61–76. [Google Scholar] [CrossRef] [Green Version]
- GoI, Government of India. Agriculture at Glance; 2018. Available online: https://agricoop.gov.in/sites/default/files/agristatglance2018.pdf (accessed on 19 April 2022).
- Shah, T.; Roy, A.D.; Qureshi, A.S.; Wang, J. Sustaining Asia’s Groundwater Boom: An Overview of Issues and Evidence. Nat. Resour. Forum 2003, 27, 130–141. [Google Scholar] [CrossRef] [Green Version]
- Rodell, M.; Velicogna, I.; Famiglietti, J.S. Satellite-Based Estimates of Groundwater Depletion in India. Nature 2009, 460, 999–1002. [Google Scholar] [CrossRef] [Green Version]
- GoM, Government of Maharashtra. Kelkar Committee’s Report on Balanced Regional Development Issues in Maharashtra; 2013. Available online: https://mahasdb.maharashtra.gov.in/kelkarCommittee.do (accessed on 19 April 2022).
- Ray, D.K.; Foley, J.A. Increasing Global Crop Harvest Frequency: Recent Trends and Future Directions. Environ. Res. Lett. 2013, 8, 044041. [Google Scholar] [CrossRef]
- Kulkarni, S.; Gedam, S. Geospatial Approach to Categorize and Compare the Agro-Climatological Droughts over Marathwada Region of Maharashtra, India. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, 4, 279–285. [Google Scholar] [CrossRef] [Green Version]
- PTI 50 Wagon Water Train Carrying 25 Lakh Litres Reaches Drought-Hit Latur. 2016. Available online: https://economictimes.indiatimes.com/news/politics-and-nation/50-wagon-water-train-carrying-25-lakh-litres-reaches-drought-hit-latur/articleshow/51907204.cms?from=mdr (accessed on 19 April 2022).
- Shah, M.; Vijayshankar, P.S.; Harris, F. Water and Agricultural Transformation in India: A Symbiotic Relationship—II. Econ. Polit. Wkly. 2021, 56, 46–51. [Google Scholar]
- Chinnasamy, P.; Hsu, M.J.; Agoramoorthy, G. Groundwater Storage Trends and Their Link to Farmer Suicides in Maharashtra State, India. Front. Public Health 2019, 7, 246. [Google Scholar] [CrossRef] [Green Version]
- Deulgaonkar, A.; Joshi, A. Agriculture Is Injurious to Health. Econ. Polit. Wkly. 2016, 51, 13–15. [Google Scholar]
- Dongre, A.R.; Deshmukh, P.R. Farmers’ Suicides in the Vidarbha Region of Maharashtra, India: A Qualitative Exploration of Their Causes. J. Inj. Violence Res. 2012, 4, 2. [Google Scholar] [CrossRef] [Green Version]
- Iyer, K. Landscapes of Loss: The Story of an Indian Drought; HarperCollins Publishers: New York, NY, USA, 2021. [Google Scholar]
- Mishra, S. Farmer Suicides in Maharashtra. Econ. Polit. Wkly. 2006, 41, 1538–1545. [Google Scholar]
- Talule, D. Farmer Suicides in Maharashtra, 2001-2018 Trends across Marathwada and Vidarbha. Econ. Polit. Wkly. 2020, 55, 202. [Google Scholar]
- Talule, C.D. Suicide by Maharashtra Farmers, The Signs of Persistent Agrarian Distress. Econ. Polit. Wkly. 2021, 56. [Google Scholar]
- Nagaraj, K.; Sainath, P.; Rukmani, R.; Gopinath, R. Farmers’ Suicides in India: Magnitudes, Trends, and Spatial Patterns, 1997–2012. Rev. Agrar. Stud. 2014, 4, 1997–2012. [Google Scholar]
- Mitra, S.; Shroff, S. Farmers’ Suicides in Maharashtra. Econ. Polit. Wkly. 2007, 42, 73–77. [Google Scholar]
- Pande, S.; Savenije, H.H.G. A Sociohydrological Model for Smallholder Farmers in Maharashtra, India. Water Resour. Res. 2016, 52, 1923–1947. [Google Scholar] [CrossRef]
- GoI, Government of India. Department of Agriculture Cooperation & Farmers Welfare. Ministry of Agriculture & Farmers Welfare. Available online: https://agricoop.nic.in/en (accessed on 10 November 2021).
Division | Geographical Area (km2) | NCLA (km2) | ||||
---|---|---|---|---|---|---|
Croplands | Grasslands | Forest | Others | Total | ||
Amravati | 57,405 | 2487.04 | −92.32 | −11.55 | −0.02 | 2383.15 |
Aurangabad | 81,231 | 1942.74 | 73.32 | 0 | −0.26 | 2015.81 |
Kokan | 37,741 | 817.38 | 1988.40 | 71.33 | 92.82 | 2969.93 |
Nagpur | 64,026 | 558.60 | −453.64 | −287.64 | −22.98 | −205.66 |
Nashik | 70,381 | 2041.92 | 276.99 | −0.23 | 1.57 | 2320.26 |
Pune | 70,066 | 4273.65 | 3570.77 | 48.16 | 102.50 | 7995.08 |
Total (Maharashtra) | 380,851 | 12,121.34 | 5363.53 | −179.94 | 173.63 | 17,478.57 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bageshree, K.; Abhishek; Kinouchi, T. Unraveling the Multiple Drivers of Greening-Browning and Leaf Area Variability in a Socioeconomically Sensitive Drought-Prone Region. Climate 2022, 10, 70. https://doi.org/10.3390/cli10050070
Bageshree K, Abhishek, Kinouchi T. Unraveling the Multiple Drivers of Greening-Browning and Leaf Area Variability in a Socioeconomically Sensitive Drought-Prone Region. Climate. 2022; 10(5):70. https://doi.org/10.3390/cli10050070
Chicago/Turabian StyleBageshree, K., Abhishek, and Tsuyoshi Kinouchi. 2022. "Unraveling the Multiple Drivers of Greening-Browning and Leaf Area Variability in a Socioeconomically Sensitive Drought-Prone Region" Climate 10, no. 5: 70. https://doi.org/10.3390/cli10050070
APA StyleBageshree, K., Abhishek, & Kinouchi, T. (2022). Unraveling the Multiple Drivers of Greening-Browning and Leaf Area Variability in a Socioeconomically Sensitive Drought-Prone Region. Climate, 10(5), 70. https://doi.org/10.3390/cli10050070