Identifying and Attributing Regime Shifts in Australian Fire Climates
Abstract
:1. Introduction
2. Materials and Methods
2.1. Baseline FFDI
2.2. Regression Data and Model
2.3. Model Evaluation
2.4. Regime Testing and Attribution
3. Results
3.1. Model Construction and Analysis for Victoria
3.1.1. Model Construction
3.1.2. Regime Detection
3.1.3. Sensitivity Analysis
- Omitting P had little effect on the mean (the anomaly was used as input) but reduced σ by up to half and reduced the regime shift from 41% to 29%. Varying P changed the shift year from 1996 or 1997 to 2002. P therefore has an effect on the timing of the observed shift and the amount of variability present.
- Omitting fire season Tmax turned the FFDI negative and reduced the regime shift by 20% to 35%. Varying it increased both the average FFDI and the magnitude of the FFDI by 11% to 47%.
- Omitting Tmax90 had little effect on the FFDI and reduced the regime shift from 25% to 17%. Varying it had little effect on either. In the regression, Tmax90 is p < 0.01 for ΣFFDI, p = 0.05 for days Hi+, p = 0.01 for Days VHi+, and was not relevant for Sev+, although it was left in.
- Omitting C 3pm had the largest effect on the FFDI, increasing it by a factor of 1.8 to 5.7 while reducing shift size by 8% to 23%. Varying it with a 10% increase led to a change of −8% to −48% with little effect on shift size.
3.2. Model Results for Australia
3.2.1. Regional Comparisons
3.2.2. Regime Detection
- Regime 1 is stable in all regions. Most regions show no or a gently declining trend.
- Regime shifts are generally larger with increasing fire danger, but the size depends on baseline values. Lower baselines in Tasmania and Victoria result in greater increases than regions to the north and west. Averaged across all regions, shift size in ΣFFDIs was 16% compared to 33% for Days Sev+.
- The earliest shifts were in Victoria and Tasmania in 1996 and 1997, followed by SW Western Australia, New South Wales, and South Australia to 2001 and 2002. Queensland shifted in 2012 and the Northern Territory in 2012 and 2017. The latter is provisional because p values are roughly one in four, but the magnitude of change is roughly one standard deviation, which will register if it is sustained over time.
- These changes show a strong relationship with latitude, where the first changes are south of the sub-tropical ridge moving further north over time. This suggests a strengthening of the Hadley Cell and tropical expansion.
- Regime shifts in the 2021–2022 fire season were generally lower than those calculated in the Black Summer season in 2019–2020 showing the effect of two wetter and cooler years. Variability in Regime 2 is also much greater than in Regime 1, showing a more intense hydrological cycle, but the regime itself has remained stable. Given the slight underestimation of regime shifts in the model and these cooler conditions, these shifts should be considered as minimum estimates.
3.2.3. Spatial Variations
3.2.4. Attribution
4. Discussion
4.1. Caveats, Strengths, and Limitations
4.2. Comparisons with Other Studies
4.3. Understanding Pyroclimates
5. Conclusions
- aproximately one-quarter in the SE to 8% in the west for ΣFFDI;
- approximately one-third in the SE to 7% in the west for Days Hi+;
- approximately half in the SE to 11% in the west for Days VHi+, with a greater increase in Tasmania;
- approximately three-quarters in the SE to 9% in the west for Days Sev+, with no result for Tasmania.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Regression Results and Sensitivity Testing
Constants | p Values | |||||||
---|---|---|---|---|---|---|---|---|
Variables | ΣFFDI | Days Hi+ | Days VHi+ | Days Sev+ | ΣFFDI | Days Hi+ | Days VHi+ | Days Sev+ |
Intercept | 1694.376 | 42.277 | 8.112 | 2.808 | 0.416 | 0.530 | 0.830 | 0.852 |
P | −324.590 | −11.244 | −4.351 | −0.694 | 1.88 × 10−11 | 3.37 × 10−12 | 2.20 × 10−8 | 0.006 |
TmaxFY | 127.254 | 3.925 | 2.288 | 0.631 | 0.064 | 0.077 | 0.068 | 0.199 |
Tmax90 | 4.021 | 0.121 | 0.075 | 0.010 | 0.004 | 0.007 | 0.003 | 0.307 |
C 3pm | −476.881 | −14.835 | −9.293 | −3.246 | 0.012 | 0.015 | 0.007 | 0.017 |
Error | ||||||||
Adj r2 | 0.93 | 0.93 | 0.90 | 0.70 | ||||
SE | 178.5 | 5.78 | 3.26 | 0.13 |
Variable–Omitted | Mean | Std. Dev. | Ti0 | Year | Shift | Mean Change (%) | Shift Change (%) | Std. Dev. Change (%) | p Value |
---|---|---|---|---|---|---|---|---|---|
ΣFFDI | 2715 | 636 | 14.5 | 1996–1997 | 616 | p < 0.01 | |||
ΣFFDI–p | 2615 | 300 | 20.4 | 2002–2003 | 364 | –4% | –41% | –53% | p < 0.01 |
ΣFFDI–TmaxFS | –364 | 556 | 12.3 | 1996–1997 | 495 | –113% | –20% | −12.5% | p < 0.01 |
ΣFFDI–Tmax90 | 2644 | 554 | 11.0 | 1996–1997 | 463 | –3% | –25% | −12.9% | p < 0.05 |
ΣFFDI–C3pm | 4943 | 558 | 15.9 | 1996–1997 | 563 | 82% | –8% | −12.2% | p < 0.01 |
Days Hi+ | 62.4 | 18.4 | 14.7 | 1996–1997 | 17.8 | p < 0.01 | |||
Days Hi+–P | 59.4 | 8.7 | 19.7 | 2002–2003 | 10.3 | –5% | –42% | –53% | p < 0.01 |
Days Hi+–TmaxFS | −63.7 | 15.0 | 10.9 | 1996–1997 | 12.5 | –202% | −29.7% | –19% | p < 0.05 |
Days Hi+–Tmax90 | 60.9 | 16.7 | 12.1 | 1996–1997 | 14.6 | –2% | –18% | –9% | p < 0.05 |
Days Hi+–C3pm | 128.3 | 15.8 | 15.7 | 1996–1997 | 15.8 | 106% | –11% | –14% | p < 0.01 |
Days VHi+ | 18.3 | 8.0 | 15.9 | 1997–1998 | 8.2 | p < 0.01 | |||
Days VHi+–P | 17.2 | 4.5 | 19.6 | 2002–2003 | 5.3 | –6% | –35% | –44% | p < 0.01 |
Days VHi+–TmaxFS | −31.5 | 6.8 | 12.3 | 1997–1998 | 6.0 | –272% | −26.1% | –15% | p < 0.01 |
Days VHi+–Tmax90 | 17.4 | 7.0 | 11.6 | 1996–1997 | 6.1 | –5% | −25.9% | –12% | p < 0.05 |
Days VHi+–C3pm | 54.5 | 6.8 | 17.2 | 1996–1997 | 7.1 | 197% | –13% | –15% | p < 0.01 |
Days Sev+ | 2.6 | 1.6 | 15.6 | 1997–1998 | 1.6 | p < 0.01 | |||
Days Sev+–P | 2.4 | 1.1 | 15.0 | 2002–2003 | 1.1 | –8% | –29% | –31% | p < 0.01 |
Days Sev+–TmaxFS | −10.1 | 1.3 | 9.6 | 1997–1998 | 1.0 | –484% | –35% | –17% | p < 0.05 |
Days Sev+–Tmax90 | 2.5 | 1.5 | 11.5 | 1997–1998 | 1.3 | –5% | –17% | –4% | p < 0.05 |
Days Sev+–C3pm | 14.9 | 1.1 | 17.7 | 1996–1997 | 1.2 | 466% | –23% | –27% | p < 0.01 |
Variable–Omitted | Mean | Std. Dev. | Ti0 | Year | Shift | Mean Change (%) | Shift Change (%) | Std. Dev. Change (%) | p Value |
---|---|---|---|---|---|---|---|---|---|
ΣFFDI | 2715 | 636 | 14.5 | 1995 | 616 | p < 0.01 | |||
ΣFFDI 0.1P | 2725 | 674 | 14.4 | 1995 | 644 | 0.4% | 4.6% | 6% | p < 0.01 |
ΣFFDI 0.1TmaxFS | 3022 | 644 | 14.6 | 1995 | 635 | 11% | 3.1% | 1.3% | p < 0.01 |
ΣFFDI 0.1Tmax90 | 2722 | 645 | 14.8 | 1996 | 634 | 0.3% | 3.1% | 1.5% | p < 0.01 |
ΣFFDI 0.1C3pm | 2492 | 644 | 14.4 | 1995 | 622 | −8% | 1.1% | 1.3% | p < 0.01 |
Days Hi+ | 62.4 | 18.4 | 14.7 | 1995 | 17.8 | p < 0.01 | |||
Days Hi+0.1P | 62.5 | 19.2 | 13.9 | 1995 | 18.1 | 0.2% | 1.8% | 4% | p < 0.01 |
Days Hi+0.1TmaxFS | 74.8 | 18.5 | 14.4 | 1995 | 18.0 | 20% | 1.1% | 0.5% | p < 0.01 |
Days Hi+0.1Tmax90 | 62.3 | 18.3 | 14.5 | 1995 | 17.7 | −0.1% | −0.7% | −0.5% | p < 0.01 |
Days Hi+0.1C3pm | 55.6 | 18.4 | 14.0 | 1995 | 17.5 | −11% | −1.5% | 0.03% | p < 0.01 |
Days VHi+ | 18.3 | 8.0 | 15.9 | 1996 | 8.2 | p < 0.01 | |||
Days VHi+0.1P | 18.4 | 8.5 | 14.9 | 1996 | 8.3 | 0.4% | 1.9% | 6% | p < 0.01 |
Days VHi+0.1TmaxFS | 23.3 | 8.2 | 15.4 | 1996 | 8.2 | 27% | 0.5% | 3.1% | p < 0.01 |
Days VHi+0.1Tmax90 | 18.4 | 8.2 | 15.5 | 1996 | 8.2 | 0.3% | 0.8% | 2.9% | p < 0.01 |
Days VHi+0.1C3pm | 14.7 | 8.2 | 14.9 | 1996 | 8.1 | −20% | −0.9% | 3.1% | p < 0.01 |
Days Sev+ | 2.6 | 1.6 | 15.6 | 1996 | 1.6 | p < 0.01 | |||
Days Sev+0.1P | 2.6 | 1.7 | 13.5 | 1996 | 1.6 | 0% | −0.36% | 8% | p < 0.01 |
Days Sev+0.1TmaxFS | 3.9 | 1.7 | 13.9 | 1996 | 1.6 | 47% | −0.01% | 6% | p < 0.01 |
Days Sev+0.1Tmax90 | 2.6 | 1.6 | 13.9 | 1996 | 1.6 | −0.7% | −1.6% | 5% | p < 0.01 |
Days Sev+0.1C3pm | 1.4 | 1.7 | 13.2 | 1996 | 1.6 | −48% | −0.38% | 7% | p < 0.01 |
Appendix B. Nonlinear Attribution Test Results
- Two time series containing a common shift will show no shift when paired if those shifts are proportional. For example, pairing the different measures of FFDIs for a single region shows no regime change when paired or mirrored (p > 0.10). This may denote a common origin for both variables or direct cause-and-effect where one forces the other (i.e., full attribution).
- Partial attribution may be the case when a pair has similar regime shifts and one shows no shift when paired in one direction, but when mirrored only part of the original shift can be attributed. RH shows this for many regions: the FFDI shows no shift against RH, but RH against the FFDI reproduces only part of its regime change. For example, for Victoria, RH shifted by −3.2 in 1996–1997 which is compatible with the FFDI, but in reverse it showed a relative shift of −1.4 in the same year, so only −1.8 can be accounted for.
- Shifts due to an independent process may show conformity in one direction but none when mirrored. This is consistent with windspeed, which shows a potential attribution of 0.1−0.3 m s−1 for regime shifts in the early to mid-1990s that are in excess of 2.0 m s−1, where we know measurement methods changed over at that time.
- When two variables with shifts in common show no shift at that time, but relative shifts at other times, they are conformal for the regime shift but reflect the presence of other processes that will need a separate interpretation.
- Other results can show nonlinear responses or shifts due to an independent process not directly related to a change in fire climates, including inhomogeneities. Climate variability may also be a factor in short sequences.
Appendix B.1. Victoria
Variable | Average | Std. Dev. | Ti0 | Year | Change | p Value | Variable | Average | Std. Dev. | Ti0 | Year | Change | p Value |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1957–2021 HQD inputs | Notes | ||||||||||||
ΣFFDI | 2715 | 636 | 14.5 | 1996–1997 | 616 | p < 0.01 | ΣFFDI shifted up in 1996–1997, although the inputs show different timing; up relative to P in 2006–2007 and to TmaxFS in 2009–2010. This is due to a sequence of wet and dry years following the Millennium drought. Suppression of Tmax by P in wet years had little effect on mean FFDI, which became far more variable. ΣFFDI shifted up in 1996–1997 relative to cloud, showing the latter had a small influence (175 of 616). Tmax90 also had a limited influence. | ||||||
Days Sev+ | 2.6 | 1.6 | 15.6 | 1997–1998 | 1.6 | p < 0.01 | |||||||
P | 641 | 94 | 8.7 | 1994–1995 | –68 | p < 0.10 | |||||||
TmaxFS | 24.2 | 0.84 | 22 | 2002–2003 | 1.06 | p < 0.01 | |||||||
C 3pm | 4.67 | 0.25 | 3.6 | 1997–1998 | −0.12 | ||||||||
Tmax90 | 17.6 | 34.8 | 23.9 | 2006–2007 | 49 | p < 0.01 | |||||||
ΣFFDI/P | 2715 | 636 | 16.2 | 2006–2007 | 302 | p < 0.01 | P/ΣFFDI | 641 | 94 | 10.6 | 2006–2007 | 38 | p < 0.05 |
ΣFFDI/Tmax | 2715 | 636 | 7.1 | 2009–2010 | –371 | Tmax/ΣFFDI | 20.2 | 0.6 | 21.9 | 2009–2010 | 0.6 | p < 0.01 | |
ΣFFDI/TmaxFS | 2715 | 636 | 6.2 | 2009–2010 | –383 | TmaxFS/ΣFFDI | 24.2 | 0.8 | 18.7 | 2009–2010 | 0.7 | p < 0.01 | |
ΣFFDI/C 3pm | 2715 | 636 | 14.2 | 1996–1997 | 441 | p < 0.01 | C 3pm/ΣFFDI | 4.7 | 0.2 | 7 | 2012–2013 | 0.2 | |
ΣFFDI/Tmax90 | 2715 | 636 | 2.8 | 1994–1995 | 231 | Tmax90/ΣFFDI | 17.6 | 34.8 | 17.5 | 2006–2007 | 34.3 | p < 0.01 | |
Tmax/P | 20.2 | 0.6 | 24.1 | 1999–2000 | 0.7 | p < 0.01 | P/Tmax | 641 | 94 | 7 | 2009–2010 | 77 | |
TmaxFS/P | 24.2 | 0.8 | 20.6 | 2004–2005 | 0.9 | p < 0.01 | P/TmaxFS | 641 | 94 | 7.5 | 2009–2010 | 76 | |
1971–2016 LH2019 inputs | Notes | ||||||||||||
DF | 6.9 | 0.8 | 12.7 | 1996–1997 | 0.8 | p < 0.01 | The direct inputs to FFDIs all contribute to the regime shift. DF and KBDI both had a positive influence. P had a higher influence than rain days. For RH, half of the recorded shift (−1.4 of −3.2) had a strong influence, suggesting the possibility of both a shift and inhomogeneity. The same may be true of windspeed. Days Sev+ shows similar patterns to ΣFFDI. The occluded warmer/wetter events from 2010 onwards also had little effect on FFDI. | ||||||
KBDI | 60.8 | 21.7 | 13.5 | 1996–1997 | 23.6 | p < 0.01 | |||||||
P | 476.2 | 101.9 | 7.3 | 1996–1997 | −82.8 | ||||||||
Pdays | 126.7 | 10.7 | 4.6 | 1993–1994 | −6.8 | ||||||||
RH | 50.7 | 2.8 | 15.2 | 1996–1997 | −3.2 | p < 0.01 | |||||||
Tmax | 20.9 | 0.6 | 18.3 | 1999–2000 | 0.8 | p < 0.01 | |||||||
V | 20.3 | 1 | 21.4 | 1996–1997 | 1.4 | p < 0.01 | |||||||
ΣFFDI/DF | 2725 | 674 | 3.9 | 2011–2012 | 291 | DF/ΣFFDI | 6.9 | 0.8 | 2.9 | 1996–1997 | 0.2 | ||
ΣFFDI/KBDI | 2725 | 674 | 4.1 | 2011–2012 | 311 | KBDI/ΣFFDI | 60.8 | 21.7 | 4 | 1996–1997 | 7.6 | ||
ΣFFDI/P | 2725 | 674 | 7.4 | 1999–2000 | 301 | P/ΣFFDI | 476.2 | 101.9 | 3.3 | 2006–2007 | 35.2 | ||
ΣFFDI/Pdays | 2725 | 674 | 10.2 | 1999–2000 | 432 | p < 0.05 | Pdays/ΣFFDI | 126.7 | 10.7 | 4 | 1973–1974 | 10.1 | |
ΣFFDI/RH | 2732 | 680 | 3.1 | 1983–1984 | –213 | RH/ΣFFDI | 50.7 | 2.8 | 9.3 | 1996–1997 | −1.4 | p < 0.05 | |
ΣFFDI/Tmax | 2725 | 674 | 8 | 2009–2010 | –553 | p < 0.10 | Tmax/ΣFFDI | 20.9 | 0.6 | 15.1 | 2009–2010 | 0.6 | p < 0.01 |
ΣFFDI/V | 2725 | 674 | 2.1 | 2012–2013 | 374 | V/ΣFFDI | 20.3 | 1 | 14.9 | 2002–2003 | 1.1 | p < 0.01 | |
Sev+/DF | 2.6 | 1.6 | 2.7 | 1987–1988 | 0.4 | DF/Sev+ | 6.9 | 0.8 | 2 | 1996–1997 | 0.2 | ||
Sev+/KBDI | 2.6 | 1.6 | 2.5 | 1987–1988 | 0.4 | KBDI/Sev+ | 60.8 | 21.7 | 2.9 | 1996–1997 | 6.2 | ||
Sev+/P | 2.6 | 1.6 | 9.1 | 2002–2003 | 1 | p < 0.05 | P/Sev+ | 476.2 | 101.9 | 2.6 | 2004–2005 | 36.9 | |
Sev+/Pdays | 2.6 | 1.6 | 13.5 | 2001–2002 | 1.1 | p < 0.01 | Pdays/Sev+ | 126.7 | 10.7 | 6.1 | 2001–2002 | 5.6 | |
Sev+/RH | 2.7 | 1.6 | 3.2 | 1983–1984 | −0.5 | RH/Sev+ | 50.7 | 2.8 | 7.8 | 1996–1997 | −1.4 | p < 0.10 | |
Sev+/Tmax | 2.6 | 1.6 | 8.3 | 2009–2010 | −1.3 | p < 0.10 | Tmax/Sev+ | 20.9 | 0.6 | 15.3 | 2009–2010 | 0.6 | p < 0.01 |
Sev+/V | 2.6 | 1.6 | 2.1 | 1977–1978 | 0.8 | V/Sev+ | 20.3 | 1 | 13.6 | 1996–1997 | 1 | p < 0.01 |
Appendix B.2. New South Wales
Variable | Average | Std. Dev. | Ti0 | Year | Change | p Value | Variable | Average | Std. Dev. | Ti0 | Year | Change | p Value |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1957–2021 HQD inputs | Notes | ||||||||||||
ΣFFDI | 3574 | 601 | 8.9 | 2001–2002 | 474 | p < 0.10 | ΣFFDI shifted up in 2001–2002 and Days Sev+ the following year. The timing of Tmax showed increases coinciding with this. TmaxFS increased further after 2009. P is enhanced after 2005, mainly through wet years being wetter affecting FFDI variability but not the mean. ΣFFDI shifted up in 1996–1996 relative to cloud, showing the latter had a small influence (95 of 474). Tmax90 also had a limited influence. | ||||||
Days Sev+ | 6.9 | 1.8 | 8.4 | 2002–2003 | 1.4 | p < 0.10 | |||||||
P | 542 | 118 | 4.9 | 2019–2020 | 188 | ||||||||
TmaxFS | 28.2 | 1.12 | 23.3 | 2002–2003 | 1.4 | p < 0.01 | |||||||
C 3pm | 3.8 | 0.3 | 2.8 | 1957–1958 | 0.5 | ||||||||
Tmax90 | 17.2 | 31.0 | 28.8 | 2002–2003 | 45 | p < 0.01 | |||||||
ΣFFDI/P | 3574 | 601 | 21.9 | 2002–2003 | 364 | p < 0.01 | P/ΣFFDI | 541.6 | 118.2 | 16.0 | 2004–2005 | 65.6 | p < 0.01 |
ΣFFDI/Tmax | 3574 | 601 | 14.8 | 1995–1996 | –429 | p < 0.01 | Tmax/ΣFFDI | 24.3 | 0.7 | 32.0 | 1997–1998 | 0.7 | p < 0.01 |
ΣFFDI/TmaxFS | 3574 | 601 | 9.4 | 2008–2009 | –371 | p < 0.05 | TmaxFS/ΣFFDI | 28.2 | 1.1 | 21.4 | 1997–1998 | 0.8 | p < 0.01 |
ΣFFDI/C 3pm | 3574 | 601 | 15.0 | 2000–2001 | 379 | p < 0.01 | C 3pm/ΣFFDI | 3.8 | 0.3 | 9.8 | 1995–1996 | 0.2 | p < 0.05 |
ΣFFDI/Tmax90 | 3574 | 601 | 8.8 | 2009–2010 | –471 | p < 0.10 | Tmax90/ΣFFDI | 17.6 | 34.8 | 17.5 | 2006–2007 | 34.3 | p < 0.01 |
Tmax/P | 24.3 | 0.7 | 34.7 | 2000–2001 | 1.0 | p < 0.01 | P/Tmax | 541.6 | 118.2 | 13.7 | 2004–2005 | 124.8 | p < 0.01 |
TmaxFS/P | 28.2 | 1.1 | 27.2 | 2002–2003 | 1.3 | p < 0.01 | P/TmaxFS | 541.6 | 118.2 | 10.7 | 2008–2009 | 112.5 | p < 0.05 |
1971–2016 LH2019 inputs | Notes | ||||||||||||
DF | 6.3 | 0.6 | 5.1 | 2001–2002 | 0.4 | The direct inputs to FFDIs all contributed to the regime shift. DF and KBDI both had a positive minor influence. P had limited influence after 1978. For RH, half of the recorded shift (−1.8 of −3.5) had a strong influence, suggesting the possibility of both a shift and inhomogeneity. Windspeed suggests a large shift in 1994–1995 relative to the FFDI. Days Sev+ shows similar patterns to ΣFFDI. The occluded warmer/wetter events from 2010 onwards also had little effect on the FFDI. | |||||||
KBDI | 61.9 | 17.6 | 6.3 | 2002–2003 | 14.0 | ||||||||
P | 855.9 | 162.6 | 6.5 | 1977–1978 | −181.7 | ||||||||
Pdays | 109.9 | 12.0 | 6.0 | 1977–1978 | −12.7 | ||||||||
RH | 48.7 | 2.9 | 15.8 | 2001–2002 | −3.5 | p < 0.01 | |||||||
Tmax | 23.3 | 0.7 | 19.6 | 2000–2001 | 0.9 | p < 0.01 | |||||||
V | 17.1 | 2.1 | 37.9 | 1994–1995 | 3.8 | p < 0.01 | |||||||
ΣFFDI/DF | 3547 | 593 | 9.6 | 2012–2013 | 406 | p < 0.05 | DF/ΣFFDI | 6.3 | 0.6 | 6.2 | 2012–2013 | −0.4 | |
ΣFFDI/KBDI | 3547 | 593 | 6.3 | 2012–2013 | 343 | KBDI/ΣFFDI | 61.9 | 17.6 | 3.5 | 2011–2012 | −7.0 | ||
ΣFFDI/P | 3547 | 593 | 8.6 | 2012–2013 | 533 | p < 0.10 | P/ΣFFDI | 855.9 | 162.6 | 4.9 | 2011–2012 | 104.4 | |
ΣFFDI/Pdays | 3547 | 593 | 10.0 | 2002–2003 | 331 | p < 0.05 | Pdays/ΣFFDI | 109.9 | 12.0 | 6.5 | 1998–1999 | 5.3 | |
ΣFFDI/RH | 3547 | 593 | 4.4 | 2001–2002 | –232 | RH/ΣFFDI | 48.7 | 2.9 | 13.8 | 2001–2002 | −1.8 | p < 0.01 | |
ΣFFDI/Tmax | 3547 | 593 | 9.9 | 2008–2009 | –487 | p < 0.05 | Tmax/ΣFFDI | 23.3 | 0.7 | 17.7 | 2003–2004 | 0.6 | p < 0.01 |
ΣFFDI/V | 3547 | 593 | 3.9 | 1995–1996 | –709 | V/ΣFFDI | 17.1 | 2.1 | 37.7 | 1994–1995 | 3.5 | p < 0.01 | |
Sev+/DF | 6.7 | 1.8 | 5.6 | 2012–2013 | 1.0 | DF/Sev+ | 6.3 | 0.6 | 3.2 | 2011–2012 | −0.3 | ||
Sev+/KBDI | 6.7 | 1.8 | 3.9 | 2012–2013 | 0.8 | KBDI/Sev+ | 61.9 | 17.6 | 2.1 | 2011–2012 | −5.7 | ||
Sev+/P | 6.7 | 1.8 | 6.0 | 2002–2003 | 1.0 | P/Sev+ | 855.9 | 162.6 | 2.9 | 2011–2012 | 88.4 | ||
Sev+/Pdays | 6.7 | 1.8 | 8.1 | 2002–2003 | 1.0 | p < 0.10 | Pdays/Sev+ | 109.9 | 12.0 | 4.4 | 2005–2006 | 5.3 | |
Sev+/RH | 6.7 | 1.8 | 3.2 | 1992–1993 | −0.56 | RH/Sev+ | 48.7 | 2.9 | 13.1 | 2001–2002 | −2.0 | p < 0.01 | |
Sev+/Tmax | 6.7 | 1.8 | 11.3 | 2008–2009 | −1.5 | p < 0.05 | Tmax/Sev+ | 23.3 | 0.7 | 19.0 | 2000–2001 | 0.6 | p < 0.01 |
Sev+/V | 6.7 | 1.8 | 4.2 | 1995–1996 | −2.2 | V/Sev+ | 17.1 | 2.1 | 37.7 | 1994–1995 | 3.6 | p < 0.01 |
Appendix B.3. South Australia
Variable | Average | Std. Dev. | Ti0 | Year | Change | p value | Variable | Average | Std. Dev. | Ti0 | Year | Change | p value |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1957–2021 HQD inputs | Notes | ||||||||||||
ΣFFDI | 4306 | 502 | 9.0 | 2002–2003 | 412 | p < 0.05 | ΣFFDI shifted up in 2002–2003, consistent with the shift in TmaxFS. Relative changes in the FFDI show warmer and wetter conditions from the early 1970s with a later shift in Tmax relative to P in the late 1990s and TmaxFS in 2002–2003. ΣFFDI shifted up in 2000–2001 relative to cloud, showing the latter had a small influence (175 of 616). Tmax90 had a limited influence. ΣFFDI and P shift relative to each other in 2002–2003, which indicates that P variability is the main influence, not annual P. | ||||||
Days Sev+ | 12.8 | 1.8 | 8.9 | 2002–2003 | 1.5 | p < 0.05 | |||||||
P | 221 | 67 | 5.4 | 1965–1966 | 56 | ||||||||
TmaxFS | 31.6 | 0.85 | 27.0 | 2002–2003 | 1.2 | p < 0.01 | |||||||
C 3pm | 3.1 | 0.3 | 1.4 | 1968–1969 | 0.0 | ||||||||
Tmax90 | 18.3 | 34.3 | 31.2 | 2000–2001 | 50 | p < 0.01 | |||||||
ΣFFDI/P | 4306 | 502 | 24.1 | 2002–2003 | 355 | p < 0.01 | P/ΣFFDI | 221.2 | 66.7 | 17.8 | 2002–2003 | 43.6 | p < 0.01 |
ΣFFDI/Tmax | 4306 | 502 | 20.2 | 1972–1973 | –516 | p < 0.01 | Tmax/ΣFFDI | 27.1 | 0.7 | 32.6 | 1995–1996 | 0.8 | p < 0.01 |
ΣFFDI/TmaxFS | 4306 | 502 | 9.8 | 1972–1973 | –337 | p < 0.05 | TmaxFS/ΣFFDI | 31.6 | 0.9 | 22.8 | 2003–2004 | 0.8 | p < 0.01 |
ΣFFDI/C 3pm | 4306 | 502 | 13.5 | 2000–2001 | 373 | p < 0.01 | C 3pm/ΣFFDI | 3.1 | 0.3 | 8.2 | 1997–1998 | 0.2 | p < 0.10 |
ΣFFDI/Tmax90 | 4306 | 502 | 6.2 | 1973–1974 | –289 | Tmax90/ΣFFDI | 18.3 | 34.3 | 28.6 | 2000–2001 | 39.0 | p < 0.01 | |
Tmax/P | 27.1 | 0.7 | 34.0 | 1996–1997 | 1.0 | p < 0.01 | P/Tmax | 221.2 | 66.7 | 18.7 | 1972–1973 | 87.6 | p < 0.01 |
TmaxFS/P | 31.6 | 0.9 | 29.3 | 2002–2003 | 1.2 | p < 0.01 | P/TmaxFS | 221.2 | 66.7 | 12.4 | 1972–1973 | 68.0 | p < 0.01 |
1971–2016 LH2019 inputs | Notes | ||||||||||||
DF | 7.6 | 0.4 | 10.5 | 1975–1976 | 0.7 | p < 0.05 | The direct inputs to the FFDI all contribute to the regime shift. DF and KBDI both had a positive influence. P had a higher influence than rain days. For RH, part of the recorded shift (−1.9 of −2.7) had a partial influence. Relative windspeed shifts indicate inhomogeneities, but also a small influence. Days Sev+ shows similar patterns to ΣFFDI. | ||||||
KBDI | 90.4 | 15.5 | 12.5 | 1975–1976 | 27.8 | p < 0.01 | |||||||
P | 428.0 | 61.9 | 3.9 | 2016–2017 | 94.8 | ||||||||
Pdays | 113.7 | 8.6 | 10.0 | 1993–1994 | −8.1 | p < 0.05 | |||||||
RH | 45.4 | 2.4 | 14.4 | 1996–1997 | −2.7 | p < 0.01 | |||||||
Tmax | 22.8 | 0.6 | 19.2 | 2002–2003 | 0.8 | p < 0.01 | |||||||
V | 19.8 | 1.4 | 38.4 | 1991–1992 | 2.6 | p < 0.01 | |||||||
ΣFFDI/DF | 4243 | 525 | 4.1 | 2012–2013 | 326 | DF/ΣFFDI | 7.6 | 0.4 | 2.3 | 1975–1976 | 0.2 | ||
ΣFFDI/KBDI | 4245 | 531 | 4.1 | 2012–2013 | 315 | KBDI/ΣFFDI | 91.1 | 14.8 | 5.8 | 1995–1996 | 6.8 | ||
ΣFFDI/P | 4243 | 525 | 7.1 | 2002–2003 | 316 | P/ΣFFDI | 428.0 | 61.9 | 4.3 | 2016–2017 | 93.5 | ||
ΣFFDI/Pdays | 4243 | 525 | 5.8 | 1976–1977 | 479 | Pdays/ΣFFDI | 113.7 | 8.6 | 7.0 | 1993–1994 | −5.4 | ||
ΣFFDI/RH | 4243 | 525 | 3.6 | 2012–2013 | 322 | RH/ΣFFDI | 45.4 | 2.4 | 14.5 | 1996–1997 | −1.9 | p < 0.01 | |
ΣFFDI/Tmax | 4243 | 525 | 5.0 | 1976–1977 | 466 | Tmax/ΣFFDI | 22.8 | 0.6 | 17.2 | 2006–2007 | 0.7 | p < 0.01 | |
ΣFFDI/V | 4243 | 525 | 5.3 | 1976–1977 | 574 | V/ΣFFDI | 19.8 | 1.4 | 38.3 | 1991–1992 | 2.5 | p < 0.01 | |
Sev+/DF | 12.6 | 1.9 | 3.4 | 2012–2013 | 1.1 | DF/Sev+ | 7.6 | 0.4 | 6.5 | 1974–1975 | 0.4 | ||
Sev+/KBDI | 12.6 | 1.9 | 5.7 | 1973–1974 | −2.1 | KBDI/Sev+ | 90.4 | 15.5 | 8.9 | 1995–1996 | 8.9 | p < 0.05 | |
Sev+/P | 12.6 | 1.9 | 6.7 | 1977–1978 | 1.6 | P/Sev+ | 428.0 | 61.9 | 3.4 | 2016–2017 | 89.5 | ||
Sev+/Pdays | 12.6 | 1.9 | 5.9 | 1976–1977 | 1.8 | Pdays/Sev+ | 113.7 | 8.6 | 7.9 | 1993–1994 | −5.9 | p < 0.10 | |
Sev+/RH | 12.6 | 1.9 | 3.9 | 1976–1977 | 1.4 | RH/Sev+ | 45.4 | 2.4 | 14.5 | 1996–1997 | −2.1 | p < 0.01 | |
Sev+/Tmax | 12.6 | 1.9 | 5.1 | 1976–1977 | 1.7 | Tmax/Sev+ | 22.8 | 0.6 | 17.9 | 1998–1999 | 0.6 | p < 0.01 | |
Sev+/Wspd | 12.6 | 1.9 | 5.8 | 1976–1977 | 2.1 | V/Sev+ | 19.8 | 1.4 | 38.3 | 1991–1992 | 2.5 | p < 0.01 |
Appendix B.4. Tasmania
Variable | Average | Std. Dev. | Ti0 | Year | Change | p Value | Variable | Average | Std. Dev. | Ti0 | Year | Change | p Value |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1957–2021 HQD inputs | Notes | ||||||||||||
HQD ΣFFDI | 1475 | 433 | 8.8 | 1997–1998 | 327 | p < 0.10 | ΣFFDI shifted up in 1997–1998, earlier than TmaxFS two years later, coinciding with Days VHi+. ΣFFDI also shifted up relative to P in 1999–2000, as did Tmax. ΣFFDI shifted up in 1997–1998 relative to cloud, showing the latter had a minimal influence (58 of 327). ΣFFDI changes were consistent with Tmax90, which shows a partial influence. | ||||||
HQD VHi+ | 2.8 | 4.5 | 13.0 | 1999–2000 | 4.3 | p < 0.01 | |||||||
P | 1345.7 | 161 | 2.3 | 1977–1978 | −53.3 | ||||||||
TmaxFS | 17.6 | 0.66 | 14.9 | 1999–2000 | 0.7 | p < 0.01 | |||||||
C 3pm | 5.3 | 0.2 | 3.7 | 2006–2007 | −0.1 | ||||||||
Tmax90 | 18.5 | 35.0 | 15.4 | 1999–2000 | 36 | p < 0.01 | |||||||
ΣFFDI/P | 1475 | 433 | 14.2 | 1999–2000 | 233 | p < 0.01 | P/ΣFFDI | 1345.7 | 161.0 | 8.4 | 2007–2008 | 78.3 | p < 0.10 |
ΣFFDI/Tmax | 1475 | 433 | 5.8 | 1968–1969 | –254 | Tmax/ΣFFDI | 14.9 | 0.5 | 14.3 | 1970–1971 | 0.4 | p < 0.01 | |
ΣFFDI/TmaxFS | 1475 | 433 | 2.7 | 1967–1968 | –182 | TmaxFS/ΣFFDI | 17.6 | 0.7 | 10.6 | 2009–2010 | 0.5 | p < 0.05 | |
ΣFFDI/C 3pm | 1475 | 433 | 7.7 | 1997–1998 | 269 | p < 0.10 | C 3pm/ΣFFDI | 5.3 | 0.2 | 1.8 | 1959–1960 | −0.1 | |
ΣFFDI/Tmax90 | 1475 | 433 | 1.3 | 1968–1969 | –126 | Tmax90/ΣFFDI | 18.5 | 35.0 | 8.2 | 1999–2000 | 20.6 | p < 0.10 | |
Tmax/P | 14.9 | 0.5 | 20.1 | 1998–1999 | 0.5 | p < 0.01 | P/Tmax | 1345.7 | 161.0 | 6.7 | 1967–1968 | 139.2 | |
TmaxFS/P | 17.6 | 0.7 | 14.0 | 1999–2000 | 0.6 | p < 0.01 | P/TmaxFS | 1345.7 | 161.0 | 4.6 | 1967–1968 | 115.5 | |
1971–2016 LH2019 inputs | Notes | ||||||||||||
DF | 5.4 | 0.4 | 6.4 | 1977–1978 | 0.5 | The direct inputs to the FFDI all contribute to the regime shift. DF and KBDI both had a positive influence. P had a minor influence. RH shows limited influence (−2.6 of −2.9). Relative windspeed shift indicates inhomogeneities (shift unchanged). Days VHi+ shows similar patterns to ΣFFDI. | |||||||
KBDI | 21.6 | 7.2 | 6.7 | 1999–2000 | 5.8 | ||||||||
P | 603.2 | 93.6 | 6.2 | 1977–1978 | −101.9 | ||||||||
Pdays | 145.4 | 11.1 | 5.0 | 1978–1979 | −9.3 | ||||||||
RH | 56.0 | 2.3 | 18.4 | 1996–1997 | −2.9 | p < 0.01 | |||||||
Tmax | 17.3 | 0.5 | 19.0 | 2006–2007 | 0.8 | p < 0.01 | |||||||
V | 18.8 | 2.0 | 30.8 | 1993–1994 | 3.2 | p < 0.01 | |||||||
ΣFFDI/DF | 1497 | 423 | 2.7 | 1995–1996 | 143 | DF/ΣFFDI | 5.4 | 0.4 | 3.7 | 1975–1976 | 0.3 | ||
ΣFFDI/KBDI | 1497 | 423 | 2.0 | 1982–1983 | 163 | KBDI/ΣFFDI | 21.6 | 7.2 | 3.5 | 2012–2013 | 5.0 | ||
ΣFFDI/P | 1497 | 423 | 9.6 | 1998–1999 | 268 | p < 0.05 | P/ΣFFDI | 603.2 | 93.6 | 5.5 | 1998–1999 | 47.3 | |
ΣFFDI/Pdays | 1497 | 423 | 11.2 | 2006–2007 | 408 | p < 0.05 | Pdays/ΣFFDI | 145.4 | 11.1 | 8.3 | 2007–2008 | 9.7 | p < 0.10 |
ΣFFDI/RH | 1497 | 423 | 4.4 | 1990–1991 | –281 | RH/ΣFFDI | 56.0 | 2.3 | 19.4 | 1990–1991 | −2.6 | p < 0.01 | |
ΣFFDI/Tmax | 1497 | 423 | 8.4 | 2009–2010 | –485 | p < 0.10 | Tmax/ΣFFDI | 17.3 | 0.5 | 22.9 | 2009–2010 | 0.8 | p < 0.01 |
ΣFFDI/V | 1497 | 423 | 4.4 | 1997–1998 | 365 | V/ΣFFDI | 18.8 | 2.0 | 30.1 | 1992–1993 | 3.2 | p < 0.01 | |
VHi+/DF | 3.0 | 4.8 | 3.5 | 2006–2007 | 2.4 | DF/VHi+ | 5.4 | 0.4 | 5.0 | 1977–1978 | 0.3 | ||
VHi+/KBDI | 3.0 | 4.8 | 2.7 | 2006–2007 | 2.3 | KBDI/VHi+ | 21.6 | 7.2 | 3.7 | 1978–1979 | 4.7 | ||
VHi+/P | 3.0 | 4.8 | 8.1 | 1999–2000 | 3.3 | p < 0.10 | P/VHi+ | 603.2 | 93.6 | 4.7 | 1977–1978 | −72.8 | |
VHi+/Pdays | 3.0 | 4.8 | 10.6 | 2006–2007 | 4.7 | p < 0.05 | Pdays/VHi+ | 145.4 | 11.1 | 6.7 | 2007–2008 | 9.3 | |
VHi+/RH | 3.0 | 4.8 | 1.9 | 1990–1991 | −2.2 | RH/VHi+ | 56.0 | 2.3 | 17.7 | 1989–1990 | −2.6 | p < 0.01 | |
VHi+/Tmax | 3.0 | 4.8 | 5.7 | 2008–2009 | −4.4 | Tmax/VHi+ | 17.3 | 0.5 | 21.2 | 2009–2010 | 0.8 | p < 0.01 | |
VHi+/Wspd | 3.0 | 4.8 | 3.8 | 1999–2000 | 3.7 | V/VHi+ | 18.8 | 2.0 | 29.9 | 1992–1993 | 3.1 | p < 0.01 |
Appendix B.5. Southeastern Australia
Variable | Average | Std. Dev. | Ti0 | Year | Change | p value | Variable | Average | Std. Dev. | Ti0 | Year | Change | p Value |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1957–2021 HQD inputs | Notes | ||||||||||||
ΣFFDI | 2920 | 584 | 11.9 | 1997–1998 | 520 | p < 0.05 | ΣFFDI shifted up in 1997–1998 and Days Sev+ in 2002–2003, consistent with the shift in TmaxFS. Relative changes in the FFDI show warmer and wetter conditions from the early 1970s with a later shift in Tmax relative to P in the late 1990s. ΣFFDI shifted up in 2000–2001 relative to cloud, showing the latter had a small influence (175 of 616). Tmax90 had a limited influence. P shifts up relative to Tmax in 2009–2010. | ||||||
Days Sev+ | 4.6 | 2.0 | 12.4 | 2002–2003 | 1.9 | p < 0.01 | |||||||
P | 624.5 | 86.1 | 4.9 | 1994–1995 | −46.3 | ||||||||
TmaxFS | 25.0 | 0.8 | 24.2 | 2002–2003 | 1.1 | p < 0.01 | |||||||
C 3pm | 4.4 | 0.2 | 3.8 | 2002–2003 | −0.1 | ||||||||
Tmax90 | 17.3 | 32.3 | 26.5 | 2006–2007 | 48 | p < 0.01 | |||||||
ΣFFDI/P | 2920 | 584 | 20.4 | 2006–07 | 329 | p < 0.01 | P/ΣFFDI | 624.5 | 86.1 | 15.9 | 2009–2010 | 46.6 | p < 0.01 |
ΣFFDI/Tmax | 2920 | 584 | 11.7 | 2009–2010 | −451 | p < 0.05 | Tmax/ΣFFDI | 20.9 | 0.6 | 26.8 | 1998–1999 | 0.6 | p < 0.01 |
ΣFFDI/TmaxFS | 2920 | 584 | 9.2 | 2009–2010 | −387 | p < 0.05 | TmaxFS/ΣFFDI | 25.0 | 0.8 | 20.8 | 2009–2010 | 0.7 | p < 0.01 |
ΣFFDI/C 3pm | 2920 | 584 | 13.4 | 1995–1996 | 351 | p < 0.01 | C 3pm/ΣFFDI | 4.4 | 0.2 | 4.9 | 1995–1996 | 0.1 | |
ΣFFDI/Tmax90 | 2920 | 584 | 5.5 | 2009–2010 | −379 | Tmax90/ΣFFDI | 17.3 | 32.3 | 22.6 | 2006–2007 | 35.2 | p < 0.01 | |
Tmax/P | 20.9 | 0.6 | 30.3 | 1999–2000 | 0.8 | p < 0.01 | P/Tmax | 624.5 | 86.1 | 13.1 | 2009–2010 | 95.6 | p < 0.01 |
TmaxFS/P | 25.0 | 0.8 | 24.4 | 2005–2006 | 1.0 | p < 0.01 | P/TmaxFS | 624.5 | 86.1 | 11.2 | 2009–2010 | 86.4 | p < 0.05 |
1971–2016 LH2019 inputs | Notes | ||||||||||||
DF | 6.2 | 0.6 | 9.4 | 1996–1997 | 0.5 | p < 0.05 | The direct inputs to the FFDI all contribute to the regime shift. DF and KBDI both had a positive influence. For RH, part of the recorded shift (−1.5 of −3.0) had a relative influence. Relative windspeed shift indicates inhomogeneities. Days Sev+ shows similar patterns to ΣFFDI. The occluded warmer/wetter events from 2010 onwards show both FFDI measures reducing compared to Tmax, which increased by 0.7 °C. | ||||||
KBDI | 49.5 | 14.4 | 10.8 | 1996–1997 | 14.1 | p < 0.05 | |||||||
P | 637.8 | 96.3 | 9.5 | 1977–1978 | −130.5 | p < 0.05 | |||||||
Pdays | 131.4 | 8.7 | 6.8 | 1977–1978 | −9.6 | ||||||||
RH | 52.0 | 2.4 | 17.4 | 1996–1997 | −3.0 | p < 0.01 | |||||||
Tmax | 20.6 | 0.6 | 21.1 | 2002–2003 | 0.9 | p < 0.01 | |||||||
V | 19.0 | 1.4 | 36.5 | 1994–1995 | 2.6 | p < 0.01 | |||||||
ΣFFDI/DF | 2924 | 606 | 4.5 | 2011–2012 | 236 | DF/ΣFFDI | 6.2 | 0.6 | 3.2 | 2011–2012 | −0.2 | ||
ΣFFDI/KBDI | 2924 | 606 | 3.8 | 2011–2012 | 232 | KBDI/ΣFFDI | 49.5 | 14.4 | 3.3 | 1996–1997 | 3.8 | ||
ΣFFDI/P | 2924 | 606 | 7.1 | 2006–2007 | 316 | P/ΣFFDI | 637.8 | 96.3 | 4.7 | 2013–2014 | 62.8 | ||
ΣFFDI/Pdays | 2924 | 606 | 10.6 | 2000–2001 | 365 | p < 0.05 | Pdays/ΣFFDI | 131.4 | 8.7 | 6.9 | 2007–2008 | 5.0 | |
ΣFFDI/RH | 2924 | 606 | 5.0 | 1990–1991 | −232 | RH/ΣFFDI | 52.0 | 2.4 | 14.0 | 1996–1997 | −1.5 | p < 0.01 | |
ΣFFDI/Tmax | 2924 | 606 | 10.3 | 2009–2010 | −628 | p < 0.05 | Tmax/ΣFFDI | 20.6 | 0.6 | 19.5 | 2009–2010 | 0.7 | p < 0.01 |
ΣFFDI/V | 2924 | 606 | 4.6 | 1992–1993 | −583 | V/ΣFFDI | 19.0 | 1.4 | 35.0 | 1994–1995 | 2.3 | p < 0.01 | |
Sev+/DF | 4.6 | 2.0 | 2.9 | 2011–2012 | 0.7 | DF/Sev+ | 6.2 | 0.6 | 3.2 | 1974–1975 | 0.3 | ||
Sev+/KBDI | 4.6 | 2.0 | 2.6 | 2011–2012 | 0.6 | KBDI/Sev+ | 49.5 | 14.4 | 4.0 | 1996–1997 | 4.2 | ||
Sev+/P | 4.6 | 2.0 | 6.9 | 2002–2003 | 1.0 | P/Sev+ | 637.8 | 96.3 | 4.2 | 2009–2010 | 46.1 | ||
Sev+/Pdays | 4.6 | 2.0 | 10.4 | 2002–2003 | 1.2 | p < 0.05 | Pdays/Sev+ | 131.4 | 8.7 | 6.8 | 2007–2008 | 4.9 | |
Sev+/RH | 4.6 | 2.0 | 4.8 | 1972–1973 | 2.4 | RH/Sev+ | 52.0 | 2.4 | 14.0 | 1996–1997 | −1.6 | p < 0.01 | |
Sev+/Tmax | 4.6 | 2.0 | 12.9 | 2009–2010 | −2.2 | p < 0.01 | Tmax/Sev+ | 20.6 | 0.6 | 21.5 | 2009–2010 | 0.7 | p < 0.01 |
Sev+/V | 4.6 | 2.0 | 5.0 | 1992–1993 | −2.1 | V/Sev+ | 19.0 | 1.4 | 35.3 | 1994–1995 | 2.3 | p < 0.01 |
Appendix B.6. Queensland
Variable | Average | Std. Dev. | Ti0 | Year | Change | p Value | Variable | Average | Std. Dev. | Ti0 | Year | Change | p Value |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1957–2021 HQD inputs | Notes | ||||||||||||
ΣFFDI | 4373 | 528 | 10.8 | 2012–2013 | 600 | p < 0.05 | ΣFFDI and Days Sev+ shifted up in 2012–2013, consistent with the shift in TmaxFS and Tmax90. Relative changes in the FFDI show warmer and wetter conditions from the early 1970s with a later shift in Tmax relative to p in the late 1990s, with TmaxFS following in 2002–2003. Relative to cloud, the ΣFFDI shift was two–thirds the full shift in 2012–2013. P and TmaxFS show shifts relative to ΣFFDI over the 2007–2010 period, so the wet period 2010–2012 influenced the timing of the subsequent shift in ΣFFDI. | ||||||
Days Sev+ | 53.7 | 8.5 | 12.5 | 2012–2013 | 10.3 | p < 0.01 | |||||||
P | 617.9 | 150.3 | 4.7 | 1970–1971 | 101.6 | ||||||||
TmaxFS | 33.7 | 0.8 | 15.0 | 2012–2013 | 1.1 | p < 0.01 | |||||||
C 3pm | 3.5 | 0.3 | 6.8 | 1973–1974 | 0.2 | ||||||||
Tmax90 | 16.5 | 28.4 | 36.3 | 2012–2013 | 59 | p < 0.01 | |||||||
ΣFFDI/P | 4373 | 528 | 24.4 | 2002–2003 | 312 | p < 0.01 | P/ΣFFDI | 1345.7 | 161.0 | 8.4 | 2007–2008 | 78.3 | p < 0.10 |
ΣFFDI/Tmax | 4373 | 528 | 19.3 | 1972–1973 | –470 | p < 0.01 | Tmax/ΣFFDI | 14.9 | 0.5 | 14.3 | 1970–1971 | 0.4 | p < 0.01 |
ΣFFDI/TmaxFS | 4373 | 528 | 11.7 | 1970–1971 | –342 | p < 0.05 | TmaxFS/ΣFFDI | 17.6 | 0.7 | 10.6 | 2009–2010 | 0.5 | p < 0.05 |
ΣFFDI/C 3pm | 4373 | 528 | 15.0 | 2012–2013 | 455 | p < 0.01 | C 3pm/ΣFFDI | 5.3 | 0.2 | 1.8 | 1959–1960 | −0.1 | |
ΣFFDI/Tmax90 | 4373 | 528 | 9.2 | 1973–1974 | –386 | p < 0.05 | Tmax90/ΣFFDI | 18.5 | 35.0 | 8.2 | 1999–2000 | 20.6 | p < 0.10 |
Tmax/P | 30.3 | 0.6 | 33.9 | 1997–1998 | 0.8 | p < 0.01 | P/Tmax | 1345.7 | 161.0 | 6.7 | 1967–1968 | 139.2 | |
TmaxFS/P | 33.4 | 0.8 | 25.9 | 2002–2003 | 0.9 | p < 0.01 | P/TmaxFS | 1345.7 | 161.0 | 4.6 | 1967–1968 | 115.5 | |
1971–2016 LH2019 inputs | Notes | ||||||||||||
DF | 7.0 | 0.5 | 4.4 | 1977–1978 | 0.5 | Tmax (2000–2001) and V (inhomogenity 1992–1993) were the only inputs to shift. The direct inputs to the FFDI all had a positive but partial influence on the FFDI in 2012–2013. RH shows an anomalous increase at the end of the record. Relative windspeed shifts indicate inhomogeneities. Days Sev+ show similar patterns to ΣFFDI. | |||||||
KBDI | 105.3 | 16.4 | 5.1 | 1990–1991 | 11.2 | ||||||||
P | 1053.1 | 270.0 | 6.5 | 1977–1978 | −302.0 | ||||||||
Pdays | 101.4 | 13.4 | 2.2 | 1976–1977 | −9.3 | ||||||||
RH | 49.2 | 2.3 | 7.2 | 1977–1978 | −2.6 | ||||||||
Tmax | 28.3 | 0.5 | 13.4 | 2001–2002 | 0.6 | p < 0.01 | |||||||
V | 17.5 | 1.7 | 35.8 | 1992–1993 | 3.0 | p < 0.01 | |||||||
ΣFFDI/DF | 4290 | 578 | 10.3 | 2012–2013 | 464 | p < 0.05 | DF/ΣFFDI | 7.0 | 0.5 | 5.5 | 2012–2013 | −0.3 | |
ΣFFDI/KBDI | 4290 | 578 | 8.3 | 2012–13 | 395 | p < 0.10 | KBDI/ΣFFDI | 105.3 | 16.4 | 4.3 | 1990–1991 | 5.2 | |
ΣFFDI/P | 4290 | 578 | 9.0 | 2012–2013 | 433 | p < 0.05 | P/ΣFFDI | 1053.1 | 270.0 | 6.0 | 2002–2003 | 112.5 | |
ΣFFDI/Pdays | 4290 | 578 | 10.0 | 2002–2003 | 330 | p < 0.05 | Pdays/ΣFFDI | 101.4 | 13.4 | 8.7 | 2005–2006 | 7.7 | p < 0.10 |
ΣFFDI/RH | 4290 | 578 | 11.1 | 2012–2013 | 461 | p < 0.05 | RH/ΣFFDI | 49.2 | 2.3 | 6.6 | 2015–2016 | 2.2 | |
ΣFFDI/Tmax | 4290 | 578 | 7.3 | 1997–1998 | –329 | Tmax/ΣFFDI | 28.3 | 0.5 | 15.3 | 1997–1998 | 0.4 | p < 0.01 | |
ΣFFDI/V | 4290 | 578 | 7.3 | 1995–1996 | –814 | V/ΣFFDI | 17.5 | 1.7 | 36.8 | 1993–1994 | 2.9 | p < 0.01 | |
Sev+/DF | 12.4 | 2.1 | 7.6 | 2012–2013 | 1.5 | p < 0.10 | DF/Sev+ | 7.0 | 0.5 | 3.7 | 2016–2017 | −0.6 | |
Sev+/KBDI | 12.4 | 2.1 | 6.3 | 2012–2013 | 1.3 | KBDI/Sev+ | 105.3 | 16.4 | 4.9 | 1990–1991 | 5.6 | ||
Sev+/P | 12.4 | 2.1 | 7.9 | 2002–2003 | 1.1 | p < 0.10 | P/Sev+ | 1053.1 | 270.0 | 7.1 | 1974–1975 | −262.7 | |
Sev + /Pdays | 12.4 | 2.1 | 10.3 | 2002–2003 | 1.3 | p < 0.05 | Pdays/Sev+ | 101.4 | 13.4 | 7.4 | 2005–2006 | 7.4 | |
Sev+/RH | 12.4 | 2.1 | 8.2 | 2012–2013 | 1.5 | p < 0.10 | RH/Sev+ | 49.2 | 2.3 | 5.7 | 2015–2016 | 2.2 | |
Sev+/Tmax | 12.4 | 2.1 | 8.5 | 1997–1998 | −1.3 | p < 0.10 | Tmax/Sev+ | 28.3 | 0.5 | 17.8 | 1997–1998 | 0.4 | p < 0.01 |
Sev+/V | 12.4 | 2.1 | 6.7 | 1995–1996 | −2.8 | V/Sev+ | 17.5 | 1.7 | 36.7 | 1993–1994 | 2.9 | p < 0.01 |
Appendix B.7. Northern Territory
Variable | Average | Std. Dev. | Ti0 | Year | Change | p Value | Variable | Average | Std. Dev. | Ti0 | Year | Change | p Value |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1957–2021 HQD inputs | Notes | ||||||||||||
ΣFFDI | 4655 | 568 | 6.2 | 2017–2018 | 630 | This is the only region not to show shifts for ΣFFDI and Days Sev+, but the size of the change (if sustained) will register in future. Relative changes are varied, perhaps complicated by arid inland to tropical climates in the Territory. | |||||||
Days Sev+ | 14.4 | 2.0 | 5.4 | 2012–2013 | 1.5 | ||||||||
P | 563.6 | 161.9 | 8.1 | 1966–1967 | 159.6 | p < 0.10 | |||||||
TmaxFS | 35.3 | 0.8 | 12.1 | 1979–1980 | 0.8 | p < 0.01 | |||||||
C 3pm | 3.3 | 0.3 | 11.0 | 1971–1972 | 0.3 | p < 0.05 | |||||||
Tmax90 | 18.5 | 31.6 | 29.1 | 2012–2013 | 59 | p < 0.01 | |||||||
ΣFFDI/P | 4655 | 568 | 23.0 | 2002–2003 | 305 | p < 0.01 | P/ΣFFDI | 563.6 | 161.9 | 23.1 | 1999–2000 | 83.7 | p < 0.01 |
ΣFFDI/Tmax | 4655 | 568 | 27.5 | 1971–1972 | −628 | p < 0.01 | Tmax/ΣFFDI | 32.2 | 0.7 | 28.5 | 1971–1972 | 0.8 | p < 0.01 |
ΣFFDI/TmaxFS | 4655 | 568 | 23.4 | 1967–1968 | −543 | p < 0.01 | TmaxFS/ΣFFDI | 35.3 | 0.8 | 24.1 | 1979–1980 | 0.6 | p < 0.01 |
ΣFFDI/C 3pm | 4655 | 568 | 8.4 | 2017–18 | 589 | p < 0.10 | C 3pm/ΣFFDI | 3.3 | 0.3 | 9.6 | 1968–1969 | 0.2 | p < 0.05 |
ΣFFDI/Tmax90 | 4655 | 568 | 16.7 | 1973–1974 | −576 | p < 0.01 | Tmax90/ΣFFDI | 18.5 | 31.6 | 26.3 | 2012–2013 | 47.8 | p < 0.01 |
Tmax/P | 32.2 | 0.7 | 28.5 | 1979–1980 | 0.8 | p < 0.01 | P/Tmax | 563.6 | 161.9 | 26.6 | 1971–1972 | 213.2 | p < 0.01 |
TmaxFS/P | 35.3 | 0.8 | 26.3 | 1979–1980 | 0.8 | p < 0.01 | P/TmaxFS | 563.6 | 161.9 | 21.9 | 1997–1998 | 152.4 | p < 0.01 |
1971–2016 LH2019 inputs | Notes | ||||||||||||
DF | 7.7 | 0.6 | 4.1 | 1979–1980 | 0.5 | The dates 1979–1980 are possibly related to a potential regime shift in central Australia, but this needs to be followed up. P, Tmax, and RH show strong interannual control over FFDI metrics. | |||||||
KBDI | 129.8 | 20.3 | 7.6 | 1979–1980 | 21.6 | p < 0.1 | |||||||
P | 876.6 | 209.4 | 3.3 | 1977–1978 | −129.2 | ||||||||
Pdays | 71.6 | 12.7 | 2.8 | 1976–1977 | −9.9 | ||||||||
RH | 34.3 | 3.0 | 11.8 | 1979–1980 | −4.0 | p < 0.05 | |||||||
Tmax | 31.1 | 0.6 | 8.9 | 1979–1980 | 0.7 | p < 0.05 | |||||||
V | 16.6 | 1.7 | 35.2 | 1990–1991 | 3.0 | p < 0.01 | |||||||
ΣFFDI/DF | 4517 | 581 | 5.6 | 2009–2010 | 243 | DF/ΣFFDI | 7.7 | 0.6 | 6.7 | 2009–2010 | −0.3 | ||
ΣFFDI/KBDI | 4517 | 581 | 2.3 | 2016–2017 | −449 | KBDI/ΣFFDI | 129.8 | 20.3 | 3.3 | 1989–1990 | 5.6 | ||
ΣFFDI/P | 4517 | 581 | 7.6 | 1979–1980 | 401 | p < 0.10 | P/ΣFFDI | 876.6 | 209.4 | 3.9 | 1994–1995 | 76.4 | |
ΣFFDI/Pdays | 4517 | 581 | 7.9 | 1985–1986 | 274 | p < 0.10 | Pdays/ΣFFDI | 71.6 | 12.7 | 6.4 | 2009–2010 | 6.5 | |
ΣFFDI/RH | 4517 | 581 | 4.3 | 1992–1993 | −167 | RH/ΣFFDI | 34.3 | 3.0 | 7.0 | 1974–1975 | −2.2 | ||
ΣFFDI/Tmax | 4517 | 581 | 8.7 | 1997–1998 | −325 | p < 0.10 | Tmax/ΣFFDI | 31.1 | 0.6 | 12.1 | 1995–1996 | 0.4 | p < 0.01 |
ΣFFDI/V | 4517 | 581 | 5.9 | 1979–1980 | 650 | V/ΣFFDI | 16.6 | 1.7 | 35.2 | 1990–1991 | 2.9 | p < 0.01 | |
Sev+/DF | 13.9 | 2.0 | 8.3 | 1982–1983 | 1.1 | p < 0.10 | DF/Sev+ | 7.7 | 0.6 | 1.0 | 2009–2010 | −0.1 | |
Sev+/KBDI | 13.9 | 2.0 | 4.0 | 1982–1983 | 0.7 | KBDI/Sev+ | 129.8 | 20.3 | 4.9 | 1989–1990 | 6.8 | ||
Sev+/P | 13.9 | 2.0 | 9.6 | 1979–1980 | 1.8 | p < 0.05 | P/Sev+ | 876.6 | 209.4 | 2.1 | 1994–1995 | 67.1 | |
Sev+/Pdays | 13.9 | 2.0 | 10.3 | 1985–1986 | 1.2 | p < 0.05 | Pdays/Sev+ | 71.6 | 12.7 | 2.8 | 1994–1995 | 3.5 | |
Sev+/RH | 13.9 | 2.0 | 2.1 | 1974–1975 | −0.9 | RH/Sev+ | 34.3 | 3.0 | 9.7 | 1974–1975 | −3.1 | p < 0.05 | |
Sev+/Tmax | 13.9 | 2.0 | 3.4 | 2015–2016 | −1.7 | Tmax/Sev+ | 31.1 | 0.6 | 12.2 | 1997–1998 | 0.4 | p < 0.01 | |
Sev+/V | 13.9 | 2.0 | 7.0 | 1979–1980 | 2.4 | V/Sev+ | 16.6 | 1.7 | 35.2 | 1990–1991 | 2.9 | p < 0.01 |
Appendix B.8. Western Australia
Variable | Average | Std. Dev. | Ti0 | Year | Change | p Value | Variable | Average | Std. Dev. | Ti0 | Year | Change | p Value |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1957–2021 HQD inputs | Notes | ||||||||||||
ΣFFDI | 4506 | 307 | 16.0 | 2002–2003 | 332 | p < 0.01 | ΣFFDI and Days Sev+ shifted up in 2002–2003, consistent with the shift in TmaxFS. Relative changes in ΣFFDI are consistent with TmaxFS, counter to P, and larger than Tmax and TmaxFS. C 3 pm had a small influence. Most variables shifted independently of ΣFFDI in the mid to late 1990s, where warmer and wetter conditions suppressed ΣFFDI until 2002–2003. | ||||||
Days Sev+ | 13.9 | 1.3 | 12.5 | 2002–2003 | 1.2 | p < 0.01 | |||||||
P | 367.2 | 90.4 | 8.3 | 1994–1995 | 64.7 | p < 0.10 | |||||||
TmaxFS | 33.4 | 0.8 | 20.3 | 2002–2003 | 1.0 | p < 0.01 | |||||||
C 3pm | 3.1 | 0.2 | 3.3 | 1963–1964 | 0.1 | ||||||||
Tmax90 | 16.5 | 28.4 | 36.3 | 2012–2013 | 59 | p < 0.01 | |||||||
ΣFFDI/P | 4511 | 314 | 34.9 | 2002–2003 | 396 | p < 0.01 | P/ΣFFDI | 367.2 | 90.4 | 32.8 | 1994–1995 | 107.1 | p < 0.01 |
ΣFFDI/Tmax | 4511 | 314 | 17.1 | 1995–1996 | −208 | p < 0.01 | Tmax/ΣFFDI | 29.6 | 0.7 | 30.7 | 1995–1996 | 0.5 | p < 0.01 |
ΣFFDI/TmaxFS | 4511 | 314 | 5.0 | 1972–1973 | −99 | TmaxFS/ΣFFDI | 33.4 | 0.8 | 8.4 | 1995–1996 | 0.3 | p < 0.10 | |
ΣFFDI/C 3pm | 4511 | 314 | 18.9 | 1994–1995 | 295 | p < 0.01 | C 3pm/ΣFFDI | 3.1 | 0.2 | 5.9 | 2006–2007 | 0.1 | |
ΣFFDI/Tmax90 | 4511 | 314 | 11.4 | 1998–1999 | −222 | p < 0.05 | Tmax90/ΣFFDI | 18.4 | 31.3 | 30.7 | 1998–1999 | 29.1 | p < 0.01 |
Tmax/P | 29.6 | 0.7 | 42.7 | 1994–1995 | 1.1 | p < 0.01 | P/Tmax | 367.2 | 90.4 | 35.9 | 1994–1995 | 153.8 | p < 0.01 |
TmaxFS/P | 33.4 | 0.8 | 32.4 | 1996–1997 | 1.1 | p < 0.01 | P/TmaxFS | 367.2 | 90.4 | 30.1 | 1996–1997 | 120.5 | p < 0.01 |
1971–2016 LH2019 inputs | Notes | ||||||||||||
DF | 7.7 | 0.4 | 5.3 | 1976–77 | 0.4 | Rh, Tmax and V all show regime shifts, which are consistent with the shift in ΣFFDI. Both ΣFFDI and Days Sev+ shifted up relative to KBDI and P. On the other hand, RH shows a negative shift relative to both FFDI metrics, V shows an independent shift consistent with a measurement of inhomogenity and Tmax shows the 2010–2011 shift related to regional warming. | |||||||
KBDI | 102.5 | 13.1 | 5.8 | 1976–1977 | 14.7 | ||||||||
P | 475.4 | 82.9 | 1.7 | 2000–2001 | −32.6 | ||||||||
Pdays | 83.8 | 7.0 | 7.1 | 1976–1977 | −8.9 | ||||||||
RH | 45.8 | 1.7 | 20.4 | 2000–2001 | −2.3 | p < 0.01 | |||||||
Tmax | 26.8 | 0.5 | 17.2 | 2006–2007 | 0.7 | p < 0.01 | |||||||
V | 21.0 | 1.0 | 37.4 | 1994–1995 | 1.8 | p < 0.01 | |||||||
ΣFFDI/DF | 4474 | 305 | 8.3 | 2002–2003 | 190 | p < 0.10 | DF/ΣFFDI | 7.7 | 0.4 | 3.2 | 1988–1989 | −0.1 | |
ΣFFDI/KBDI | 4474 | 305 | 7.9 | 1984–1985 | 181 | p < 0.10 | KBDI/ΣFFDI | 102.5 | 13.1 | 5.1 | 1984–1985 | −6.5 | |
ΣFFDI/P | 4474 | 305 | 11.5 | 2002–2003 | 249 | p < 0.05 | P/ΣFFDI | 475.4 | 82.9 | 5.3 | 1996–1997 | 43.4 | |
ΣFFDI/Pdays | 4474 | 305 | 7.4 | 2002–2003 | 231 | p < 0.10 | Pdays/ΣFFDI | 83.8 | 7.0 | 4.9 | 1974–1975 | −7.9 | |
ΣFFDI/RH | 4474 | 305 | 3.0 | 2012–2013 | 228 | RH/ΣFFDI | 45.8 | 1.7 | 17.4 | 1999–2000 | −2.0 | p < 0.01 | |
ΣFFDI/Tmax | 4474 | 305 | 3.6 | 2010–2011 | –209 | Tmax/ΣFFDI | 26.8 | 0.5 | 13.8 | 2010–2011 | 0.5 | p < 0.01 | |
ΣFFDI/V | 4474 | 305 | 7.0 | 2002–2003 | 319 | V/ΣFFDI | 21.0 | 1.0 | 37.1 | 1994–1995 | 1.7 | p < 0.01 | |
Sev+/DF | 13.7 | 1.2 | 6.9 | 2002–2003 | 0.7 | DF/Sev+ | 7.7 | 0.4 | 3.6 | 1988–1989 | −0.2 | ||
Sev+/KBDI | 13.7 | 1.2 | 10.0 | 1984–1985 | 0.8 | p < 0.05 | KBDI/Sev+ | 102.5 | 13.1 | 6.8 | 1984–1985 | −7.3 | |
Sev+/P | 13.7 | 1.2 | 9.4 | 2002–2003 | 1.0 | p < 0.05 | P/Sev+ | 475.4 | 82.9 | 4.2 | 1994–1995 | 41.6 | |
Sev+/Pdays | 13.7 | 1.2 | 6.6 | 2002–2003 | 0.9 | Pdays/Sev+ | 83.8 | 7.0 | 4.6 | 1974–1975 | −7.9 | ||
Sev+/RH | 13.7 | 1.2 | 2.5 | 2002–2003 | 0.7 | RH/Sev+ | 45.8 | 1.7 | 17.7 | 1999–2000 | −2.0 | p < 0.01 | |
Sev+/Tmax | 13.7 | 1.2 | 3.8 | 2010–11 | −0.9 | Tmax/Sev+ | 26.8 | 0.5 | 14.3 | 2010–2011 | 0.6 | p < 0.01 | |
Sev+/V | 13.7 | 1.2 | 5.6 | 2002–2003 | 1.1 | V/Sev+ | 21.0 | 1.0 | 36.9 | 1994–1995 | 1.7 | p < 0.01 |
Appendix B.9. South West Western Australia
Variable | Average | Std. Dev. | Ti0 | Year | Change | p Value | Variable | Average | Std. Dev. | Ti0 | Year | Change | p Value |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1957–2021 HQD inputs | Notes | ||||||||||||
ΣFFDI | 3339 | 416 | 9.6 | 2000–2001 | 339 | p < 0.05 | ΣFFDI shifted up in 2001–2002, Days Sev+ the following year. Both Tmax measures shifted in the late 2000s, but the record of TmaxFS from 1910 shows shifts with a 1-year lag from adjacent sea temperatures in 1969–1970 and 2009–2010. Relative changes are consistent with ΣFFDI for P and Tmax but not for C 3pm and Tmax90. Most variables show relative shifts independent of ΣFFDI, consistent with the above dates for TmaxFS. | ||||||
Days Sev+ | 7.6 | 1.5 | 14.2 | 2002–2003 | 1.5 | p < 0.01 | |||||||
P | 627.8 | 80.4 | 9.5 | 1968–1969 | −81.7 | p < 0.05 | |||||||
TmaxFS | 26.2 | 0.8 | 19.0 | 2006–2007 | 0.9 | p < 0.01 | |||||||
C 3pm | 3.7 | 0.2 | 6.2 | 1973–1974 | 0.2 | ||||||||
Tmax90 | 17.6 | 32.8 | 30.5 | 2006–2007 | 54 | p < 0.01 | |||||||
ΣFFDI/P | 3339 | 416 | 6.3 | 2002–2003 | 111 | P/ΣFFDI | 627.8 | 80.4 | 3.8 | 1968–1969 | −20.8 | ||
ΣFFDI/Tmax | 3324 | 401 | 5.5 | 1967–1968 | 290 | Tmax/ΣFFDI | 22.5 | 0.6 | 23.3 | 1995–1996 | 0.6 | p < 0.01 | |
ΣFFDI/TmaxFS | 3324 | 401 | 6.8 | 1967–1968 | 322 | TmaxFS/ΣFFDI | 26.2 | 0.8 | 14.6 | 2009–2010 | 0.8 | p < 0.01 | |
ΣFFDI/C 3pm | 3339 | 416 | 11.3 | 1968–1969 | 455 | p < 0.05 | C 3pm/ΣFFDI | 3.7 | 0.2 | 9.6 | 1973–1974 | 0.2 | p < 0.05 |
ΣFFDI/Tmax90 | 3324 | 401 | 9.3 | 1968–1969 | 363 | p < 0.05 | Tmax90/ΣFFDI | 17.6 | 32.8 | 27.8 | 2009–2010 | 48.5 | p < 0.01 |
Tmax/P | 22.5 | 0.6 | 24.9 | 1993–1994 | 0.7 | p < 0.01 | P/Tmax | 630.6 | 77.8 | 9.9 | 1968–1969 | −81.6 | p < 0.05 |
TmaxFS/P | 26.2 | 0.8 | 15.9 | 2006–2007 | 0.8 | p < 0.01 | P/TmaxFS | 627.8 | 80.4 | 6.1 | 1968–1969 | −62.0 | |
1971–2016 LH2019 inputs | Notes | ||||||||||||
DF | 6.2 | 0.4 | 3.0 | 1976–1977 | 0.3 | RH shifted by −2.9 in 1993–1994, Tmax in 2009–2010, and V in 1976–1977. ΣFFDI is consistent with all inputs, but RH, Tmax, and V shifted independently. The direct inputs to ΣFFDI all contribute to the regime shift but RH, Tmax, and V shift independently. Days Sev+ shift by more than DF, KBDI, P, and V, while RH, Tmax, and V have the same response as for ΣFFDI. Both RH and V may contain inhomogeneities but overall the station data are consistent with regime shifts in the FFDI. | |||||||
KBDI | 59.6 | 9.6 | 1.1 | 1976–1977 | 4.8 | ||||||||
P | 704.2 | 74.0 | 3.9 | 2000–2001 | −44.4 | ||||||||
Pdays | 140.7 | 9.2 | 10.7 | 1993–1994 | −8.9 | p < 0.05 | |||||||
RH | 54.8 | 1.9 | 26.0 | 1993–1994 | −2.9 | p < 0.01 | |||||||
Tmax | 22.3 | 0.5 | 13.9 | 2009–2010 | 0.7 | p < 0.01 | |||||||
V | 21.9 | 0.8 | 16.6 | 1976–1977 | 1.5 | p < 0.01 | |||||||
ΣFFDI/DF | 3452 | 473 | 12.1 | 2002–2003 | 426 | p < 0.01 | DF/ΣFFDI | 6.2 | 0.4 | 3.1 | 2002–2003 | −0.2 | |
ΣFFDI/KBDI | 3452 | 473 | 12.3 | 2002–2003 | 445 | p < 0.01 | KBDI/ΣFFDI | 59.6 | 9.6 | 3.8 | 1984–1985 | −5.4 | |
ΣFFDI/P | 3452 | 473 | 9.2 | 2002–2003 | 348 | p < 0.05 | P/ΣFFDI | 704.2 | 74.0 | 1.8 | 1984–1985 | 25.7 | |
ΣFFDI/Pdays | 3452 | 473 | 6.9 | 2000–2001 | 347 | Pdays/ΣFFDI | 140.7 | 9.2 | 7.1 | 2016–2017 | −21.2 | ||
ΣFFDI/RH | 3452 | 473 | 2.7 | 2012–2013 | 320 | RH/ΣFFDI | 54.8 | 1.9 | 22.2 | 1995–1996 | −2.4 | p < 0.01 | |
ΣFFDI/Tmax | 3452 | 473 | 5.6 | 2000–2001 | 314 | Tmax/ΣFFDI | 22.3 | 0.5 | 8.4 | 2010–2011 | 0.5 | p < 0.10 | |
ΣFFDI/V | 3452 | 473 | 2.3 | 2000–2001 | 207 | V/ΣFFDI | 21.9 | 0.8 | 16.3 | 1976–1977 | 1.6 | p < 0.01 | |
Sev+/DF | 7.6 | 1.5 | 12.8 | 2002–2003 | 1.4 | p < 0.01 | DF/Sev+ | 6.2 | 0.4 | 3.1 | 2002–2003 | −0.2 | |
Sev+/KBDI | 7.6 | 1.5 | 13.3 | 2002–2003 | 1.5 | p < 0.01 | KBDI/Sev+ | 59.6 | 9.6 | 4.3 | 1984–1985 | −5.8 | |
Sev+/P | 7.6 | 1.5 | 9.5 | 2002–2003 | 1.2 | p < 0.05 | P/Sev+ | 704.2 | 74.0 | 1.4 | 1984–1985 | 24.4 | |
Sev+/Pdays | 7.6 | 1.5 | 7.4 | 2002–2003 | 1.2 | p < 0.10 | Pdays/Sev+ | 140.7 | 9.2 | 6.6 | 2016–2017 | −21.2 | |
Sev+/RH | 7.6 | 1.5 | 4.0 | 2002–2003 | 1.1 | RH/Sev+ | 54.8 | 1.9 | 22.3 | 1993–1994 | −2.6 | p < 0.01 | |
Sev+/Tmax | 7.6 | 1.5 | 4.9 | 2000–2001 | 0.9 | Tmax/Sev+ | 22.3 | 0.5 | 9.9 | 2010–2011 | 0.5 | p < 0.05 | |
Sev+/V | 7.6 | 1.5 | 10.6 | 2002–2003 | 1.5 | p < 0.05 | V/Sev+ | 21.9 | 0.8 | 15.5 | 1976–1977 | 1.5 | p < 0.01 |
References
- Abram, N.J.; Henley, B.J.; Sen Gupta, A.; Lippmann, T.J.R.; Clarke, H.; Dowdy, A.J.; Sharples, J.J.; Nolan, R.H.; Zhang, T.; Wooster, M.J.; et al. Connections of climate change and variability to large and extreme forest fires in southeast Australia. Commun. Earth Environ. 2021, 2, 8. [Google Scholar] [CrossRef]
- Hughes, L.; Steffen, W.; Mullins, G.; Dean, A.; Weisbrot, E.; Rice, M. Summer of Crisis; 1922404004; Climate Council: Canberra, Australia, 2020; p. 27. [Google Scholar]
- Bradstock, R.A. A biogeographic model of fire regimes in Australia: Current and future implications. Global Ecol. Biogeogr. 2010, 19, 145–158. [Google Scholar] [CrossRef]
- Krebs, P.; Pezzatti, G.B.; Mazzoleni, S.; Talbot, L.M.; Conedera, M. Fire regime: History and definition of a key concept in disturbance ecology. Theory Biosci. 2010, 129, 53–69. [Google Scholar] [CrossRef] [PubMed]
- Jones, R.; Chiew, F.; Boughton, W.; Zhang, L. Estimating the sensitivity of mean annual runoff to climate change using selected hydrological models. Adv. Water Resour. 2006, 29, 1419–1429. [Google Scholar] [CrossRef]
- Zhang, L.; Potter, N.; Hickel, K.; Zhang, Y.; Shao, Q. Water balance modeling over variable time scales based on the Budyko framework–Model development and testing. J. Hydrol. 2008, 360, 117–131. [Google Scholar] [CrossRef]
- Leith, C. Predictability of climate. Nature 1978, 276, 352–355. [Google Scholar] [CrossRef]
- McBean, G.; Golitsyn, G.; Sanhueza, E. Atmosphere and climate. In Proceedings of the An Agenda of Science for Environment and Development into the 21st Century, Vienna, Austria, 25–29 November 1991; p. 141. [Google Scholar]
- IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Priani, A., Connors, S., Péan, C., Berger, S., Eds.; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- Hulme, M. Climate and its changes: A cultural appraisal. Geo Geogr. Environ. 2015, 2, 1–11. [Google Scholar] [CrossRef]
- McArthur, A.G. Fire Behaviour in Eucalypt Forests; Forestry and Timber Bureau: Canberra, Australia, 1967; p. 36. [Google Scholar]
- Luke, R.H.; McArthur, A.G. Bushfires in Australia; Australian Government Publishing Service: Canberra, Australia, 1978; p. 359.
- Noble, I.; Gill, A.; Bary, G. McArthur’s fire-danger meters expressed as equations. Aust. J. Ecol. 1980, 5, 201–203. [Google Scholar] [CrossRef]
- Lucas, C.; Hennessy, K.; Mills, G.; Bathols, J. Bushfire Weather in Southeast Australia: Recent Trends and Projected Climate Change Impacts; Bushfire Cooperative Research Centre, Bureau of Meteorology, CSIRO: Melbourne, Australia, 2007; p. 80. [Google Scholar]
- Harris, S.; Lucas, C. Understanding the variability of Australian fire weather between 1973 and 2017. PLoS ONE 2019, 14, e0222328. [Google Scholar] [CrossRef]
- Lucas, C.; Harris, S. Seasonal McArthur Forest Fire Danger Index (FFDI) Data for Australia: 1973–2017, 2; Mendeley Data. 2019. Available online: https://data.mendeley.com/datasets/xf5bv3hcvw/2 (accessed on 7 February 2020).
- Lucas, C. On developing a historical fire weather data-set for Australia. Aust. Meteorol. Oceanogr. J. 2010, 60, 1–14. [Google Scholar] [CrossRef]
- Della-Marta, P.M.; Collins, D.A.; Braganza, K. Updating Australia’s high-quality annual temperature dataset. Aust. Meteorol. Mag. 2004, 53, 75–93. [Google Scholar]
- Lucas, C. A high-quality humidity dataset for Australia. In Proceedings of the 17th Australia New Zealand Climate Forum, Canberra, Australia, 5–7 September 2006; p. 33. [Google Scholar]
- Miller, C.; Holmes, J.; Henderson, D.; Ginger, J.; Morrison, M. The response of the Dines anemometer to gusts and comparisons with cup anemometers. J. Atmos. Oceanic Technol. 2013, 30, 1320–1336. [Google Scholar] [CrossRef]
- Jakob, D. Challenges in developing a high-quality surface wind-speed data-set for Australia. Aust. Meteorol. Oceanogr. J. 2010, 60, 227–236. [Google Scholar] [CrossRef]
- Maronna, R.; Yohai, V.J. A bivariate test for the detection of a systematic change in mean. J. Am. Stat. Assoc. 1978, 73, 640–645. [Google Scholar] [CrossRef]
- Trewin, B. A daily homogenized temperature data set for Australia. Int. J. Climatol. 2013, 33, 1510–1529. [Google Scholar] [CrossRef]
- Trewin, B. The Australian Climate Observations Reference Network—Surface Air Temperature (ACORN-SAT) Version 2; 9781925315981; Bureau of Meteorology: Melbourne, Australia, 2018; p. 57.
- Jones, D.A.; Wang, W.; Fawcett, R. High-quality spatial climate data-sets for Australia. Aust. Meteorol. Oceanogr. J. 2009, 58, 233–248. [Google Scholar] [CrossRef]
- Jovanovic, B.; Collins, D.; Braganza, K.; Jakob, D.; Jones, D.A. A high-quality monthly total cloud amount dataset for Australia. Clim. Chang. 2011, 108, 485–517. [Google Scholar] [CrossRef]
- Budyko, M. Climate and Life; Academic Press: New York, NY, USA, 1974. [Google Scholar]
- Brutsaert, W. Evaporation into the Atmosphere: Theory, History and Applications; Springer: Dordrecht, The Netherlands, 1982; Volume 1, p. 302. [Google Scholar]
- Granger, R.J. A complementary relationship approach for evaporation from nonsaturated surfaces. J. Hydrol. 1989, 111, 31–38. [Google Scholar] [CrossRef]
- Morton, F.I. Operational estimates of areal evapotranspiration and their significance to the science and practice of hydrology. J. Hydrol. 1983, 66, 1–76. [Google Scholar] [CrossRef]
- Yang, D.; Sun, F.; Liu, Z.; Cong, Z.; Lei, Z. Interpreting the complementary relationship in non-humid environments based on the Budyko and Penman hypotheses. Geophys Res. Lett. 2006, 33, L18402. [Google Scholar] [CrossRef]
- Clarke, H.; Lucas, C.; Smith, P. Changes in Australian fire weather between 1973 and 2010. Int. J. Climatol. 2013, 33, 931–944. [Google Scholar] [CrossRef]
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Gitau, M.W.; Pai, N.; Daggupati, P. Hydrologic and water quality models: Performance measures and evaluation criteria. Trans. ASABE 2015, 58, 1763–1785. [Google Scholar]
- CSIRO; Bureau of Meteorology. Climate Change in Australia; Information for Australia’s Natural Resource Management Regions: Technical Report; CSIRO and Bureau of Meteorology: Melbourne, Australia, 2015.
- Potter, K. Illustration of a new test for detecting a shift in mean in precipitation series. Mon. Weather Rev. 1981, 109, 2040–2045. [Google Scholar] [CrossRef]
- Bücher, A.; Dessens, J. Secular trend of surface temperature at an elevated observatory in the Pyrenees. J. Clim. 1991, 4, 859–868. [Google Scholar] [CrossRef]
- Kirono, D.; Jones, R. A bivariate test for detecting inhomogeneities in pan evaporation time series. Aust. Meteorol. Mag. 2007, 56, 93–103. [Google Scholar]
- Sahin, S.; Cigizoglu, H.K. Homogeneity analysis of Turkish meteorological data set. Hydrol. Process. 2010, 24, 981–992. [Google Scholar] [CrossRef]
- Jones, R.N.; Young, C.K.; Handmer, J.; Keating, A.; Mekala, G.D.; Sheehan, P. Valuing Adaptation under Rapid Change; National Climate Change Adaptation Research Facility: Gold Coast, Australia, 2013; p. 182. [Google Scholar]
- Vivès, B.; Jones, R.N. Detection of Abrupt Changes in Australian Decadal Rainfall (1890–1989); CSIRO Atmospheric Research: Melbourne, Australia, 2005; p. 54. [Google Scholar]
- Jones, R.N. Detecting and attributing nonlinear anthropogenic regional warming in southeastern Australia. J. Geophys. Res. 2012, 117, D04105. [Google Scholar] [CrossRef]
- Buishand, T. Tests for detecting a shift in the mean of hydrological time series. J. Hydrol. 1984, 73, 51–69. [Google Scholar] [CrossRef]
- Boucharel, J.; Dewitte, B.; Penhoat, Y.; Garel, B.; Yeh, S.-W.; Kug, J.-S. ENSO nonlinearity in a warming climate. Clim. Dyn. 2011, 37, 2045–2065. [Google Scholar] [CrossRef]
- Jones, R.N.; Ricketts, J.H. Reconciling the signal and noise of atmospheric warming on decadal timescales. Earth Syst. Dyn. 2017, 8, 177–210. [Google Scholar] [CrossRef]
- Jones, R.N.; Ricketts, J.H. The Pacific Ocean heat engine. Earth Syst. Dyn. Discuss. 2021, 2021, 1–47. [Google Scholar] [CrossRef]
- Jones, R.N.; Ricketts, J.H. Regime changes in atmospheric moisture under climate change. Atmosphere 2022, 13, 1577. [Google Scholar] [CrossRef]
- Zaiontz, C. Real Statistics Resource Pack, v6.0; Charles Zaiontz. 2018. Available online: www.real-statistics.com (accessed on 29 September 2019).
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Taylor & Francis: Abingdon, UK, 2013. [Google Scholar]
- Troccoli, A.; Muller, K.; Coppin, P.; Davy, R.; Russell, C.; Hirsch, A.L. Long-term wind speed trends over Australia. J. Clim. 2012, 25, 170–183. [Google Scholar] [CrossRef]
- McVicar, T.R.; Van Niel, T.G.; Li, L.T.; Roderick, M.L.; Rayner, D.P.; Ricciardulli, L.; Donohue, R.J. Wind speed climatology and trends for Australia, 1975–2006: Capturing the stilling phenomenon and comparison with near-surface reanalysis output. Geophys Res. Lett. 2008, 35, L20403. [Google Scholar] [CrossRef]
- Azorin-Molina, C.; Guijarro, J.A.; McVicar, T.R.; Trewin, B.C.; Frost, A.J.; Chen, D. An approach to homogenize daily peak wind gusts: An application to the Australian series. Int. J. Climatol. 2019, 39, 2260–2277. [Google Scholar] [CrossRef]
- Bureau of Meteorology. An Exceptionally Dry Decade in Parts of Southern and Eastern Australia: October 1996-September 2006; Bureau of Meteorology: Melbourne, Australia, 2006; p. 9.
- Willett, K.; Dunn, R.; Thorne, P.; Bell, S.; De Podesta, M.; Parker, D.; Jones, P.; Williams, C., Jr. HadISDH land surface multi-variable humidity and temperature record for climate monitoring. Clim. Past 2014, 10, 1983–2006. [Google Scholar] [CrossRef]
- Holgate, C.M.; van Dijk, A.I.; Cary, G.J.; Yebra, M. Using alternative soil moisture estimates in the McArthur Forest Fire Danger Index. Int. J. Wildland Fire 2017, 26, 806–819. [Google Scholar] [CrossRef]
- Vinodkumar; Dharssi, I. Evaluation and calibration of a high-resolution soil moisture product for wildfire prediction and management. Agric. For. Meteorol. 2019, 264, 27–39. [Google Scholar] [CrossRef]
- Krueger, E.S.; Levi, M.R.; Achieng, K.O.; Bolten, J.D.; Carlson, J.; Coops, N.C.; Holden, Z.A.; Magi, B.I.; Rigden, A.J.; Ochsner, T.E. Using soil moisture information to better understand and predict wildfire danger: A review of recent developments and outstanding questions. Int. J. Wildland Fire 2022, 32, 111–132. [Google Scholar] [CrossRef]
- Jones, R.N.; Ricketts, J.H. Constructing and Assessing Fire Climates for Australia; Victoria University: Melbourne, Australia, 2021; p. 65. [Google Scholar]
- Williams, R.J.; Bradstock, R.A.; Cary, G.J.; Dovey, L.; Enright, N.J.; Gill, A.M.; Handmer, J.; Hennessy, K.J.; Liedloff, A.C.; Lucas, C. Current Fire Regimes, Impacts and the Likely Changes–VII: Australian Fire Regimes under Climate Change: Impacts, Risks and Mitigation. In Vegetation Fires and Global Change; Goldammer, J.G., Ed.; Kessel Publishing House: Eifelweg, Germany, 2013; pp. 133–142. [Google Scholar]
- Dowdy, A.J. Climatological Variability of Fire Weather in Australia. J. Appl. Meteorol. Climatol. 2018, 57, 221–234. [Google Scholar] [CrossRef]
- Harris, S.; Mills, G.; Brown, T. Victorian fire weather trends and variability. In Proceedings of the MODSIM2019, 23rd International Congress on Modelling and Simulation, Canberra, Australia, 1–6 December 2019; pp. 747–753. [Google Scholar]
- Harris, S.; Nicholls, N.; Tapper, N.; Mills, G. The sensitivity of fire activity to interannual climate variability in Victoria, Australia. J. South. Hemisph. Earth Syst. Sci. 2019, 69, 146–160. [Google Scholar] [CrossRef]
- Sharples, J.J.; Cary, G.J.; Fox-Hughes, P.; Mooney, S.; Evans, J.P.; Fletcher, M.-S.; Fromm, M.; Grierson, P.F.; McRae, R.; Baker, P. Natural hazards in Australia: Extreme bushfire. Clim. Chang. 2016, 139, 85–99. [Google Scholar] [CrossRef]
- Sanabria, L.; Qin, X.; Li, J.; Cechet, R.; Lucas, C. Spatial interpolation of McArthur’s forest fire danger index across Australia: Observational study. Environ. Model. Softw. 2013, 50, 37–50. [Google Scholar] [CrossRef]
- Williamson, G.J.; Prior, L.D.; Jolly, W.M.; Cochrane, M.A.; Murphy, B.P.; Bowman, D.M.J.S. Measurement of inter- and intra-annual variability of landscape fire activity at a continental scale: The Australian case. Environ. Res. Lett. 2016, 11, 035003. [Google Scholar] [CrossRef]
- Jeffrey, S.J.; Carter, J.O.; Moodie, K.B.; Beswick, A.R. Using spatial interpolation to construct a comprehensive archive of Australian climate data. Environ. Model. Softw. 2001, 16, 309–330. [Google Scholar] [CrossRef]
- Jolly, W.M.; Cochrane, M.A.; Freeborn, P.H.; Holden, Z.A.; Brown, T.J.; Williamson, G.J.; Bowman, D.M.J.S. Climate-induced variations in global wildfire danger from 1979 to 2013. Nat. Commun. 2015, 6, 7537. [Google Scholar] [CrossRef]
- National Partnership for Climate Projections. Climate Projections Roadmap for Australia; Department of Climate Change, Energy, the Environment and Water: Canberra, Australia, 2023; p. 33.
- Amirthanathan, G.E.; Bari, M.A.; Woldemeskel, F.M.; Tuteja, N.K.; Feikema, P.M. Regional significance of historical trends and step changes in Australian streamflow. Hydrol. Earth Syst. Sci. 2023, 27, 229–254. [Google Scholar] [CrossRef]
Variable | Multiple r | Adjusted r2 | N-S Efficiency | Standard Error | SE (%) |
---|---|---|---|---|---|
ΣFFDI | 0.97 | 0.93 | 0.93 | 178.5 | 0.07 |
Days Hi+ | 0.97 | 0.93 | 0.94 | 5.2 | 0.08 |
Days VHi+ | 0.95 | 0.90 | 0.91 | 2.7 | 0.15 |
Days Sev+ | 0.85 | 0.71 | 0.74 | 1.0 | 0.39 |
Period | MFFDI/ΣFFDI | 97FFDI/Days VHi+ | P | Tmax |
---|---|---|---|---|
1971–2016 | 0.88 | 0.79 | 0.82 | 0.93 |
2011–2016 | 0.95 | 0.85 | 0.88 | 0.97 |
Variable | Mean | Std. Dev. | Ti0 | Year | Shift | Shift % | Period | p Value |
---|---|---|---|---|---|---|---|---|
Ref ΣFFDI | 2721 | 655 | 17.60 | 2002–2003 | 1081 | 40% | 1972–2009 | p < 0.01 |
Pred ΣFFDI | 2721 | 633 | 13.98 | 2002–2003 | 888 | 33% | 1972–2009 | p < 0.01 |
LH2019 MFFDI | 2253 | 513 | 15.17 | 1996–1997 | 591 | 26% | 1971–2016 | p < 0.01 |
Pred ΣFFDI | 2715 | 636 | 14.51 | 1996–1997 | 616 | 23% | 1957–2021 | p < 0.01 |
Blended ΣFFDI | 2718 | 648 | 16.40 | 1996–1997 | 664 | 24% | 1957–2021 | p < 0.01 |
Ref Hi+ | 62.4 | 18.8 | 14.75 | 2002–2003 | 29.1 | 47% | 1972–2009 | p < 0.01 |
Pred Hi+ | 62.4 | 18.2 | 13.69 | 2002–2003 | 25.2 | 40% | 1972–2009 | p < 0.01 |
Pred Hi+ | 62.4 | 18.4 | 14.70 | 1996–1997 | 17.8 | 29% | 1957–2021 | p < 0.01 |
Blended Hi+ | 62.2 | 18.2 | 13.51 | 1996–1997 | 16.9 | 27% | 1957–2021 | p < 0.01 |
Ref VHi+ | 18.3 | 8.5 | 16.52 | 2002–2003 | 13.6 | 74% | 1972–2009 | p < 0.01 |
Pred VHi+ | 18.3 | 8.1 | 14.33 | 2002–2003 | 11.7 | 64% | 1972–2009 | p < 0.01 |
LH2019 97FFDI | 24.1 | 5.6 | 9.10 | 2002–2003 | 5.2 | 22% | 1971–2016 | p < 0.05 |
Pred VHi+ | 18.3 | 8.0 | 15.91 | 1997–1998 | 8.2 | 45% | 1957–2021 | p < 0.01 |
Blended VHi+ | 18.3 | 8.0 | 15.10 | 1997–1998 | 7.9 | 43% | 1957–2021 | p < 0.01 |
Ref Sev+ | 2.6 | 1.9 | 12.76 | 2002–2003 | 2.8 | 108% | 1972–2009 | p < 0.01 |
Pred Sev+ | 2.6 | 1.6 | 14.96 | 2002–2003 | 2.5 | 97% | 1972–2009 | p < 0.01 |
Pred Sev+ | 2.6 | 1.6 | 15.62 | 2002–2003 | 1.6 | 60% | 1957–2021 | p < 0.01 |
Blended Sev+ | 2.6 | 1.7 | 13.64 | 1996–1997 | 1.7 | 66% | 1957–2021 | p < 0.01 |
Variable | Mean | Std. Dev. | Ti0 | Year | Shift | p Value |
---|---|---|---|---|---|---|
Rain | 641 | 94 | 8.7 | 1994 | −68 | p < 0.10 |
TmaxFS | 24.2 | 0.84 | 22.0 | 2002 | 1.06 | p < 0.01 |
C 3pm | 4.67 | 0.25 | 3.58 | 1997 | −0.12 | |
Tmax90 | 17.6 | 34.8 | 23.9 | 2006 | 49 | p < 0.01 |
Region | Stations | MFFDI and ΣFFDI | 97FFDI and Days VHi+ | 97FFDI Days Sev+ | Notes |
---|---|---|---|---|---|
Victoria | 4 | 0.88 | 0.79 | 0.70 | Moderate station coverage; state wetter, cooler |
New South Wales | 9 | 0.88 | 0.84 | 0.71 | Good station coverage; state drier, hotter |
South Australia | 4 | 0.66 | 0.63 | 0.53 | Biased station coverage; state drier, hotter |
Tasmania | 2 | 0.45 | 0.28 | NA | Biased station coverage; state wetter, cooler |
SE Australia | 12 | 0.88 | 0.86 | 0.77 | Good station coverage; climates similar |
Queensland | 8 | 0.87 | 0.64 | 0.58 | Broad station coverage; state drier, hotter |
Northern Territory | 3 | 0.84 | 0.74 | 0.61 | Even station coverage |
Western Australia | 9 | 0.55 | 0.42 | 0.44 | Biased station coverage (coastal) |
SW Western Australia | 3 | 0.34 | −0.03 | 0.03 | Two of three stations differ from regional climate |
Southern Australia | 39 | 0.77 | 0.74 | 0.70 | Large station sample with some areal bias |
Region | Shift Year | Regime 1 | Regime 2 | Change | Change (%) | p Value |
---|---|---|---|---|---|---|
ΣFFDI | ||||||
Vic model | 1996–1997 | 2469 | 3082 | 611 | 25% | p < 0.01 |
Vic blend | 1996–1997 | 2447 | 3144 | 667 | 27% | p < 0.01 |
NSW | 2001–2002 | 3422 | 3894 | 473 | 14% | p < 0.10 |
SA | 2002–2003 | 4183 | 4584 | 402 | 10% | p < 0.05 |
Tas | 1997–1998 | 1350 | 1676 | 326 | 24% | p < 0.10 |
SEA | 1997–1998 | 2723 | 3235 | 512 | 19% | p < 0.01 |
Qld | 2012–2013 | 4281 | 4879 | 598 | 14% | p < 0.05 |
NT | 2012–2013 | 4605 | 5260 | 656 | 14% | p < 0.25 |
WA | 2002–2003 | 4404 | 4752 | 348 | 8% | p < 0.01 |
SWWA | 2000–2001 | 3235 | 3752 | 339 | 16% | p < 0.01 |
Days Hi+ | ||||||
Vic model | 1996–1997 | 65.5 | 85.4 | 19.9 | 30% | p < 0.01 |
Vic blend | 1996–1997 | 64.9 | 86.3 | 21.3 | 33% | p < 0.01 |
NSW | 2001–2002 | 95.1 | 109.9 | 14.8 | 16% | p < 0.10 |
SA | 2002–2003 | 118.6 | 131.0 | 12.4 | 10% | p < 0.10 |
Tas | 1997–1998 | 32.2 | 43.1 | 10.9 | 34% | p < 0.10 |
SEA | 1997–1998 | 73.4 | 89.8 | 16.4 | 22% | p < 0.05 |
Qld | 2012–2013 | 121.6 | 140.5 | 18.8 | 15% | p < 0.05 |
NT | 2017–2018 | 131.5 | 152.3 | 20.8 | 16% | p~0.25 |
WA | 2002–2003 | 125.4 | 135.9 | 10.5 | 8% | p < 0.01 |
SWWA | 2000–2001 | 89.3 | 106.1 | 16.7 | 19% | p < 0.01 |
Days VHi+ | ||||||
Vic model | 1997–1998 | 18.8 | 28.9 | 10.1 | 54% | p < 0.01 |
Vic blend | 1997–1998 | 19.3 | 30.4 | 11.1 | 58% | p < 0.01 |
NSW | 2002–2003 | 36.4 | 44.9 | 8.4 | 23% | p < 0.05 |
SA | 2002–2003 | 50.6 | 57.8 | 7.3 | 14% | p < 0.05 |
Tas | 1999–2000 | 1.5 | 5.3 | 3.8 | 248% | p < 0.01 |
SEA | 2002–2003 | 23.9 | 33.0 | 9.1 | 38% | p < 0.05 |
Qld | 2012–2013 | 52.1 | 62.4 | 10.3 | 20% | p < 0.05 |
NT | 2017–2018 | 57.8 | 66.1 | 8.3 | 14% | p < 0.25 |
WA | 2002–2003 | 54.7 | 61.2 | 6.6 | 12% | p < 0.01 |
SWWA | 2000–2001 | 33.1 | 41.5 | 8.4 | 25% | p < 0.01 |
Days Sev+ | ||||||
Vic model | 1997–1998 | 2.7 | 4.7 | 2.1 | 77% | p < 0.01 |
Vic blend | 2002–2003 | 2.6 | 4.9 | 2.3 | 87% | p < 0.01 |
NSW | 2002–2003 | 7.9 | 9.7 | 1.8 | 23% | p < 0.10 |
SA | 2002–2003 | 12.3 | 13.7 | 1.4 | 11% | p < 0.05 |
Tas | na | na | na | na | na | na |
SEA | 2002–2003 | 4.1 | 5.9 | 1.9 | 46% | p < 0.05 |
Qld | 2012–2013 | 12.4 | 14.5 | 2.0 | 16% | p < 0.01 |
NT | 2012–2013 | 14.2 | 15.7 | 1.6 | 11% | p > 0.25 |
WA | 2002–2003 | 13.5 | 14.8 | 1.3 | 10% | p < 0.01 |
SWWA | 2002–2003 | 7.1 | 8.6 | 1.5 | 21% | p < 0.01 |
Variable | Stations | r2 | SE (%) | Tmax | RH | V |
---|---|---|---|---|---|---|
MFFDI | 39 | 0.95 | 16.3% | 0.65 | −0.94 | −0.48 |
ΣFFDI | 36 | 0.96 | 12.1% | 0.57 | −0.92 | −0.33 |
97FFDI | 39 | 0.91 | 14.2% | 0.53 | −0.83 | −0.29 |
Days Sev+ | 36 | 0.73 | 75.5% | 0.34 | −0.79 | −0.18 |
Region | DF | KDBI | P (HQD) | Days P | ||||||||
Date | Change | p Value | Date | Change | p Value | Date | Change | p Value | Date | Change | p Value | |
Vic | 1996–1997 | 0.8 | <0.01 | 1996–1997 | 23.6 | <0.01 | 1994–1995 | −68 | <0.10 | nr | nr | nr |
NSW | nr | nr | nr | nr | nr | nr | nr | nr | nr | nr | nr | nr |
SA | 1974–1975 | 0.7 | <0.05 | 1974–1975 | 27.8 | <0.01 | nr | nr | nr | 1993–1994 | −8.1 | <0.05 |
Tas | nr | nr | nr | nr | nr | nr | nr | nr | nr | nr | nr | nr |
SE Aust | 1996–1997 | 0.5 | <0.05 | 1996–1997 | 14.1 | <0.05 | nr | nr | nr | nr | nr | nr |
Qld | nr | nr | nr | nr | nr | nr | nr | nr | nr | nr | nr | nr |
NT | nr | nr | nr | 1976–1977 | 21.6 | <0.10 | 1973–1974 | 107 | <0.01 | nr | nr | nr |
WA | nr | nr | nr | nr | nr | nr | 1994–1995 | 75.7 | <0.01 | nr | nr | nr |
SWWA | nr | nr | nr | nr | nr | nr | 1968–1969 | −91 | <0.01 | 1993–1994 | −8.9 | <0.05 |
Region | RH | V | TmaxFY (HQD) | TmaxFS (HQD) | ||||||||
Date | Change | p value | Date | Change | p value | Date | Change | p value | Date | Change | p value | |
Vic | 1996–1997 | −3.2 | <0.01 | 1996–1997 | 1.4 | <0.01 | 1997–1998 | 1.0 | <0.01 | 2002–2003 | 1.2 | <0.01 |
NSW | 2001–2002 | −3.5 | <0.01 | 1994–1995 | 3.8 | <0.01 | 2000–2001 | 1.1 | <0.01 | 2002–2003 | 1.4 | <0.01 |
SA | 1996–1997 | −2.7 | <0.01 | 1991–1992 | 2.6 | <0.01 | 1977–1978 2002–2003 | 0.7 0.8 | <0.01 <0.01 | 2002–2003 | 1.2 | <0.01 |
Tas | 1996–1997 | −2.9 | <0.01 | 1993–1994 | 3.2 | <0.01 | 1999–2000 | 0.6 | <0.01 | 1965–1966, 1998–1999 | 0.4 0.5 | <0.01 <0.01 |
SE Aust | 1996–1997 | −3.0 | <0.01 | 1994–1995 | 2.6 | <0.01 | 1997–1998 | 1.0 | <0.01 | 2002–2003 | 1.3 | <0.01 |
Qld | nr | nr | nr | 1992–1993 | 3.0 | <0.01 | 1979–1980, 2012–2013 | 0.5 0.9 | <0.01 | 1979–1980, 2011–2012 | 0.6 1.1 | <0.05, <0.01 |
NT | 1979–1980 | −4.0 | <0.05 | 1990–1991 | 3.0 | <0.01 | 1979–1980 | 0.9 | <0.01 | 1979–1980 | 1.1 | <0.01 |
WA | 2001–2002 | −2.3 | <0.01 | 1994–1995 | 1.8 | <0.01 | 2001–2002 | 1.1 | <0.01 | 1976–1977 2002–2003 | 0.4 0.9 | <0.01 <0.01 |
SWWA | 1993–1994 | −2.9 | <0.01 | 1976–1977 | 1.5 | <0.01 | 1993–1994 | 1.0 | <0.01 | 1993–1994 | 1.0 | <0.01 |
Variable | Summary |
---|---|
Tmax | In most cases, Tmax contributed to shifts in the FFDI, fully or partially, usually shifting just before or with the FFDI. Shifts generally occurred in from 1979–1980 in northern Aust, from 1996–1997 or shortly after in most regions, and from 1993–1994 in the west. Reverse shifts relative to the FFDI and P occured around 2009–2010 in many regions where Tmax increased independently. |
TmaxFS | TmaxFS behaves similarly to Tmax, but the timing is more in line with FFDI shifts. Shifts relative to the FFDI and P also occured around 2009–2010. For both Tmax and TmaxFS, the long-term shifts and 1957–2021 time periods give different dates. TmaxFS shifted in Qld and NT in 1979–1980. The next shift in Qld coincided with the FFDI in 2011–2012. |
C3pm | C 3pm has a modest influence in the SE states and Qld but is negligible in the north and west. It has less influence than the sensitivity tests suggest. |
DF/KBDI | DF and KBDI shift in Vic and SE Aust but have a strong influence on the FFDI in the SE states and Qld. This influence cannot be assessed for NT, is present in WA, and is weakest in SWWA. In the eastern states, both shift downwards relative to the FFDI in 2011–2013 but not strongly, showing that the recent wetter years show less drought relative to the FFDI. |
P | Shifts were detected for SWWA in 1968–1969 and NT in 1973–1974. WA shifted up in 1994–1995 and Vic shifted down (P < 0.1) at the same time. These earlier shifts were not associated with the FFDI, but the Vic shift and changes in SE Aust are consistent with the FFDI. The effect was strongest in Vic and present in most other places. |
Pdays | Rain days showed reductions everywhere but notably only in SA and WA. They showed a similar pattern to P, but less consistently, having limited influence. |
RH | RH shifted down in 1996–1997 in Vic, SA, and Tas and in 2001–2002 in NSW and WA. It shifted earlier in 1977–1978 in Qld, 1979–1980 in the NT, and 1993–1994 in SWWA. All shifts in the FFDI were consistent with those in RH but in many cases RH shifted relative to the FFDI by up to 50%, showing the change was not full utilized. |
V | Windspeed shifted in all regions from 1990–1991 in the NT to 1996–1997 in Victoria, with the exception of SWWA in 1976–1977. In all cases, shifts in the FFDI were consistent with those in V, but the reverse shifts showed almost no change in V from the standard shift against random data. This is interpreted as being due the observer–instrument change-over just preceding the regime shifts in the FFDI. |
Variable | Victoria | New South Wales | South Australia | Tasmania | SE Australia | |||||||||||||||
R2 − R1 | R2/ %R1 | ×1:10 | ×1:20 | R2 − R1 | R2/ %R1 | ×1:10 | ×1:20 | R2 − R1 | R2/ %R1 | ×1:10 | ×1:20 | R2 − R1 | R2/ %R1 | ×1:10 | ×1:20 | R2 − R1 | R2/ %R1 | ×1:10 | ×1:20 | |
ΣFFDI | 612.8 | 0.92 | 4.6 | 7.7 | 472.6 | 0.83 | 4.3 | 7.6 | 401.6 | 0.89 | 5.5 | 11.0 | 325.9 | 0.83 | 3.2 | 6.4 | 511.9 | 0.89 | 4.8 | 8.8 |
Days Hi+ | 19.9 | 0.93 | 4.6 | 7.7 | 14.8 | 0.82 | 3.8 | 6.7 | 12.4 | 0.85 | 5.5 | 11.0 | 10.9 | 0.79 | 3.8 | 3.8 | 16.4 | 0.88 | 4.8 | 8.8 |
Days VHi+ | 10.1 | 0.93 | 5.6 | 7.2 | 8.4 | 0.86 | 5.0 | 9.0 | 7.3 | 0.94 | 5.5 | 11.0 | 3.8 | 0.90 | 3.9 | 7.0 | 9.1 | 0.92 | 6.0 | 10.0 |
Days Sev+ | 2.0 | 0.92 | 5.2 | 4.0 | 1.8 | 0.82 | 4.0 | 6.0 | 1.4 | 0.88 | 5.5 | 11.0 | 1.9 | 0.90 | 5.5 | 7.0 | ||||
Variable | Queensland | Northern Territory | Western Australia | SW Western Australia | Southern Australia | |||||||||||||||
R2 − R1 | R2/ %R1 | ×1:10 | ×1:20 | R2 − R1 | R2/ %R1 | ×1:10 | ×1:20 | R2 − R1 | R2/ %R1 | ×1:10 | ×1:20 | R2 − R1 | R2/ %R1 | ×1:10 | ×1:20 | R2 − R1 | R2/ %R1 | ×1:10 | ×1:20 | |
ΣFFDI | 597.7 | 0.96 | 7.0 | 12.0 | 655.6 | 0.93 | 4.0 | 8.0 | 347.8 | 0.95 | 6.5 | 11.0 | 517.3 | 0.93 | 4.5 | 2.7 | 445.7 | 0.92 | 6.0 | 12.0 |
Days Hi+ | 18.8 | 0.94 | 7.0 | 12.0 | 20.8 | 0.93 | 4.0 | 8.0 | 10.5 | 0.94 | 6.5 | 11.0 | 16.7 | 0.91 | 4.5 | 1.8 | 13.9 | 0.91 | 6.0 | 11.0 |
Days VHi+ | 10.3 | 0.97 | 7.0 | 14.0 | 8.3 | 0.91 | 3.0 | 6.0 | 6.6 | 0.95 | 6.5 | 11.0 | 8.4 | 0.93 | 4.5 | 4.5 | 7.9 | 0.98 | 6.0 | 12.0 |
Days Sev+ | 2.0 | 0.95 | 7.0 | 8.0 | 1.6 | 0.80 | 3.0 | 6.0 | 1.3 | 0.91 | 5.0 | 7.0 | 1.5 | 0.88 | 3.5 | 4.0 | 1.6 | 0.91 | 6.0 | 10.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jones, R.N.; Ricketts, J.H. Identifying and Attributing Regime Shifts in Australian Fire Climates. Climate 2023, 11, 121. https://doi.org/10.3390/cli11060121
Jones RN, Ricketts JH. Identifying and Attributing Regime Shifts in Australian Fire Climates. Climate. 2023; 11(6):121. https://doi.org/10.3390/cli11060121
Chicago/Turabian StyleJones, Roger N., and James H. Ricketts. 2023. "Identifying and Attributing Regime Shifts in Australian Fire Climates" Climate 11, no. 6: 121. https://doi.org/10.3390/cli11060121
APA StyleJones, R. N., & Ricketts, J. H. (2023). Identifying and Attributing Regime Shifts in Australian Fire Climates. Climate, 11(6), 121. https://doi.org/10.3390/cli11060121