Risky Business: Modeling the Future of Jamaica’s Coffee Production in a Changing Climate
Abstract
:1. Introduction
2. Methodology—The Suitability Modeling Process
2.1. Modeling Current Climatic Suitability for Coffee
2.2. Modeling Future Climatic Suitability for Coffee
3. Results
3.1. Current Coffee Suitability in Jamaica
3.2. Future Coffee Suitability in Jamaica
Model Scenario | Change from 2020 Model Base Value | |||||
---|---|---|---|---|---|---|
No Change from Base Model | 0–5% Increase in Suitability | 0–5% Decrease in Suitability | 5–10% Decrease in Suitability | 10–20% Decrease in Suitability | ||
2021–2040 | SSP1 2.6 | 95.13% | 0.58% | 0.12% | 4.16% | 0% |
SSP2 4.5 | 95.5% | 0.10% | 0.02% | 4.33% | 0% | |
SSP5 8.5 | 90.74% | 0.04% | 0.20% | 9.02% | 0% | |
2041–2060 | SSP1 2.6 | 92.55% | 0.20% | 0.86% | 6.39% | 0% |
SSP2 4.5 | 81.63% | 0.35% | 1.99% | 16.03% | 0% | |
SSP5 8.5 | 58.69% | 0.54% | 9.09% | 31.68% | 0% | |
2081–2100 | SSP1 2.6 | 90.74% | 0.04% | 0.20% | 9.02% | 0% |
SSP2 4.5 | 50.64% | 0.06% | 4.12% | 45.18% | 0% | |
SSP5 8.5 | 2.93% | 0% | 7.23% | 86.74% | 3.10% |
4. Discussion: Assessing the Implications for Jamaica’s Specialty Coffee Industry
“We are in a fragile ecosystem up in the Blue Mountains so [we] see the effects of climate change on diseases, pests, the ease of movement in and out of the community, the fires we’ve been having; all of these are all climate-related. The roasters do not have a ‘Plan B’ in case things get worse since we exist to procure Blue Mountain coffee, so anything outside of that will be a different business altogether. So no, we do not have a ‘Plan B’.” (Manager, Blue Mountain Coffee Ventures, Kingston, Jamaica).
“We should adapt and we need to advise the farmers. We should go out there to set examples and the government should also take a lead role.” (Manager, Jamaica Coffee Corporation Limited, Kingston, Jamaica).
“Not enough is done in terms of [managing the impacts of] climate change”. (Manager, Jamaica Standard Products Company Limited, Kingston, Jamaica).
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Almazroui, M.; Islam, M.; Fahad, S.; Sajjad, S.; Muhammad, I.; Muhammad, E.; Ismaila, D. Projected Changes in Temperature and Precipitation over the United States, Central America, and the Caribbean in CMIP6 Gcms. Earth Syst. Environ. 2021, 5, 1–24. [Google Scholar]
- Campbell, J.D.; Taylor, M.A.; Bezanilla-Morlot, A.; Stephenson, T.S.; Centella-Artola, A.; Clarke, L.A.; Stephenson, K.A. Generating Projections for the Caribbean at 1.5, 2.0 and 2.5 °C from a High-Resolution Ensemble. Atmosphere 2021, 12, 328. [Google Scholar]
- CSGM (Climate Studies Group, Mona). State of the Jamaican Climate 2019: Information for Resilience Building; Planning Institute of Jamaica (PIOJ): Kingston, Jamaica, 2020. Available online: https://www.pioj.gov.jm/product/the-state-of-the-jamaican-climate-2019-historical-and-future-climate-changes-for-jamaica/ (accessed on 4 September 2021).
- Taylor, M.A.; Clarke, L.A.; Centella, A.; Bezanilla, A.; Stephenson, T.S.; Jones, J.J.; Campbell, J.D.; Vichot, A.; Charlery, J. Future Caribbean Climates in a World of Rising Temperatures: The 1.5 vs. 2.0 Dilemma. J. Clim. 2018, 31, 2907–2926. [Google Scholar]
- Lachaud, M.A.; Bravo-Ureta, B.E.; Ludena, C.E. Economic Effects of Climate Change on Agricultural Production and Productivity in Latin America and the Caribbean (LAC). Agric. Econ. 2022, 53, 321–332. [Google Scholar]
- Rhiney, K.; Eitzinger, A.; Farrell, A.D.; Prager, S.D. Assessing the Implications of a 1.5 °C Temperature Limit for the Jamaican Agriculture Sector. Reg. Environ. Chang. 2018, 18, 2313–2327. [Google Scholar]
- Fain, S.J.; Quiñones, M.; Álvarez-Berríos, N.L.; Parés-Ramos, I.K.; Gould, W.A. Climate Change and Coffee: Assessing Vulnerability by Modeling Future Climate Suitability in the Caribbean Island of Puerto Rico. Clim. Chang. 2017, 146, 175–186. [Google Scholar]
- Eitzinger, A.; Läderach, P.; Gordon, J.; Benedikter, A.; Quiroga, A.; Pantoja, A.; Bruni, M. Crop Suitability and Climate Change in Jamaica: Impacts on Farmers and the Supply Chain to the Hotel Industry. Caribb. Geogr. 2013, 18, 20–38. [Google Scholar]
- Barker, D. Caribbean Agriculture in a Period of Global Change: Vulnerabilities and Opportunities. Caribb. Stud. 2012, 40, 41–61. [Google Scholar]
- Bilen, C.; El Chami, D.; Mereu, V.; Trabucco, A.; Marras, S.; Spano, D. A Systematic Review on the Impacts of Climate Change on Coffee Agrosystems. Plants 2022, 12, 102. [Google Scholar] [PubMed]
- IPCC. Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Pörtner, H.-O., Roberts, D.C., Tignor, M., Poloczanska, E.S., Mintenbeck, K., Alegría, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2022; p. 3056. Available online: https://www.ipcc.ch/report/sixth-assessment-report-working-group-ii/ (accessed on 5 April 2023).
- Grüter, R.; Trachsel, T.; Laube, P.; Jaisli, I. Expected global suitability of coffee, cashew and avocado due to climate change. PLoS ONE 2022, 17, e0261976. [Google Scholar]
- ITC (International Trade Centre). Climate Change and the Coffee Industry; International Trade Centre: Geneva, Switzerland, 2010; Available online: https://intracen.org/resources/publications/climate-change-and-the-coffee-industry-technical-paper (accessed on 5 April 2023).
- Malek, Ž.; Loeffen, M.; Feurer, M.; Verburg, P.H. Regional Disparities in Impacts of Climate Extremes Require Targeted Adaptation of Fairtrade Supply Chains. One Earth 2022, 5, 917–931. [Google Scholar]
- Koh, I.; Garrett, R.; Janetos, A.; Mueller, N.D. Climate Risks to Brazilian Coffee Production. Environ. Res. Lett. 2020, 15, 104015. [Google Scholar]
- Craparo, A.C.W.; Van Asten, P.J.A.; Läderach, P.; Jassogne, L.T.P.; Grab, S.W. Coffea Arabica Yields Decline in Tanzania due to Climate Change: Global Implications. Agric. For. Meteorol. 2016, 207, 1–10. [Google Scholar]
- Chemura, A.; Kutywayo, D.; Chidoko, P.; Mahoya, C. Bioclimatic Modelling of Current and Projected Climatic Suitability of Coffee (Coffea Arabica) Production in Zimbabwe. Reg. Environ. Chang. 2015, 16, 473–485. [Google Scholar]
- Bunn, C.; Läderach, P.; Pérez Jimenez, J.G.; Montagnon, C.; Schilling, T. Multiclass Classification of Agro-Ecological Zones for Arabica Coffee: An Improved Understanding of the Impacts of Climate Change. PLoS ONE 2015, 10, e0140490. [Google Scholar]
- Zullo, J.; Pinto, H.S.; Assad, E.D.; de Ávila, A.M.H. Potential for Growing Arabica Coffee in the Extreme South of Brazil in a Warmer World. Clim. Chang. 2011, 109, 535–548. [Google Scholar]
- Agegnehu, E.; Thakur, A.; Mulualem, T. Potential Impact of Climate Change on Dynamics of Coffee Berry Borer (Hypothenemus Hampi Ferrari) in Ethiopia. OALib 2015, 02, 68012. [Google Scholar]
- Kutywayo, D.; Chemura, A.; Kusena, W.; Chidoko, P.; Mahoya, C. The Impact of Climate Change on the Potential Distribution of Agricultural Pests: The Case of the Coffee White Stem Borer (Monochamus Leuconotus P.) in Zimbabwe. PLoS ONE 2013, 8, e73432. [Google Scholar]
- Jaramillo, J.; Muchugu, E.; Vega, F.E.; Davis, A.; Borgemeister, C.; Chabi-Olaye, A. Some like It Hot: The Influence and Implications of Climate Change on Coffee Berry Borer (Hypothenemus Hampei) and Coffee Production in East Africa. PLoS ONE 2011, 6, e24528. [Google Scholar]
- Ebisa, D.B. Impacts of Climate Change on Global Coffee Production Industry: Review. Afr. J. Agric. Res. 2017, 12, 1607–1611. [Google Scholar]
- Gay, C.; Estrada, F.; Conde, C.; Eakin, H.; Villers, L. Potential Impacts of Climate Change on Agriculture: A Case of Study of Coffee Production in Veracruz, Mexico. Clim. Chang. 2006, 79, 259–288. [Google Scholar]
- Läderach, P.; Ramirez–Villegas, J.; Navarro-Racines, C.; Zelaya, C.; Martinez–Valle, A.; Jarvis, A. Climate Change Adaptation of Coffee Production in Space and Time. Clim. Chang. 2017, 141, 47–62. [Google Scholar]
- Baca, M.; Läderach, P.; Haggar, J.; Schroth, G.; Ovalle, O. An Integrated Framework for Assessing Vulnerability to Climate Change and Developing Adaptation Strategies for Coffee Growing Families in Mesoamerica. PLoS ONE 2014, 9, e88463. [Google Scholar]
- ICO (International Coffee Organization). Annual Review: Coffee Year 2019–2020; ICO (International Coffee Organization): London, UK, 2022; pp. 1–21. Available online: https://www.ico.org/documents/cy2020-21/annual-review-2019-2020-e.pdf (accessed on 5 April 2023).
- Chemura, A.; Mudereri, B.T.; Yalew, A.W.; Gornott, C. Climate Change and Specialty Coffee Potential in Ethiopia. Sci. Rep. 2021, 11, 8097. [Google Scholar] [PubMed]
- DaMatta, F.M.; Ramalho, J.D.C. Impacts of Drought and Temperature Stress on Coffee Physiology and Production: A Review. Braz. J. Plant Physiol. 2006, 18, 55–81. [Google Scholar]
- Bunn, C.; Läderach, P.; Ovalle Rivera, O.; Kirschke, D. A Bitter Cup: Climate Change Profile of Global Production of Arabica and Robusta Coffee. Clim. Chang. 2015, 129, 89–101. [Google Scholar]
- Haggar, J.; Schepp, K. Coffee and Climate Change Impacts and Options for Adaption in Brazil, Guatemala, Tanzania and Vietnam: NRI Working Paper Series No 4, Climate Change, Agriculture and Natural Resources; Natural Resources Institute: Kent, UK, 2012; pp. 1–55. Available online: https://www.nri.org/publications/working-paper-series/4-coffee-and-climate-change/file (accessed on 5 April 2023).
- Pham, Y.; Reardon-Smith, K.; Mushtaq, S.; Cockfield, G. The Impact of Climate Change and Variability on Coffee Production: A Systematic Review. Clim. Chang. 2019, 156, 609–630. [Google Scholar]
- Chengappa, P.G.; Devika, C.M.; Rudragouda, C.S. Climate Variability and Mitigation: Perceptions and Strategies Adopted by Traditional Coffee Growers in India. Clim. Dev. 2017, 9, 593–604. [Google Scholar]
- Kath, J.; Byrareddy, V.M.; Craparo, A.; Nguyen-Huy, T.; Mushtaq, S.; Cao, L.; Bossolasco, L. Not so Robust: Robusta Coffee Production Is Highly Sensitive to Temperature. Glob. Chang. Biol. 2020, 26, 3677–3688. [Google Scholar]
- Lara-Estrada, L.; Rasche, L.; Schneider, U.A. Land in Central America Will Become Less Suitable for Coffee Cultivation under Climate Change. Reg. Environ. Chang. 2021, 21, 88. [Google Scholar]
- Bacon, C.M.; Sundstrom, W.A.; Stewart, I.T.; Beezer, D. Vulnerability to Cumulative Hazards: Coping with the Coffee Leaf Rust Outbreak, Drought, and Food Insecurity in Nicaragua. World Dev. 2017, 93, 136–152. [Google Scholar]
- Caswell, M.; Méndez, V.E.; Hayden, J.; Anderzén, J.; Cruz, A.; Merritt, P.; Izzo, V.; Castro, S.; Fernandez, M. Assessing Resilience in Coffee-Dependent Communities of Honduras, Nicaragua and Haiti. Research Report; Agroecology and Rural Livelihoods Group (ARLG), University of Vermont: Burlington, VT, USA, 2016; Available online: https://www.uvm.edu/agroecology/publication/assessing-resilience-coffee-dependent-communities-honduras-nicaragua-haiti/ (accessed on 5 April 2023).
- Moat, J.; Williams, J.; Baena, S.; Wilkinson, T.; Gole, T.W.; Challa, Z.K.; Demissew, S.; Davis, A.P. Resilience Potential of the Ethiopian Coffee Sector under Climate Change. Nat. Plants 2017, 3, 17081. [Google Scholar] [PubMed]
- Ngeywo, J.; Evans, B.; Anakalo, S. Influence of Gender, Age, Marital Status and Farm Size on Coffee Production: A Case of Kisii County, Kenya. Asian J. Agric. Ext. Econ. Sociol. 2015, 5, 117–125. [Google Scholar]
- Parrish, B.D.; Luzadis, V.A.; Bentley, W.R. What Tanzania’s Coffee Farmers Can Teach the World: A Performance-Based Look at the Fair Trade-Free Trade Debate. Sustain. Dev. 2005, 13, 177–189. [Google Scholar]
- Mithöfer, D.; Méndez, V.E.; Bose, A.; Vaast, P. Harnessing Local Strength for Sustainable Coffee Value Chains in India and Nicaragua: Reevaluating Certification to Global Sustainability Standards. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 2017, 13, 471–496. [Google Scholar]
- Schroth, G.; Läderach, P.; Blackburn Cuero, D.S.; Neilson, J.; Bunn, C. Winner or Loser of Climate Change? A Modeling Study of Current and Future Climatic Suitability of Arabica Coffee in Indonesia. Reg. Environ. Chang. 2014, 15, 1473–1482. [Google Scholar]
- CSGM (Climate Studies Group Mona) (Eds.). The State of the Caribbean Climate. Produced for the Caribbean Development Bank: Kingston, Jamaica. 2020, pp. 1–200. Available online: https://www.caribank.org/sites/default/files/publication-resources/The%20State%20of%20the%20Caribbean%20Climate%20Report.pdf (accessed on 5 April 2023).
- Stephenson, T.S.; Vincent, L.A.; Allen, T.; Van Meerbeeck, C.J.; McLean, N.; Peterson, T.C.; Taylor, M.A.; Aaron-Morrison, A.P.; Auguste, T.; Bernard, D.; et al. Changes in Extreme Temperature and Precipitation in the Caribbean Region, 1961–2010. Int. J. Climatol. 2014, 34, 2957–2971. [Google Scholar]
- Karmalkar, A.V.; Taylor, M.A.; Campbell, J.; Stephenson, T.; New, M.; Centella, A.; Benzanilla, A.; Charlery, J. A Review of Observed and Projected Changes in Climate for the Islands in the Caribbean. Atmósfera 2013, 26, 283–309. [Google Scholar]
- Eitzinger, A.; Läderach, P.; Carmona, S.; Navarro, C.; Collet, L. Prediction of the Impact of Climate Change on Coffee and Mango Growing Areas in Haiti; Full Technical Report; International Center for Tropical Agriculture (CIAT): Cali, Colombia, 2013; pp. 1–44. Available online: https://cgspace.cgiar.org/bitstream/handle/10568/56976/Prediction_impac_climate_change_Haiti.pdf?sequence=1&isAllowed=y#:~:text=Our%20analyses%20show%20that%20suitability,no%20adaptation%20measures%20are%20taken (accessed on 5 April 2023).
- Ovalle-Rivera, O.; Läderach, P.; Bunn, C.; Obersteiner, M.; Schroth, G. Projected Shifts in Coffea Arabica Suitability among Major Global Producing Regions due to Climate Change. PLoS ONE 2015, 10, e0124155. [Google Scholar]
- UNECLAC (United Nations Economic Commission for Latin America and the Caribbean). An Assessment of the Economic Impact of Climate Change on the Agriculture Sector in Jamaica; UNECLAC: Subregional Headquarters for the Caribbean, Port of Spain, Trinidad and Tobago: Santiago, Chile, 2011; pp. 1–72. Available online: https://www.cepal.org/en/publications/38585-assessment-economic-impact-climate-change-agriculture-sector-jamaica (accessed on 10 April 2023).
- Mighty, M.A. Site Suitability and the Analytic Hierarchy Process: How GIS Analysis Can Improve the Competitive Advantage of the Jamaican Coffee Industry. Appl. Geogr. 2015, 58, 84–93. [Google Scholar]
- Statistical Institute of Jamaica. International Merchandise Trade. In Statistical Institute of Jamaica 2020. Available online: https://statinja.gov.jm/Trade-Econ%20Statistics/InternationalMerchandiseTrade/newtrade.aspx (accessed on 5 April 2023).
- Birthwright, A.-T.; A Historical Review of Jamaica’s Coffee Statecraft: Capitalism and Crises. Social and Economic Studies; 2021; Volume 70, pp. 102–141, ISSN 0037-7651. Available online: https://www.proquest.com/openview/e43efc8327109a9594d603380233661d/1?pq-origsite=gscholar&cbl=35950 (accessed on 10 April 2023).
- Guido, Z.; Knudson, C.; Finan, T.; Madajewicz, M.; Rhiney, K. Shocks and Cherries: The Production of Vulnerability among Smallholder Coffee Farmers in Jamaica. World Dev. 2020, 132, 104979. [Google Scholar]
- Birthwright, A.-T.; Barker, D. Double Exposure & Coffee Farming: A Case Study of the Vulnerability & Livelihood Experiences among Small Farmers in Frankfield, Jamaica. Caribb. Geogr. 2015, 20, 41–59. [Google Scholar]
- Davis, A.P.; Gole, T.W.; Baena, S.; Moat, J. The Impact of Climate Change on Indigenous Arabica Coffee (Coffea Arabica): Predicting Future Trends and Identifying Priorities. PLoS ONE 2012, 7, e47981. [Google Scholar]
- Deswal, M.; Laura, J.S. GIS Based Modeling Using Analytic Hierarchy Process (AHP) for Optimization of Landfill Site Selection of Rohtak City, Haryana (India). J. Appl. Nat. Sci. 2018, 10, 633–642. [Google Scholar]
- Baseer, M.A.; Rehman, S.; Meyer, J.P.; Alam, M.M. GIS-Based Site Suitability Analysis for Wind Farm Development in Saudi Arabia. Energy 2017, 141, 1166–1176. [Google Scholar]
- Naughton, C.C.; Lovett Peter, N.; Mihelcic James, R. Land Suitability Modelling of Shea (Vitellaria Paradoxa) Distribution across Sub-Saharan Africa. Appl. Geogr. 2015, 58, 217–227. [Google Scholar]
- Malczewski, J. GIS-Based Land-Use Suitability Analysis: A Critical Overview. Prog. Plan. 2004, 62, 3–65. [Google Scholar]
- Nzeyimana, I.; Hartemink, A.E.; Geissen, V. GIS-Based Multi-Criteria Analysis for Arabica Coffee Expansion in Rwanda. PLoS ONE 2016, 11, e0149239. [Google Scholar]
- Van der Vossen, H.; Bertrand, B.; Charrier, A. Next Generation Variety Development for Sustainable Production of Arabica Coffee (Coffea Arabica L.): A Review. Euphytica 2015, 204, 243–256. [Google Scholar]
- Budhlall, P.E. Growing Coffee in Jamaica; Coffee Industry Development Company: Kingston, Jamaica, 1986. [Google Scholar]
- Salas López, R.; Gómez Fernández, D.; Silva López, J.O.; Rojas Briceño, N.B.; Oliva, M.; Terrones Murga, R.E.; Iliquín Trigoso, D.; Barboza Castillo, E.; Barrena Gurbillón, M.Á. Land Suitability for Coffee (Coffea Arabica) Growing in Amazonas, Peru: Integrated Use of AHP, GIS and RS. ISPRS Int. J. Geo-Inf. 2020, 9, 673. [Google Scholar]
- Shalima Devi, G.M.; Anil Kumar, K.S. Remote Sensing and GIS Application for Land Quality Assessment for Coffee Growing Areas of Karnataka. J. Indian Soc. Remote Sens. 2008, 36, 89–97. [Google Scholar]
- Wrigley, G. Coffee; Longman Scientific & Technical: Harlow, UK, 1988. [Google Scholar]
- Mickle, E. Using GIS to Locate Areas for Growing Quality Coffee in Honduras. Bachelor’s Thesis, University of Nebraska, Lincoln, UK, 2009. Available online: https://digitalcommons.unl.edu/envstudtheses/3/ (accessed on 5 April 2023).
- Roszkowska, E. Rank Ordering Criteria Weighting Methods—A Comparative Overview. Optimum. Stud. Ekon. 2013, 5, 14–33. [Google Scholar]
- Stillwell, W.G.; Seaver, D.A.; Edwards, W. A Comparison of Weight Approximation Techniques in Multiattribute Utility Decision Making. Organ. Behav. Hum. Perform. 1981, 28, 62–77. [Google Scholar]
- CSGM (Climate Studies Group, Mona). State of the Jamaican Climate 2015: Information for Resilience Building; Planning Institute of Jamaica (PIOJ): Kingston, Jamaica, 2017. Available online: https://www.pioj.gov.jm/product/the-state-of-the-jamaican-climate-2015/ (accessed on 5 April 2023).
- Birthwright, A.-T. Liquid Gold or Poverty in a Cup? The Vulnerability of Blue Mountain and High Mountain Coffee Farmers in Jamaica to the Effects of Climate Change. In Climate Change and Food Security: Africa and the Caribbean, 1st ed.; Routledge Taylor & Francis Ltd.: London, UK, 2016. [Google Scholar]
- Birthwright, A. Negotiating Politics and Power: Perspectives on Environmental Justice from Jamaica’s Specialty Coffee Industry. Geogr. J. 2022, 1–13. [Google Scholar]
- Bhalai, S. Landslide Susceptibility of Portland, Jamaica: Assessment and Zonation. Caribb. J. Earth Sci. 2010, 41, 39–54. [Google Scholar]
- Läderach, P.; Haggar, J.; Lau, C.; Eitzinger, A.; Ovalle, O.; Baca, M.; Jarvis, A.; Lundy, M. Mesoamerican Coffee: Building a Climate Change Adaptation Strategy: Policy Brief No. 2; International Center for Tropical Agriculture (CIAT): Cali, Colombia, 2013; Available online: https://cgspace.cgiar.org/handle/10568/29001 (accessed on 5 April 2023).
- Vinecky, F.; Davrieux, F.; Mera, A.C.; Alves, G.S.C.; Lavagnini, G.; Leroy, T.; Bonnot, F.; Rocha, O.C.; Bartholo, G.F.; Guerra, A.F.; et al. Controlled Irrigation and Nitrogen, Phosphorous and Potassium Fertilization Affect the Biochemical Composi tion and Quality of Arabica Coffee Beans. J. Agric. Sci. 2016, 155, 902–918. [Google Scholar]
- Jamaica Trade and Invest. Jamaica National Export Strategy: Coffee; International Trade Centre: Kingston, Jamaica, 2009; Available online: https://www.yumpu.com/en/document/read/29258979/coffee-strategy (accessed on 5 April 2023).
Agroecological Parameter | Very Unsuitable (1) | Unsuitable (2) | Moderately Suitable (3) | Suitable (4) | Very Suitable (5) |
---|---|---|---|---|---|
Temperature | <10 °C OR ≥34 °C | 10–11.99 and 31.1–33.99 °C | 12–13.99 and 28–30.99 °C | 14–15.99 and 24–27.99 °C | 16–23.99 °C |
Precipitation | <62.5 mm OR >350 mm | 62.5–80.54 OR 302.78–350 mm | 80.55–98.60 OR 255.56–302.77 mm | 98.61–116.66 OR 208.34–255.55 mm | 116.67–208.33 mm |
Soil Type | Clay, sand, peat, gravelly sandy clay, sandy soils, and other soil types | Silty clay, gravelly clay, stony clay, and mixed clay types | Sandy loam, silty clay loam, silt loam, and other loam soils | Fine sandy loam, clay loam, sandy loam, or clay loam (except for stony types) | Channery clay loam, volcanic loam, and loam |
Soil pH | Strongly acidic, strongly alkaline, strongly to very strongly alkaline, and very strongly acidic | Acidic, alkaline, medium acidic, medium to strongly acidic, mildly to strongly alkaline, slightly acidic to mildly acidic, and slightly to medium acidic | Mildly alkaline, neutral, slightly alkaline | Slightly acidic | Neutral to slightly acidic, slightly acidic to neutral |
Elevation | <0 and >1666.67 m | 0–350 m | 350–600 m | 600–900 m | 900–1666.67 m |
Slope | >35° | 24.8–35° | 17.4–24.8° | 10.9–17.4° | 0–10.9° |
Aspect | East | South-east | North-east, South-west | North-west | North, south, west |
Weight | Normalized Weight | ||
---|---|---|---|
AgroEcological Criteria | Importance Rank | ||
Temperature | 1 | 7 | 0.25 |
Precipitation | 2 | 6 | 0.21 |
Soil Type | 3 | 5 | 0.18 |
Soil pH | 4 | 4 | 0.14 |
Elevation | 5 | 3 | 0.11 |
Slope | 6 | 2 | 0.07 |
Aspect | 7 | 1 | 0.04 |
Total | 28 | 1 |
Scenario | Temperature Increase (°C) | Precipitation Change | Notes |
---|---|---|---|
Base period | Describe average temperature values from 2020 model | Describe average precipitation values from 2020 model | Values here vary across Jamaica, reflecting the spatial heterogeneity of the island |
SSP1-2.6 | near (2021–2040): 0.69 mid (2041–2060): 0.94 far (2080–2099): 1.04 | near (2021–2040): 0.34 mid (2041–2060): −0.64 far (2080–2099): −0.14 | SSP1 Scenario: Sustainability |
SSP2-4.5 | near (2021–2040): 0.71 mid (2041–2060): 1.17 far (2080–2099): 1.94 | near (2021–2040): 0.06 mid (2041–2060): −1.50 far (2080–2099):−3.34 | SSP2 Scenario: Middle of the road |
SSP5-8.5 | near (2021–2040): 0.77 mid (2041–2060): 1.62 far (2080–2099): 3.53 | near (2021–2040):−1.09 mid (2041–2060):−6.30 far (2080–2099):−19.73 | SSP5 Scenario: Fossil-fueled development |
Season | Dry Season | Early Wet Season | Mid-Summer Drought | Late Wet Season | Dry Season | Early Wet Season | ||||||||||||
Months | J | F | M | A | M | J | J | A | S | O | N | D | J | F | M | A | M | J |
Blue Mt. | Pre-Flowering | Flowering | Fruit-Setting | Fruiting | Full maturity and rapid ripening | |||||||||||||
Season | Late Wet Season | Dry Season | Early Wet Season | Mid-Summer Drought | Late Wet Season | Dry Season | ||||||||||||
Months | A | S | O | N | D | J | F | M | A | M | J | J | A | S | O | N | D | J |
Non-Blue Mt. | Pre-Flowering | Flowering | Fruit-Setting | Fruiting | Full maturity and rapid ripening |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Birthwright, A.-T.; Mighty, M. Risky Business: Modeling the Future of Jamaica’s Coffee Production in a Changing Climate. Climate 2023, 11, 122. https://doi.org/10.3390/cli11060122
Birthwright A-T, Mighty M. Risky Business: Modeling the Future of Jamaica’s Coffee Production in a Changing Climate. Climate. 2023; 11(6):122. https://doi.org/10.3390/cli11060122
Chicago/Turabian StyleBirthwright, Anne-Teresa, and Mario Mighty. 2023. "Risky Business: Modeling the Future of Jamaica’s Coffee Production in a Changing Climate" Climate 11, no. 6: 122. https://doi.org/10.3390/cli11060122
APA StyleBirthwright, A. -T., & Mighty, M. (2023). Risky Business: Modeling the Future of Jamaica’s Coffee Production in a Changing Climate. Climate, 11(6), 122. https://doi.org/10.3390/cli11060122