Unveiling Nature’s Resilience: Exploring Vegetation Dynamics during the COVID-19 Era in Jharkhand, India, with the Google Earth Engine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methodology and Data Used
3. Results
3.1. Long Term Changes in Vegetation of Jharkhand
3.2. COVID-19 Lockdown and Unlock Impacts on Vegetation
3.3. Precipitation and NDVI Relationship during Pre and Post Lockdown Period
3.4. Mann–Kendall Trend Analysis during 1984–2021
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. The State of Agricultural Commodity Markets 2015–2016. In Trade and Food Security: Achieving a Better Balance between National Priorities and the Collective Good; Food and Agriculture Organization of the United Nations: Rome, Italy, 2015; Available online: https://www.fao.org/3/i5090e/i5090e.pdf (accessed on 19 April 2018).
- Bahuguna, V.K.; Bisht, N.S. Valuation of ecosystem goods and services from forests in India. Indian For. 2013, 139, 1–13. [Google Scholar]
- Joshi, R.C.; Sheridan, G.J.; Ryu, D.; Lane, P.N. How long is the memory of forest growth to rainfall in asynchronous climates? Ecol. Indic. 2022, 140, 109057. [Google Scholar] [CrossRef]
- Vaughan, A. World braces for economic impact. New Sci. 2020, 245, 10. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. WHO Coronavirus Disease (COVID-19) Dashboard; World Health Organization: Geneva, Switzerland, 2020. [Google Scholar]
- World Health Organization. Coronavirus Disease 2019 (COVID-19) Situation Report 63; World Health Organization: Geneva, Switzerland, 2020. [Google Scholar]
- MoHFW. COVID-19 Statewise Status; Government of India: New Delhi, India, 2020.
- Ministry of Home Affairs. Guidelines on the Measures to Be Taken by Ministers/Departments of the Government of India, State/Union Territory Governments and State/Union Territory Authorities for Containment of COVID-19 Epidemic in the Country; Government of India: New Delhi, India, 2020.
- Sharma, N.; Ghosh, D. Unlock1: Malls, Restaurants, Places of Worship to Reopen June 8; NDTV: New Delhi, India, 2020. [Google Scholar]
- Tiwary, D. Unlock 2: More Flights, Trains, but no Schools and Colleges till July 31; The Indian Express: New Delhi, India, 2020. [Google Scholar]
- Jain, S.; Bhattacharya, T.; Chakraborty, S. Comparison of Plant Tolerance Towards Air Pollution of Rural, Urban and Mine Sites of Jharkhand: A Biochemical Approach to Identify Air Pollutant Sink. In Advances in Waste Management; Springer: Singapore, 2019; pp. 123–142. [Google Scholar] [CrossRef]
- Gilles, S.; Meinzer, M.; Landgraf, M.; Kolek, F.; von Bargen, S.; Pack, K.; Charalampopoulos, A.; Ranpal, S.; Luschkova, D.; Traidl-Hoffmann, C.; et al. Betula pendula trees infected by birch idaeovirus and cherry leaf roll virus: Impacts of urbanisation and NO2 levels. Environ. Pollut. 2023, 327, 121526. [Google Scholar] [CrossRef] [PubMed]
- Hruška, J.; Oulehle, F.; Chuman, T.; Kolář, T.; Rybníček, M.; Trnka, M.; McDowell, W.H. Forest growth responds more to air pollution than soil acidification. PLoS ONE 2023, 18, e0256976. [Google Scholar] [CrossRef] [PubMed]
- de Vries, W.; Vel, E.; Reinds, G.; Deelstra, H.; Klap, J.; Leeters, E.; Hendriks, C.; Kerkvoorden, M.; Landmann, G.; Herkendell, J.; et al. Intensive monitoring of forest ecosystems in Europe: 1. Objectives, set-up and evaluation strategy. For. Ecol. Manag. 2006, 174, 77–95. [Google Scholar] [CrossRef]
- De Vries, S.; Verheij, R.A.; Groenewegen, P.P.; Spreeuwenberg, P. Natural environments—Healthy environments? An exploratory analysis of the relationship between greenspace and health. Environ. Plan. A 2003, 35, 1717–1731. [Google Scholar] [CrossRef]
- Meraj, G. Ecosystem service provisioning–underlying principles and techniques. SGVU J. Clim. Chang. Water 2020, 7, 56–64. [Google Scholar]
- Singh, S.K.; Meraj, G.; Mondal, N.; Bera, A.; Verma, M.K.; Tomar, J.S.; Kanga, S. Assessment of seasonal vegetation dynamics over parts of thar desert using geospatial techniques. ANGRAU 2021, 49, 105–109. [Google Scholar]
- Indian Network for Climate Change Assessment (INCCA). Climate Change and India: A 4 × 4 Assessment. A Sectoral and Regional Analysis for 2030s. 2010. Available online: https://moef.nic.in/downloads/public-information/fin-rpt-incca.pdf (accessed on 15 February 2023).
- Ahmad, T.; Pandey, A.C.; Kumar, A. Long-term precipitation monitoring and its linkage with flood scenario in changing climate conditions in Kashmir valley. Geocarto Int. 2022, 37, 5497–5522. [Google Scholar] [CrossRef]
- Ali, R.; Gad, A. The impact of COVID-19 pandemic on wheat yield in El Sharkia Governorate, Egypt. Egypt. J. Remote Sens. Space Sci. 2022, 25, 249–256. [Google Scholar] [CrossRef]
- Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, S.V.; Goetz, S.J.; Loveland, T.R.; et al. High-Resolution Global Maps of 21st-Century Forest Cover Change. Science 2013, 342, 850–853. [Google Scholar] [CrossRef] [PubMed]
- Kanga, S.; Meraj, G.; Johnson, B.A.; Singh, S.K.; Pv, M.N.; Farooq, M.; Kumar, P.; Marazi, A.; Sahu, N. Understanding the Linkage between Urban Growth and Land Surface Temperature—A Case Study of Bangalore City, India. Remote Sens. 2022, 14, 4241. [Google Scholar] [CrossRef]
- Chakraborty, A.; Seshasai, M.; Reddy, C.S.; Dadhwal, V. Persistent negative changes in seasonal greenness over different forest types of India using MODIS time series NDVI data (2001–2014). Ecol. Indic. 2018, 85, 887–903. [Google Scholar] [CrossRef]
- Kumar, R.; Nath, A.J.; Nath, A.; Sahu, N.; Pandey, R. Landsat-based multi-decadal spatio-temporal assessment of the vegetation greening and browning trend in the Eastern Indian Himalayan Region. Remote Sens. Appl. Soc. Environ. 2022, 25, 100695. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, S.; Bai, X.; Tan, Q.; Li, Q.; Wu, L.; Tian, S.; Hu, Z.; Li, C.; Deng, Y. Factors Affecting Long-Term Trends in Global NDVI. Forests 2019, 10, 372. [Google Scholar] [CrossRef]
- Ranjan, A.K.; Dash, J.; Xiao, J.; Gorai, A.K. Vegetation activity enhanced in India during the COVID-19 lockdowns: Evidence from satellite data. Geocarto Int. 2022, 37, 12618–12637. [Google Scholar] [CrossRef]
- Bashir, M.F.; Jiang, B.; Komal, B.; Bashir, M.A.; Farooq, T.H.; Iqbal, N.; Bashir, M. Correlation between environmental pollution indicators and COVID-19 pandemic: A brief study in Californian context. Environ. Res. 2020, 187, 109652. [Google Scholar] [CrossRef]
- Zambrano-Monserrate, M.A.; Ruano, M.A.; Sanchez-Alcalde, L. Indirect effects of COVID-19 on the environment. Sci. Total. Environ. 2020, 728, 138813. [Google Scholar] [CrossRef]
- Kayet, N.; Pathak, K.; Chakrabarty, A.; Sahoo, S. Spatial impact of land use/land cover change on surface temperature distribution in Saranda Forest, Jharkhand. Model. Earth Syst. Environ. 2016, 2, 1–10. [Google Scholar] [CrossRef]
- Mishra, N.K.; Singh, R.K.; Kumar, A.; Jeyaseelan, A.T. Rice Cultivation Monitoring and Acreage Estimation using RADARSAT SAR images in Jharkhand, India. Suresh Gyan Vihar Univ. J. Clim. Chang. Water 2017, 4, 1–8. [Google Scholar]
- Kumar, L.; Mutanga, O. Google Earth Engine Applications Since Inception: Usage, Trends, and Potential. Remote Sens. 2018, 10, 1509. [Google Scholar] [CrossRef]
- National Aeronautics and Space Administration (NASA). Langley Research Center (LaRC), POWER Data Access Viewer, Single Point Data Access Online Resource. 2020. Available online: https://power.larc.nasa.gov/data-accessviewer (accessed on 21 December 2021).
- Meraj, G.; Romshoo, S.A.; Yousuf, A.R.; Altaf, S.; Altaf, F. Assessing the influence of watershed characteristics on the flood vulnerability of Jhelum basin in Kashmir Himalaya. Nat. Hazards 2015, 77, 153–175. [Google Scholar] [CrossRef]
- Choubin, B.; Solaimani, K.; Roshan, M.H.; Malekian, A. Watershed classification by remote sensing indices: A fuzzy c-means clustering approach. J. Mt. Sci. 2017, 14, 2053–2063. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods; Charles Griffin: London, UK, 1975; p. 35. [Google Scholar]
- Raggad, B.; Bouri, E. Quantile Dependence between Crude Oil Returns and Implied Volatility: Evidence from Parametric and Nonparametric Tests. Mathematics 2023, 11, 528. [Google Scholar] [CrossRef]
- Sasaki, Y. Strategic manipulation in group decisions with pairwise comparisons: A game theoretical perspective. Eur. J. Oper. Res. 2023, 304, 1133–1139. [Google Scholar] [CrossRef]
- Sud, A.; Kanga, R.; Singh, S.K.; Meraj, G.; Kanga, S.; Kumar, P.; Ramanathan, A.; Sudhanshu, S.; Bhardwaj, V. Simulating Groundwater Potential Zones in Mountainous Indian Himalayas—A Case Study of Himachal Pradesh. Hydrology 2023, 10, 65. [Google Scholar] [CrossRef]
- Kendall, M.G. A new measure of rank correlation. Biometrika 1938, 30, 81–93. [Google Scholar] [CrossRef]
- Theil, H. A rank-invariant method of linear and polynominal regression analysis (Parts 1–3). InNed. Akad. Wetensch. Proc. Ser. A 1950, 53, 1397–1412. [Google Scholar]
- Sen, P.K. Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Karra, K.; Kontgis, C.; Statman-Weil, Z.; Mazzariello, J.C.; Mathis, M.; Brumby, S.P. Global land use/land cover with Sentinel 2 and deep learning. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Brussels, Belgium, 11–16 July 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 4704–4707. [Google Scholar]
- Braubach, M.; Kendrovski, V.; Jarosinska, D.; Mudu, P.; Andreucci, M.B.; Beute, F.; Russo, A. Green and Blue Spaces and Mental Health: New Evidence and Perspectives for Action; World Health Organization: Geneva, Switzerland, 2021. [Google Scholar]
- Lobell, D.B.; Schlenker, W.; Costa-Roberts, J. Climate trends and global crop production since 1980. Science 2011, 333, 616–620. [Google Scholar] [CrossRef] [PubMed]
- Mirón, I.J.; Linares, C.; Díaz, J. The influence of climate change on food production and food safety. Environ. Res. 2023, 216, 114674. [Google Scholar] [CrossRef] [PubMed]
- Jain, H.K. Green Revolution: History, Impact, and Future; The Green Revolution: History: Mexico City, Mexico, 2016. [Google Scholar]
- Lahon, D.; Sahariah, D.; Debnath, J.; Nath, N.; Meraj, G.; Kumar, P.; Hashimoto, S.; Farooq, M. Assessment of Ecosystem Service Value in Response to LULC Changes Using Geospatial Techniques: A Case Study in the Merbil Wetland of the Brahmaputra Valley, Assam, India. ISPRS Int. J. Geo-Inf. 2023, 12, 165. [Google Scholar] [CrossRef]
- Singh, H.; Meraj, G.; Singh, S.; Shrivastava, V.; Sharma, V.; Farooq, M.; Kanga, S.; Singh, S.K.; Kumar, P. Status of Air Pollution during COVID-19-Induced Lockdown in Delhi, India. Atmosphere 2022, 13, 2090. [Google Scholar] [CrossRef]
- Ofori, E.K.; Zhang, J.; Nyantakyi, G.; Hayford, I.S.; Tergu, C.T. Impact of Covid-19 on environmental sustainability: A bibliometric analysis. Sustain. Dev. 2023, 31, 2176–2195. [Google Scholar] [CrossRef]
- Wu, G.; Sahabuddin, M.; Bhatti, U.A.; Nawaz, S.A.; Hasnain, A.; Bhatti, M.A.; Fahim, A.; Kaleri, A.A.; Kaleri, A.H. COVID-19 and Air Pollution: Air Quality Impact in 13 Cities of the Jiangsu Province of China. Pol. J. Environ. Stud. 2022, 31, 4907–4916. [Google Scholar] [CrossRef]
- Ranjan, A.K.; Parida, B.R.; Dash, J.; Gorai, A.K. Quantifying the impacts of opencast mining on vegetation dynamics over eastern India using the long-term Landsat-series satellite dataset. Ecol. Inform. 2022, 71, 101812. [Google Scholar] [CrossRef]
- Paudel, J. Short-run environmental effects of COVID-19: Evidence from forest fires. World Dev. 2021, 137, 105120. [Google Scholar] [CrossRef]
- Tripathi, S. How FRA Helped India’s Forest Communities during COVID-19. Down to Earth. 2020. Available online: https://www.downtoearth.org.in/blog/forests/how-fra-helped-india-s-forest-communities-during-covid-19-74440 (accessed on 21 January 2021).
- Saxena, A.; Dutta, A.; Fischer, H.W.; Saxena, A.K.; Jantz, P. Forest livelihoods and a “green recovery” from the COVID-19 pandemic: Insights and emerging research priorities from India. For. Policy Econ. 2021, 131, 102550. [Google Scholar] [CrossRef]
- Gupta, S.K.; Kanga, S.; Meraj, G.; Kumar, P.; Singh, S.K. Uncovering the hydro-meteorological drivers responsible for forest fires utilizing geospatial techniques. Theor. Appl. Clim. 2023, 153, 675–695. [Google Scholar] [CrossRef]
- Zhou, M.; Huang, Y.; Li, G. Changes in the concentration of air pollutants before and after the COVID-19 blockade period and their correlation with vegetation coverage. Environ. Sci. Pollut. Res. 2021, 28, 23405–23419. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.; Das, A.; Hembram, T.K.; Saha, S.; Pradhan, B.; Alamri, A.M. Impact of COVID-19 Induced Lockdown on Environmental Quality in Four Indian Megacities Using Landsat 8 OLI and TIRS-Derived Data and Mamdani Fuzzy Logic Modelling Approach. Sustainability 2020, 12, 5464. [Google Scholar] [CrossRef]
- Debnath, J.; Meraj, G.; Das Pan, N.; Chand, K.; Debbarma, S.; Sahariah, D.; Gualtieri, C.; Kanga, S.; Singh, S.K.; Farooq, M.; et al. Integrated remote sensing and field-based approach to assess the temporal evolution and future projection of meanders: A case study on River Manu in North-Eastern India. PLoS ONE 2022, 17, e0271190. [Google Scholar] [CrossRef]
- Meraj, G. Assessing the Impacts of Climate Change on Ecosystem Service Provisioning in Kashmir Valley India. Ph.D. Thesis, Suresh Gyan Vihar University, Jaipur, India, 2021. Available online: http://hdl.handle.net/10603/354338 (accessed on 20 April 2023).
- Singh, S.; Singh, H.; Sharma, V.; Shrivastava, V.; Kumar, P.; Kanga, S.; Sahu, N.; Meraj, G.; Farooq, M.; Singh, S.K. Impact of Forest Fires on Air Quality in Wolgan Valley, New South Wales, Australia—A Mapping and Monitoring Study Using Google Earth Engine. Forests 2022, 13, 4. [Google Scholar] [CrossRef]
- Meraj, G.; Kumar, S. Economics of the Natural Capital and The Way Forward. Preprints 2021, 2021010083. [Google Scholar] [CrossRef]
- Ranga, V.; Pani, P.; Kanga, S.; Meraj, G.; Farooq, M.; Nathawat, M.S.; Kumar Singh, S. National Health-GIS Portal—A Conceptual Framework for Effective Epidemic Management and Control in India. Preprints 2020, 2020060325. [Google Scholar] [CrossRef]
- Meraj, G.; Farooq, M.; Singh, S.K.; Romshoo, S.A.; Sudhanshu; Nathawat, M.S.; Kanga, S. Coronavirus pandemic versus temperature in the context of Indian subcontinent: A preliminary statistical analysis. Environ. Dev. Sustain. 2021, 23, 6524–6534. [Google Scholar] [CrossRef] [PubMed]
- Meraj, G.; Singh, S.K.; Kanga, S.; Islam, N. Modeling on comparison of ecosystem services concepts, tools, methods and their ecological-economic implications: A review. Model. Earth Syst. Environ. 2022, 8, 15–34. [Google Scholar] [CrossRef]
Data Used | Characteristics | Sources | Resolution | Date Acquisition | Path/Row |
---|---|---|---|---|---|
MODIS-NDVI (MOD13Q1) | NDVI | USGS | 250 m | 18 February 2000 to 31 January 2022 | 103/54, 103/55, 104/54, 104/55, 104/56, 105/54, 105/55, 105/56, 105/57, 106/54, 106/55, 106/56, 106/57, 107/54, 107/55 |
Landsat 5 TM | Mann–Kendall Tau | USGS | 30 m | 1 January 1985 to 1 January 2012 | |
Landsat 7 ETM+ | Mann–Kendall Tau | USGS | 30 m | 28 May 1999 to 31 December 2021 | |
Landsat 8 OLI | Mann–Kendall Tau | USGS | 30 m | 18 March 2013 to 31 January 2022 | |
Vector data | Map Preparation | https://www.igismap.com, accessed on 10 January 2022 | 30 m | - | |
Sentinel 2A/ESRI 10 m land cover | Land Use and Land cover | ESRI [42] | 10 m | 2021 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmad, T.; Gupta, S.K.; Singh, S.K.; Meraj, G.; Kumar, P.; Kanga, S. Unveiling Nature’s Resilience: Exploring Vegetation Dynamics during the COVID-19 Era in Jharkhand, India, with the Google Earth Engine. Climate 2023, 11, 187. https://doi.org/10.3390/cli11090187
Ahmad T, Gupta SK, Singh SK, Meraj G, Kumar P, Kanga S. Unveiling Nature’s Resilience: Exploring Vegetation Dynamics during the COVID-19 Era in Jharkhand, India, with the Google Earth Engine. Climate. 2023; 11(9):187. https://doi.org/10.3390/cli11090187
Chicago/Turabian StyleAhmad, Tauseef, Saurabh Kumar Gupta, Suraj Kumar Singh, Gowhar Meraj, Pankaj Kumar, and Shruti Kanga. 2023. "Unveiling Nature’s Resilience: Exploring Vegetation Dynamics during the COVID-19 Era in Jharkhand, India, with the Google Earth Engine" Climate 11, no. 9: 187. https://doi.org/10.3390/cli11090187
APA StyleAhmad, T., Gupta, S. K., Singh, S. K., Meraj, G., Kumar, P., & Kanga, S. (2023). Unveiling Nature’s Resilience: Exploring Vegetation Dynamics during the COVID-19 Era in Jharkhand, India, with the Google Earth Engine. Climate, 11(9), 187. https://doi.org/10.3390/cli11090187