Classification of Rainfall Warnings Based on the TOPSIS Method
Abstract
:1. Introduction
2. Materials and Methods
- , if and only if the alternative solution has the best condition
- , if and only if the alternative solution has the worst condition
3. Results and Discussion
3.1. Level 1—Purple Status: The First Level of Warning
3.2. Level 2—Red Status: The Second Level of Warning
3.3. Level 3—Orage Status: The Third Level of Warning
3.4. Level 4—Yellow Status and Level 5—Green Status: The Fourth and Fifth Level of Warning
3.5. Compare Flood with the Alert Levels
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Sura, P. Stochastic Models of Climate Extremes: Theory and Observations. Extremes in a Changing Climate—Detection, Analysis and Uncertainty; Springer: Berlin/Heidelberg, Germany, 2012; pp. 1–75. [Google Scholar]
- Taghavi, F.; Naseri, M.; Bayat, B.; Motavaliyan, S.S.; Azadifard, D. The Determination of Climate Behavior Patterns in Different Parts of Iran on the Basis of Spectral Analysis and Clustering of Extreme Temperature and Precipitation Values; Physical Geography Researches Tehran University: Tehran, Iran, 2011; pp. 109–124. [Google Scholar]
- Sheikh, M.M.; Ahmed, A.U.; Revadekar, J.V.; Shrestha, M.L.; Premlal, K.H.M.S. Development and Application Of Climate Extreme Indices and Indicators for Monitoring Trends in Climate Extremes and Their Socio-Economic Impacts in South Asian Countries; Final Report for APN Project: ARCP2008-10CMY-Sheikh; APN: Kobe, Japan, 2009; pp. 1–25. [Google Scholar]
- Rahimzadeh, F.; Hedayat Dezfouli, M.; PourAsghariyan, A.; Asgari, V. Assess the extent and mutation profiles of temperature and precipitation in the Hormozgan Province. Geogr. Dev. 2007, 21, 97–116. [Google Scholar]
- Easterling, D.R.; Meehl, G.A.; Parmesan, C.; Changnon, S.A.; Karl, T.R.; Mearns, L.O. Climate extremes: Observations, modeling, and impacts. Science 2000, 289, 2068–2074. [Google Scholar] [CrossRef] [PubMed]
- Manton, M.J.; Della-Marta, P.M.; Haylock, M.R.; Hennessy, K.J.; Nicholls, N.; Chambers, L.E.; Collins, D.A.; Daw, G.; Finet, A.; Gunawan, D.; et al. Trend in extreme daily rainfall and temperature in Southeast Asia and South Pacific. Int. J. Clim. 2001, 21, 269–284. [Google Scholar] [CrossRef]
- Klein Tank, A.M.G.K.; Können, G.P. Trends in indics of daily temperature and precipitation extremes in Europe. J. Clim. 2003, 16, 3665–3680. [Google Scholar] [CrossRef]
- Hansen, J.; Sato, M.; Ruedy, R.; Lacis, A.; Oinas, V. Global warming in the twenty-first century: An alternative scenari. Proc. Natl. Acad. Sci. USA 2000. [Google Scholar] [CrossRef] [PubMed]
- Hansen, J.; Sato, M.; Ruedy, R. Perception of climate change. Proc. Natl. Acad. Sci. USA 2012, 109, E2415–E2423. [Google Scholar] [CrossRef] [PubMed]
- Gholami, V.; Chau, K.W.; Fadaee, F.; Torkaman, J.; Ghaffari, A. Modeling of groundwater level fluctuations using dendrochronology in alluvial aquifers. J. Hydrol. 2015, 529, 1060–1069. [Google Scholar] [CrossRef]
- Taormina, R.; Chau, K.W. Data-driven input variable selection for rainfall-runoff modeling using binary-coded particle swarm optimization and Extreme Learning Machines. J. Hydrol. 1987, 529, 1617–1632. [Google Scholar] [CrossRef]
- Wu, C.L.; Chau, K.W.; Li, Y.S. Methods to improve neural network performance in daily flows prediction. J. Hydrol. 2009, 372, 80–93. [Google Scholar] [CrossRef]
- Wang, W.C.; Chau, K.W.; Xu, D.; Chen, X.Y. Improving forecasting accuracy of annual runoff time series using ARIMA based on EEMD decomposition. Water Resour. Manag. 2015, 29, 2655–2675. [Google Scholar] [CrossRef]
- Chen, X.Y.; Chau, K.W.; Busari, A.O. A comparative study of population-based optimization algorithmsfor downstream river flow forecasting by a hybrid neural network model. Eng. Appl. Artif. Intell. 2015, 46, 258–268. [Google Scholar] [CrossRef]
- Chau, K.W.; Wu, C.L. A hybrid model coupled with singular spectrum analysis for daily rainfallprediction. J. Hydroinf. 2010, 12, 458–473. [Google Scholar] [CrossRef]
- UK. METoffice. Available online: http://www.metoffice.gov.uk/guide/weather/warnings (accessed on 11 December 2015).
- MET ÉIREANN. 2016. Available online: http://www.met.ie/nationalwarnings/warnings-explained.asp (accessed on 13 July 2016).
- Folland, C.K.; Karl, T.R.; Christy, J.R.; Clarke, G.V.; Gruza, G.V.; Jouzel, J.; Mann, M.E.; Oerlemans, J.; Salinger, M.J.; Wang, S.W. Climate Change 2001: The Scientific Basis; IPCC: Geneva, Switzerland, 2007; pp. 155–163. [Google Scholar]
- Houghton, J.T.; Ding, Y.; Griggs, D.J.; Noguer, M.; van der Linden, P.J.; Dai, X.; Maskell, K.; Johnson, C.A. IPCC, 2001: Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovermental Panel on Climate Change; World Meteorological Organization/United Nations Environment Programme, Cambridge University Press: Cambridge, UK; New York, NY, USA, 2001; p. 881. [Google Scholar]
- Gleason, K.L.; Lawrimore, J.H.; Levinson, D.H.; Karl, T.R.; Karoly, D.J. A Revised U.S. Climate extremes index. J. Clim. 2007, 21. [Google Scholar] [CrossRef]
- National Oceanic and Atmospheric Administration (NOAA). Available online: http://www.srh.noaa.gov/bro/?n=mapcolors (accessed on 24 April 2015).
- Saaty, T.L. Analytic Hierarchy Process: Planning, Priority Setting, Resource Allocation; McGraw-Hill: New York, NY, USA, 1980. [Google Scholar]
- Zavadskas, E.K.; Zakarevicius, A.; Antucheviciene, J. Evaluation of ranking accuracy in multi-criteria decisions. Informatica 2006, 17, 601–618. [Google Scholar]
- Asakereh, H.; Ramzi, R. Climatology of precipitation in North West of Iran. Geogr. Dev. 2012, 9, 137–158. [Google Scholar]
- Karl, T.R.; Williams, C.N. An approach to adjusting climatological time series for discontinuous inhomogeneities. J. Clim. Appl. Meteorol. 1987, 26, 1744–1763. [Google Scholar] [CrossRef]
- Rhoades, D.A.; Salinger, M.J. Adjustment of temperature and rainfall records for site changes. Int. J. Climatol. 1993, 13, 899–913. [Google Scholar] [CrossRef]
- Buishand, T.A. Some methods for testing the homogeneity of rainfall records. J. Hydrol. 1982. [Google Scholar] [CrossRef]
- Alexanderson, H.A. A homogeneity test applied to precipitation data. J. Climatol. 1986, 6, 661–675. [Google Scholar] [CrossRef]
- Chakravarti, I.M.; Laha, R.G.; Roy, J. Handbook of Methods of Applied Statistics; John Wiley and Sons: Hoboken, NJ, USA, 1967; Volume 1, pp. 392–394. [Google Scholar]
- Javari, M. Trend and homogeneity analysis of precipitation. Climate 2016, 4, 44. [Google Scholar] [CrossRef]
- González-Rouco, J.F.; Jiménez, J.L.; Quesada, V.; Valero, F. Quality control and homogeneity of precipitation data in the Southwest of Europe. J. Clim. 2000, 14, 964–978. [Google Scholar] [CrossRef]
- Machiwal, D.; Madan, K.J.H.A. Comparative evaluation of statistical tests for time series analysis: Application to hydrological time series/Evaluation comparative de tests statistiques pour l’analyse de séries temporelles: Application à des series temporelles hydrologiques. Hydrol. Sci. J. 2008, 53, 353–366. [Google Scholar] [CrossRef]
- Hwang, C.L.; Yoon, K. Multiple Attribute Decision Making: Methods and Applications; Springer: New York, NY, USA, 1981. [Google Scholar]
- Yoon, K. A reconciliation among discrete compromise situations. J. Oper. Res. Soc. 1987, 38, 277–286. [Google Scholar] [CrossRef]
- Hwang, C.L.; Lai, Y.J.; Liu, T.Y. A new approach for multiple objective decision making. Comput. Oper. Res. 1993, 20, 889–899. [Google Scholar] [CrossRef]
- Qangormeh, A.; Roshan, G. Application of TOPSIS index in monitoring of drought and wet in Golestan Province. J. Earth Space Phys. 2015, 41, 536–547. [Google Scholar]
- Azmi, M.; Araghinejad, S.; Sarmadi, F. A national-scale assessment of agricultural development feasibility using Multi-Criteria Decision Making (MCDM) approaches. Adv. Nat. Appl. Sci. 2011, 5, 379. [Google Scholar]
- Assari, A.; Mahesh, T.; Assari, E. Role of public participation in sustainability of historical city: Usage of TOPSIS method. Indian J. Sci. Technol. 2012, 5, 2289–2294. [Google Scholar]
- Wang, Y.M.; Elhag, T.M. Fuzzy TOPSIS method based on alpha level sets with an application to bridge risk assessment. Expert Syst. Appl. 2006, 31, 309–319. [Google Scholar] [CrossRef]
- Wang, T.C.; Chang, T.H. Application of TOPSIS in evaluating initial training aircraft under fuzzy environment. Expert Syst. Appl. 2007, 33, 870–880. [Google Scholar] [CrossRef]
- Chen, Y.; Li, K.W.; Liu, S. An OWA-TOPSIS method for multiple criteria decision analysis. Expert Syst. Appl. 2011, 38, 5205–5211. [Google Scholar] [CrossRef]
- Greene, R.; Devillers, R.; Luther, J.E.; Eddy, B.G. GIS-based multi-criteria analysis. Geogr. Compass 2011, 412–432. [Google Scholar] [CrossRef]
- Yoon, K.P.; Hwang, C. Multiple Attribute Decision Making: An Introduction; SAGE Publications: Thousand Oaks, CA, USA, 1995. [Google Scholar]
- Huang, I.B.; Keisler, J.; Linkov, I. Multi-criteria decision analysis in environmental science: Ten years of applications and trends. Sci. Total Environ. 2011, 409, 3578–3594. [Google Scholar] [CrossRef] [PubMed]
- KhoshAkhlagh, F.; Hejazizadeh, Z.; Mohammadi, H.; Roshan, G. The approach of TOPSIS method for determining and ranking drought: Drought case study zoning few stations in Khuzestan Province. J. Appl. Res. Geogr. Sci. 2006, 5, 105–127. [Google Scholar]
- Faraji, H.; Azizi, G. Evaluation of spatial interpolation methods. Phys. Geogr. Res. Q. 2006, 58, 1–15. [Google Scholar]
Variables | Mean | Standard Deviation | Maximum | Minimum |
---|---|---|---|---|
Annual precipitation (mm) | 327.86 | 81.25 | 727.41 | 212.07 |
Winter precipitation (mm) | 92.56 | 42.74 | 313.20 | 40.86 |
Spring precipitation (mm) | 125.62 | 18.13 | 198.21 | 94.79 |
Summer precipitation (mm) | 20.95 | 16.03 | 109.40 | 3.90 |
Autumn precipitation (mm) | 88.73 | 28.14 | 211.48 | 49.31 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeyaeyan, S.; Fattahi, E.; Ranjbar, A.; Vazifedoust, M. Classification of Rainfall Warnings Based on the TOPSIS Method. Climate 2017, 5, 33. https://doi.org/10.3390/cli5020033
Zeyaeyan S, Fattahi E, Ranjbar A, Vazifedoust M. Classification of Rainfall Warnings Based on the TOPSIS Method. Climate. 2017; 5(2):33. https://doi.org/10.3390/cli5020033
Chicago/Turabian StyleZeyaeyan, Sadegh, Ebrahim Fattahi, Abbas Ranjbar, and Majid Vazifedoust. 2017. "Classification of Rainfall Warnings Based on the TOPSIS Method" Climate 5, no. 2: 33. https://doi.org/10.3390/cli5020033
APA StyleZeyaeyan, S., Fattahi, E., Ranjbar, A., & Vazifedoust, M. (2017). Classification of Rainfall Warnings Based on the TOPSIS Method. Climate, 5(2), 33. https://doi.org/10.3390/cli5020033