Study on Burning Surface Regression Algorithm under Erosive Burning Based on CT Images of Solid Rocket Motor Grain
Abstract
:1. Introduction
2. Models
2.1. 3D Reconstruction of CT Images
2.2. Erosive Burning Effect
3. Methods
3.1. Level-Set Method
3.2. Numerical Solution
3.3. MDF Initialization
3.4. Reinitialization
4. Results and Discussion
4.1. Computational Environment
4.2. NAWC No. 6 Partial Grain
4.3. Tube Grain
4.4. Star Grain
4.5. Different Burning Rate Grain
4.6. 0-D Simulations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dhital, D.; Lee, J.R.; Farrar, C.; Mascarenas, D. A review of flaws and damage in space launch vehicles: Motors and engines. J. Intell. Mater. Syst. Struct. 2014, 25, 524–540. [Google Scholar] [CrossRef]
- Le, A.Q.; Sun, L.Z.; Miller, T.C. Health monitoring and diagnosis of solid rocket motors with bore cracks. J. Aerosp. Eng. 2016, 29, 3. [Google Scholar] [CrossRef]
- Shun, L.; Hongyi, L.; Weiwei, Z.; Bin, Z.; Yucheng, Y.; Doudou, S. Fast algorithm for grain burnback of actual shaped grains of solid motor. J. B Univ. Aeronaut. Astronaut. 1–13.
- Fu, Q.; Zhao, J. An Automatic Method to detect defects for Solid Rocket Motor. In 2015 International Conference on Applied Science and Engineering Innovation; Atlantis Press: Jinan, China, 2015; pp. 1935–1939. [Google Scholar]
- Wanzhi, H. Simulation of the Transient Internal Flow of SRM with the Grain Surface Regression Based on Level-Set Method. Master’s Thesis, Harbin Engineering University, Harbin, China, 2016. [Google Scholar]
- Fei, Q. Method Research for Burning Surface Calculation of Solid Rocket Motor with Complicated Grain. Master’s Thesis, Northwestern Polytechnical University, Xi’an, China, 2003. [Google Scholar]
- Ran, W. Research on Algorithms for Dynamic Nonuniform Regression of Solid Rocket Motors and Its Application. Ph.D. Thesis, Northwestern Polytechnical University, Xi’an, China, 2019. [Google Scholar]
- Barron, J. Generalized coordinate grain design and internal ballistics evaluation program. In Proceedings of the 3rd Solid Propulsion Conference, Atlantic City, NJ, USA, 4–6 June 1968; p. 490. [Google Scholar]
- Coats, D.E.; Levine, J.N.; Nickerson, G.R.; Tyson, T.J.; Cohen, N.S.; Price, C.F. A Computer Program for the Prediction of Solid Propellant Rocket Motor Performance; Ultrasystems Environmental Inc.: Irvine, CA, USA, 1975; Volume 3. [Google Scholar]
- Wei, L. Calculation of the Interior Ballistic Performance of Solid Rocket Motor Based on Pro/E and Qt. Master’s Thesis, Harbin Engineering University, Harbin, China, 2014. [Google Scholar]
- Voller, V.R.; Brent, A.D.; Prakash, C. The modelling of heat, mass and solute transport in solidification systems. Int. J. Heat Mass Transf. 1989, 32, 1719–1731. [Google Scholar] [CrossRef]
- Jiao, X. Face offsetting: A unified approach for explicit moving interfaces. J. Comput. Phys. 2007, 220, 612–625. [Google Scholar] [CrossRef] [Green Version]
- Sethian, J.A. Theory, algorithms, and applications of level set methods for propagating interfaces. Acta Numer. 1996, 5, 309–395. [Google Scholar] [CrossRef] [Green Version]
- Hegab, A.; Jackson, T.L.; Buckmaster, J.; Stewart, D.S. Nonsteady burning of periodic sandwich propellants with complete coupling between the solid and gas phases. Combust. Flame 2001, 125, 1055–1070. [Google Scholar] [CrossRef]
- Cavallini, E.; Favini, B.; Di Giacinto, M.; Serraglia, F. Internal ballistics simulation of a NAWC tactical SRM. J. Appl. Mech. 2011, 78, 051018. [Google Scholar] [CrossRef] [Green Version]
- Willcox, M.A.; Brewster, M.Q.; Tang, K.C.; Stewart, D.S. Solid propellant grain design and burnback simulation using a minimum distance function. J. Propul. Power 2007, 23, 465–475. [Google Scholar] [CrossRef]
- Ren, P.; Wang, H.; Zhou, G.; Li, J.; Cai, Q.; Yu, J.; Yuan, Y. Solid rocket motor propellant grain burnback simulation based on fast minimum distance function calculation and improved marching tetrahedron method. Chin. J. Aeronaut. 2021, 34, 208–224. [Google Scholar] [CrossRef]
- Yildirim, C.; Aksel, H. Numerical simulation of the grain burnback in solid propellant rocket motor. In Proceedings of the 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Tucson, AZ, USA, 10–13 July 2005; p. 4160. [Google Scholar]
- Dong-Hui, W.; Yang, F.; Fan, H.; Wei-Hua, Z. An integrated framework for solid rocket motor grain design optimization. Proc. Inst. Mech. Eng. Part G 2014, 228, 1156–1170. [Google Scholar] [CrossRef]
- Fei, Q.; Guangqiang, H.; Peijin, L.; Jiang, L. A New Algorithm for Burning Surface Calculation of Solid Rocket Motor with Complicated Grain Based on Level set Method. J. Northwest. Polytech. Univ. 2005, 4, 456–460. [Google Scholar]
- Yang, F. Analysis on the Performance of Solid Rocket Motor with Cracked Propellant Grain. Master’s Thesis, National University of Defense Technology, Changsha, China, 2010. [Google Scholar]
- Tshokotsha, M.H. Internal Ballistic Modelling of Solid Rocket Motors Using Level Set Methods for Simulating Grain Burnback. Ph.D. Thesis, Stellenbosch University, Stellenbosch, South Africa, 2016. [Google Scholar]
- Wei, R.; Bao, F.; Liu, Y.; Hui, W. Combined acceleration methods for solid rocket motor grain burnback simulation based on the level set method. Int. J. Aerosp. Eng. 2018, 2018, 4827810. [Google Scholar]
- Oh, S.H.; Lee, H.J.; Roh, T.S. Development of a hybrid method in a 3-D numerical burn-back analysis for solid propellant grains. Aerosp. Sci. Technol. 2020, 106, 106103. [Google Scholar] [CrossRef]
- Wei, R.; Bao, F.; Liu, Y.; Hui, W. Precise Design of Solid Rocket Motor Heat Insulation Layer Thickness under Nonuniform Dynamic Burning Rate. Aerosp. Sci. Technol. 2019, 2019, 5789430. [Google Scholar] [CrossRef]
- Godon, J.C.; Duterque, J.; Lengelle, G. Solid-propellant erosive burning. J. Propul. Power 1992, 8, 741–747. [Google Scholar] [CrossRef]
- DeLuca, L.; Di Silvestro, R.; Cozzi, F. Intrinsic combustion instability of solid energetic materials. J. Propul. Power 1995, 11, 804–815. [Google Scholar] [CrossRef]
- Willcox, M.A.; Brewster, M.Q.; Tang, K.C.; Stewart, D.S.; Kuznetsov, I. Solid rocket motor internal ballistics simulation using three-dimensional grain burnback. J. Propul. Power 2007, 23, 575–584. [Google Scholar] [CrossRef] [Green Version]
- Landsbaum, E.M. Erosive burning of solid rocket propellants-a revisit. J. Propul. Power 2005, 21, 470–477. [Google Scholar] [CrossRef]
- Rettenmaier, A.; Heister, S. Experimental Evaluation of Erosive Burning in a Planar Combustor. In Proceedings of the 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, San Diego, CA, USA, 31 July–3 August 2011; p. 5564. [Google Scholar]
- Weaver, J.; Gauthier, J.D.; Stowe, R. Transient Chamber Flowfield Simulation of a Rod-and-Tube Configuration Solid Rocket Motor. In Proceedings of the 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Fort Lauderdale, FL, USA, 11–14 July 2004; p. 4179. [Google Scholar]
- Ruxun, L.; Zhifeng, W. Numerical Simulation Methods and Motion Interface Tracking, 1st ed.; University of Science and Technology of China Press: Hefei, China, 2001; pp. 194–206. [Google Scholar]
- Osher, S.; Sethian, J.A. Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 1988, 79, 12–49. [Google Scholar] [CrossRef] [Green Version]
- Shu, C.W.; Osher, S. Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 1988, 77, 439–471. [Google Scholar] [CrossRef] [Green Version]
- Osher, S.; Fedkiw, R.; Piechor, K. Level set methods and dynamic implicit surfaces. Appl. Mech. Rev. 2004, 57, B15. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.G.; Giga, Y.; Goto, S. Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations. Proc. Jpn. Acad. Ser. A 1989, 65, 207–210. [Google Scholar] [CrossRef]
- Sussman, M.; Fatemi, E.; Smereka, P.; Osher, S. An improved level set method for incompressible two-phase flows. Comput. Fluids 1998, 27, 663–680. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, S.; Lu, H.; Zhang, B.; Yang, Y.; Sang, D. Study on Burning Surface Regression Algorithm under Erosive Burning Based on CT Images of Solid Rocket Motor Grain. Aerospace 2023, 10, 21. https://doi.org/10.3390/aerospace10010021
Liu S, Lu H, Zhang B, Yang Y, Sang D. Study on Burning Surface Regression Algorithm under Erosive Burning Based on CT Images of Solid Rocket Motor Grain. Aerospace. 2023; 10(1):21. https://doi.org/10.3390/aerospace10010021
Chicago/Turabian StyleLiu, Shun, Hongyi Lu, Bin Zhang, Yucheng Yang, and Doudou Sang. 2023. "Study on Burning Surface Regression Algorithm under Erosive Burning Based on CT Images of Solid Rocket Motor Grain" Aerospace 10, no. 1: 21. https://doi.org/10.3390/aerospace10010021
APA StyleLiu, S., Lu, H., Zhang, B., Yang, Y., & Sang, D. (2023). Study on Burning Surface Regression Algorithm under Erosive Burning Based on CT Images of Solid Rocket Motor Grain. Aerospace, 10(1), 21. https://doi.org/10.3390/aerospace10010021