Effect of Al–Li Alloy on the Combustion Performance of AP/RDX/Al/HTPB Propellant
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Propellant Sample Preparation
2.3. Equipment and Experimentation
2.3.1. Thermal Test
2.3.2. Combustion Heat Test
2.3.3. Burning Rate Test
2.3.4. Combustion Diagnostics System
2.3.5. Condensed Combustion Products (CCPs) Test
2.3.6. The simulated 75 mm Test Solid Rocket Motor
3. Results and Discussion
3.1. Combustion Heat
3.2. Thermal Characteristics
3.3. Combustion Characteristics
3.4. Condensed Combustion Products
3.5. Demonstration of the Simulated 75 mm Test Solid Rocket Motor
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kwon, Y.-S.; Gromov, A.A.; Ilyin, A.P.; Popenko, E.M.; Rim, G.-H. The mechanism of combustion of superfine aluminum powders. Combust. Flame 2003, 133, 385–391. [Google Scholar] [CrossRef]
- Ao, W.; Liu, X.; Rezaiguia, H.; Liu, H.; Wang, Z.; Liu, P. Aluminum agglomeration involving the second mergence of agglomerates on the solid propellants burning surface: Experiments and modeling. Acta Astronaut. 2017, 136, 219–229. [Google Scholar] [CrossRef]
- Mullen, J.C.; Brewster, M. Reduced agglomeration of aluminum in wide-distribution composite propellants. J. Propuls. Power 2011, 27, 650–661. [Google Scholar] [CrossRef]
- Orlandi, O.; Plaud, M.; Godfroy, F.; Larrieu, S.; Cesco, N. Aluminium droplets combustion and SRM instabilities. Acta Astronaut. 2019, 158, 470–479. [Google Scholar] [CrossRef]
- Sippel, T.R.; Son, S.F.; Groven, L.J.; Zhang, S.; Dreizin, E. Exploring mechanisms for agglomerate reduction in composite solid propellants with polyethylene inclusion modified aluminum. Combust. Flame 2015, 162, 846–854. [Google Scholar] [CrossRef]
- Paravan, C. Nano-sized and mechanically activated composites: Perspectives for enhanced mass burning rate in aluminized solid fuels for hybrid rocket propulsion. Aerospace 2019, 6, 127. [Google Scholar] [CrossRef] [Green Version]
- Anand, K.; Roy, A.; Mulla, I.; Balbudhe, K.; Jayaraman, K.; Chakravarthy, S. Experimental data and model predictions of aluminium agglomeration in ammonium perchlorate-based composite propellants including plateau-burning formulations. Proc. Combust. Inst. 2013, 34, 2139–2146. [Google Scholar] [CrossRef]
- Vaz, N.G.; Pantoya, M.L. Silicon alloying enhances fast heating rate combustion of aluminum particles. Combust. Flame 2022, 241, 112156. [Google Scholar] [CrossRef]
- Zhao, D.; Lu, Z.; Zhao, H.; Li, X.; Wang, B.; Liu, P. A review of active control approaches in stabilizing combustion systems in aerospace industry. Prog. Aerosp. Sci. 2018, 97, 35–60. [Google Scholar] [CrossRef]
- Mutlu, M.; Kang, J.-H.; Raza, S.; Schoen, D.; Zheng, X.; Kik, P.G.; Brongersma, M.L. Thermoplasmonic ignition of metal nanoparticles. Nano Lett. 2018, 18, 1699–1706. [Google Scholar] [CrossRef]
- Liu, X.-L.; Hu, S.-Q.; Liu, L.-L.; Zhang, Y. Condensed combustion products characteristics of HTPB/AP/Al propellants under solid rocket motor conditions. Aerospace 2022, 9, 677. [Google Scholar] [CrossRef]
- Cha, J.; de Oliveira, É.J. Performance Comparison of Control Strategies for a Variable-Thrust Solid-Propellant Rocket Motor. Aerospace 2022, 9, 325. [Google Scholar] [CrossRef]
- Maggi, F.; Bandera, A.; Galfetti, L.; De Luca, L.T.; Jackson, T.L. Efficient solid rocket propulsion for access to space. Acta Astronaut. 2010, 66, 1563–1573. [Google Scholar] [CrossRef]
- Armstrong, R.; Baschung, B.; Booth, D.; Samirant, M. Enhanced propellant combustion with nanoparticles. Nano Lett. 2003, 3, 253–255. [Google Scholar] [CrossRef]
- Yilmaz, N.; Donaldson, B.; Gill, W. Aluminum Particle Ignition Studies with Focus on Effect of Oxide Barrier. Aerospace 2023, 10, 45. [Google Scholar] [CrossRef]
- Muravyev, N.; Frolov, Y.; Pivkina, A.; Monogarov, K.; Ordzhonikidze, O.; Bushmarinov, I.; Korlyukov, A. Influence of particle size and mixing technology on combustion of HMX/Al compositions. Propellants Explos. Pyrotech. 2010, 35, 226–232. [Google Scholar] [CrossRef]
- Bhadran, A.; Manathara, J.G.; Ramakrishna, P. Thrust control of lab-scale hybrid rocket motor with wax-aluminum fuel and air as oxidizer. Aerospace 2022, 9, 474. [Google Scholar] [CrossRef]
- Ao, W.; Wen, Z.; Liu, L.; Wang, Y.; Zhang, Y.; Liu, P.; Qin, Z.; Li, L.K. Combustion and agglomeration characteristics of aluminized propellants containing Al/CuO/PVDF metastable intermolecular composites: A highly adjustable functional catalyst. Combust. Flame 2022, 241, 112110. [Google Scholar] [CrossRef]
- Lade, R.; Wasewar, K.; Sangtyani, R.; Kumar, A.; Shende, D.; Peshwe, D. Influence of the addition of aluminium nanoparticles on thermo-rheological properties of hydroxyl-terminated polybutadiene-based composite propellant and empirical modelling. J. Therm. Anal. Calorim. 2019, 138, 211–223. [Google Scholar] [CrossRef]
- Min’kov, L.L.; Shrager, E.R.; Pikushchak, E.V. Propellant grain with maximum combustion efficiency of metal. Key Eng. Mater. 2016, 685, 325–329. [Google Scholar] [CrossRef]
- Messer, D.K.; Shin, J.H.; Örnek, M.; Hafner, T.A.; Zhou, M.; Son, S.F. Effects of flexoelectric and piezoelectric properties on the impact-driven ignition sensitivity of P (VDF-TrFE)/nAl films. Combust. Flame 2022, 242, 112181. [Google Scholar] [CrossRef]
- Liu, L.; Ao, W.; Wen, Z.; Wang, Y.; Long, Y.; Liu, P.; He, G.; Li, L.K. Modifying the ignition, combustion and agglomeration characteristics of composite propellants via Al-Mg alloy additives. Combust. Flame 2022, 238, 111926. [Google Scholar] [CrossRef]
- Jiao, Q.; Zhang, B.; Yan, S.; Ou, Y.; Yan, T.; Du, F. Oxidation and ignition of a heterogeneous Al-Zn alloy powder metallic fuel. Mater. Lett. 2020, 267, 127502. [Google Scholar] [CrossRef]
- Belal, H.; Han, C.W.; Gunduz, I.E.; Ortalan, V.; Son, S.F. Ignition and combustion behavior of mechanically activated Al–Mg particles in composite solid propellants. Combust. Flame 2018, 194, 410–418. [Google Scholar] [CrossRef]
- Greer, C.J.; Peters, J.A.; Manahan, M.P.; Cor, J.J.; Rattner, A.S. Experimental characterization of lithium-carbon dioxide combustion in batch reactors for powering Venus landers. Acta Astronaut. 2021, 181, 235–248. [Google Scholar] [CrossRef]
- Terry, B.C.; Sippel, T.R.; Pfeil, M.A.; Gunduz, I.E.; Son, S.F. Removing hydrochloric acid exhaust products from high performance solid rocket propellant using aluminum-lithium alloy. J. Hazard. Mater. 2016, 317, 259–266. [Google Scholar] [CrossRef] [Green Version]
- Terry, B.; Gunduz, I.; Pfeil, M.; Sippel, T.; Son, S. A mechanism for shattering microexplosions and dispersive boiling phenomena in aluminum–lithium alloy based solid propellant. Proc. Combust. Inst. 2017, 36, 2309–2316. [Google Scholar] [CrossRef] [Green Version]
- Terry, B.C.; Son, S.F.; Gunduz, I.E. Solid-Rocket Propellants. US10519075B2.
- Zhu, Y.; Le, W.; Zhao, W.; Ma, X.; Liu, D.; Li, J.; Jiao, Q. Promising fuels for energetics: Spherical Al-Li powders with high reactivity via incorporation of Li. Fuel 2022, 323, 124393. [Google Scholar] [CrossRef]
- Zhang, D.; Zou, H.; Cai, S. Effect of iron coating on thermal properties of aluminum-lithium alloy powder. Propellants Explos. Pyrotech. 2017, 42, 953–959. [Google Scholar] [CrossRef]
- Zhang, T.; Yao, N.; Zhou, C.; Li, Y.; Zhao, Y.; Pang, A.; Wu, S. Combustion characteristics of cross-linked fluorinated polymer supported aluminum/oxidizer microsphere in HTPB propellant. FirePhysChem 2022, 2, 20–27. [Google Scholar] [CrossRef]
- Ao, W.; Zhang, Y.; Liu, L.; Huo, C.; Liu, P.; Li, L.K. Ignition and combustion experiments on Mg/AP composite fuels in different reaction environments. Combust. Flame 2023, 247, 112505. [Google Scholar] [CrossRef]
- Xin, L.; Pei-jin, L.; Bing-ning, J. An experimental investigation of aluminum combustion in composite propellent. J. Propuls. Technol. 2016, 37, 1579–1585. [Google Scholar]
- Liu, H.; Ao, W.; Hu, Q.; Liu, P.; Hu, S.; Liu, L.; Wang, Y. Effect of RDX content on the agglomeration, combustion and condensed combustion products of an aluminized HTPB propellant. Acta Astronaut. 2020, 170, 198–205. [Google Scholar] [CrossRef]
- Yu-mei, J. Discussion on determination of alumina content in ores by EDTA replacement titration and back titration. Liaoning Chem. Ind. 2009, 38, 424–425. [Google Scholar]
- Ren, J.; Shi, H.; Du, H.; Li, J.; Yang, R. Effect of polyhedral oligomeric silsesquioxane on combustion performance of HTPB propellants. Combust. Flame 2022, 238, 111856. [Google Scholar] [CrossRef]
- Yilmaz, N.; Donaldson, B.; Gill, W.; Erikson, W. Solid propellant burning rate from strand burner pressure measurement. Propellants Explos. Pyrotech. 2008, 33, 109–117. [Google Scholar] [CrossRef]
- Ao, W.; Fan, Z.; Liu, L.; An, Y.; Ren, J.; Zhao, M.; Liu, P.; Li, L.K. Agglomeration and combustion characteristics of solid composite propellants containing aluminum-based alloys. Combust. Flame 2020, 220, 288–297. [Google Scholar] [CrossRef]
- Diez, G.A.; Manship, T.D.; Terry, B.C.; Gunduz, I.E.; Son, S.F. Characterization of an Aluminum–Lithium-Alloy-Based Composite Propellant at Elevated Pressures. J. Propuls. Power 2021, 37, 332–337. [Google Scholar] [CrossRef]
- Rubio, M.A.; Gunduz, I.E.; Groven, L.J.; Sippel, T.R.; Han, C.W.; Unocic, R.R.; Ortalan, V.; Son, S.F. Microexplosions and ignition dynamics in engineered aluminum/polymer fuel particles. Combust. Flame 2017, 176, 162–171. [Google Scholar] [CrossRef]
Sample No. | HTPB,% | AP,% | RDX,% | Al,% | Al–2.5Li,% |
---|---|---|---|---|---|
HA-1 | 11.5 | 59.5 | 10.0 | 19.0 | 0.0 |
HA-2 | 11.5 | 59.5 | 10.0 | 14.0 | 5.0 |
HA-3 | 11.5 | 59.5 | 10.0 | 9.0 | 10.0 |
HA-4 | 11.5 | 59.5 | 10.0 | 5.0 | 15.0 |
HA-5 | 11.5 | 59.5 | 10.0 | 0 | 19.0 |
Sample No. | Al, % | Al–2.5Li, % | Combustion Heat (J/g) |
---|---|---|---|
HA-1 | 19 | 0 | 6167.0 ± 44.5 |
HA-2 | 14 | 5 | 6196.9 ± 49.0 |
HA-3 | 9 | 10 | 6238.6 ± 61.0 |
HA-4 | 4 | 15 | 6273.4 ± 55.0 |
HA-5 | 0 | 19 | 6310.5 ± 59.5 |
Sample No. | Al, % | Al–2.5Li, % | Combustion Heat (J/g) |
---|---|---|---|
X-1 | 19 | 0 | 28880.20 ± 40.10 |
X-2 | 14 | 5 | 29172.26 ± 39.27 |
X-3 | 9 | 10 | 29348.80 ± 35.86 |
X-4 | 4 | 15 | 29442.84 ± 52.17 |
X-5 | 0 | 19 | 29598.41 ± 39.65 |
Sample No. |
Combustion Efficiency (η%) | Fraction of Residual Active Aluminum (wt.%) |
---|---|---|
HA-1 | 92.273 ± 0.455 | 8.39 ± 0.10 |
HA-2 | 93.636 ± 0.376 | 6.95 ± 0.08 |
HA-3 | 94.091 ± 0.154 | 5.87 ± 0.09 |
HA-4 | 95.545 ± 0.167 | 4.46 ± 0.07 |
HA-5 | 96.600 ± 0.223 | 2.65 ± 0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiong, W.; Liu, Y.; Zhang, T.; Wu, S.; Zeng, D.; Guo, X.; Pang, A. Effect of Al–Li Alloy on the Combustion Performance of AP/RDX/Al/HTPB Propellant. Aerospace 2023, 10, 222. https://doi.org/10.3390/aerospace10030222
Xiong W, Liu Y, Zhang T, Wu S, Zeng D, Guo X, Pang A. Effect of Al–Li Alloy on the Combustion Performance of AP/RDX/Al/HTPB Propellant. Aerospace. 2023; 10(3):222. https://doi.org/10.3390/aerospace10030222
Chicago/Turabian StyleXiong, Weiqiang, Yunjie Liu, Tianfu Zhang, Shixi Wu, Dawen Zeng, Xiang Guo, and Aimin Pang. 2023. "Effect of Al–Li Alloy on the Combustion Performance of AP/RDX/Al/HTPB Propellant" Aerospace 10, no. 3: 222. https://doi.org/10.3390/aerospace10030222
APA StyleXiong, W., Liu, Y., Zhang, T., Wu, S., Zeng, D., Guo, X., & Pang, A. (2023). Effect of Al–Li Alloy on the Combustion Performance of AP/RDX/Al/HTPB Propellant. Aerospace, 10(3), 222. https://doi.org/10.3390/aerospace10030222