Laser-Induced Ignition and Combustion of Single Micron-Sized Al-Li Alloy Particles in High Pressure Air/N2
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material Characterization
2.2. Experimental Setup for Ignition and Combustion Characterization
3. Results and Discussion
3.1. Ignition Characteristics
3.1.1. Thermal Analysis and Ignition Temperature
3.1.2. Ignition Power (Density) Threshold
3.1.3. Ignition Delay Time
3.1.4. Pressure Effect on Ignition Delay Time
3.2. Combustion Characteristics
3.2.1. Combustion Evolution
3.2.2. Flame Characteristics
3.2.3. Pressure Effect on the Combustion
3.2.4. Combustion Residues
3.3. Discussion of Ignition and Combustion Mechanism
3.3.1. Ignition Mechanism
3.3.2. Combustion Mechanism
4. Conclusions
- (1)
- The ignition temperature of the Al-Li alloy is lower than that of Al. The increase in laser power (density) can significantly improve the ignition probability. The combustion behavior is mainly characterized as a mixed mode, including heterogeneous surface combustion and homogeneous gas-phase combustion in air. The addition of Li promotes the occurrence of gas-phase combustion (AlO emission lines) with a microexplosion, promotes Al burn-out, and increases combustion efficiency. Al-Li alloys burned in N2 exhibit a lower probability of ignition, a lower radiation intensity, and a reduced microexplosive behavior than in air;
- (2)
- The ignition and combustion of Al-Li alloy microparticles can be promoted by increasing the air pressure. The higher the pressure, the shorter the ignition delay time and burn time of microparticles, which follows an exponential decay relationship. The increase in pressure results in a higher radiation intensity of the combustion flame and more chance of a microexplosion. The combustion temperatures of microparticles at high pressure are lower than those at atmospheric pressure owing to the microexplosion. The elevated pressure stabilized the microexplosion intensity, the combustion temperature, and the burn time in cool air.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yetter, R.A.; Risha, G.A.; Son, S.F. Metal particle combustion and nanotechnology. Proc. Combust. Inst. 2009, 32, 1819–1838. [Google Scholar] [CrossRef]
- Dreizin, E. Phase changes in metal combustion. Prog. Energy Combust. Sci. 2000, 26, 57–78. [Google Scholar] [CrossRef]
- Rozenband, V.I.; Vaganova, N.I. A strength model of heterogeneous ignition of metal particles. Combust. Explos. Shock. Waves 1992, 28, 113–118. [Google Scholar] [CrossRef]
- Fedorov, A.V.; Kharlamova, Y.V. Ignition of an Aluminum Particle. Combust. Explos. Shock. Waves 2003, 39, 544–547. [Google Scholar] [CrossRef]
- Hickman, S.; Brewster, M. Oscillatory combustion of aluminized composite propellants. Symp. (Int.) Combust. 1996, 26, 2007–2015. [Google Scholar] [CrossRef]
- Dong, H.; Zhumei, S. Study of the Fast Reaction Characteristics of Aluminized PETN Explosive Powders. Combust. Flame 1996, 105, 428–430. [Google Scholar] [CrossRef]
- Yagodnikov, D.A.; Voronetskii, A.V.; Sarab’ev, V.I. Ignition and combustion of pyrotechnic compositions based on micro- and nanoparticles of aluminum diboride in airflow in a two-zone combustion chamber. Combust. Explos. Shock. Waves 2016, 52, 300–306. [Google Scholar] [CrossRef]
- Sippel, T.R.; Son, S.F.; Groven, L.J. Altering Reactivity of Aluminum with Selective Inclusion of Polytetrafluoroethylene through Mechanical Activation. Propellants, Explos. Pyrotech. 2012, 38, 286–295. [Google Scholar] [CrossRef]
- Rubio, M.A.; Gunduz, I.E.; Groven, L.J.; Sippel, T.R.; Han, C.W.; Unocic, R.R.; Ortalan, V.; Son, S.F. Microexplosions and ignition dynamics in engineered aluminum/polymer fuel particles. Combust. Flame 2017, 176, 162–171. [Google Scholar] [CrossRef]
- Dreizin, E.L. Metal-based reactive nanomaterials. Prog. Energy Combust. Sci. 2009, 35, 141–167. [Google Scholar] [CrossRef]
- Sundaram, D.S.; Yang, V.; Zarko, V.E. Combustion of nano aluminum particles (Review). Combust. Explos. Shock. Waves 2015, 51, 173–196. [Google Scholar] [CrossRef]
- Babuk, V.; Dolotkazin, I.; Gamsov, A.; Glebov, A.; DeLuca, L.T.; Galfetti, L. Nanoaluminum as a Solid Propellant Fuel. J. Propuls. Power 2009, 25, 482–489. [Google Scholar] [CrossRef]
- Sippel, T.R.; Son, S.F.; Groven, L.J. Aluminum agglomeration reduction in a composite propellant using tailored Al/PTFE particles. Combust. Flame 2014, 161, 311–321. [Google Scholar] [CrossRef]
- Ao, W.; Liu, P.; Liu, H.; Wu, S.; Tao, B.; Huang, X.; Li, L.K.B. Tuning the agglomeration and combustion characteristics of alu-minized propellants via a new functionalized fluoropolymer. Chem. Eng. J. 2020, 382, 122987. [Google Scholar] [CrossRef]
- Foley, T.J.; Johnson, C.E.; Higa, K.T. Inhibition of Oxide Formation on Aluminum Nanoparticles by Transition Metal Coating. Chem. Mater. 2005, 17, 4086–4091. [Google Scholar] [CrossRef]
- Tian, B.; Zhang, J.; Bi, J.; Gu, N.; Xu, T. Fabrication of Fe–Al composite powder by electroless iron plating. J. Synth. Crystallogr. 2008, 4, 825. [Google Scholar]
- Zhang, D.; Zou, H.; Cai, S. Effect of Iron Coating on Thermal Properties of Aluminum-Lithium Alloy Powder. Propellants Explos. Pyrotech. 2017, 42, 953–959. [Google Scholar] [CrossRef]
- Sippel, T.R.; Son, S.F.; Groven, L.J.; Zhang, S.; Dreizin, E. Exploring mechanisms for agglomerate reduction in composite solid propellants with polyethylene inclusion modified aluminum. Combust. Flame 2015, 162, 846–854. [Google Scholar] [CrossRef]
- Ao, W.; Fan, Z.; Liu, L.; An, Y.; Ren, J.; Zhao, M.; Liu, P.; Li, L.K. Agglomeration and combustion characteristics of solid composite propellants containing aluminum-based alloys. Combust. Flame 2020, 220, 288–297. [Google Scholar] [CrossRef]
- Shoshin, Y.L.; Dreizin, E.L. Particle combustion rates for mechanically alloyed Al–Ti and aluminum powders burning in air. Combust. Flame 2006, 145, 714–722. [Google Scholar] [CrossRef]
- Shoshin, Y.L.; Trunov, M.A.; Zhu, X.; Schoenitz, M.; Dreizin, E.L. Ignition of aluminum-rich Al–Ti mechanical alloys in air. Combust. Flame 2006, 144, 688–697. [Google Scholar] [CrossRef]
- Wainwright, E.R.; Schmauss, T.A.; Lakshman, S.V.; Overdeep, K.R.; Weihs, T.P. Observations during Al:Zr composite particle combustion in varied gas environments. Combust. Flame 2018, 196, 487–499. [Google Scholar] [CrossRef]
- Huang, X.; Yang, Y.; Hou, F.; Li, S.; Qin, Z.; Zhao, F. Laser-Induced Ignition and Combustion of Al−Mg Alloy Powder Prepared by Melt Atomization. Propellants Explos. Pyrotech. 2020, 45, 1645–1653. [Google Scholar] [CrossRef]
- Moore, J.T.; Turns, S.R.; Yetter, R.A. Combustion of lithium–aluminum alloys. Combust. Sci. Technol. 2005, 177, 627–669. [Google Scholar] [CrossRef]
- Zhu, Y.; Le, W.; Zhao, W.; Ma, X.; Liu, D.; Li, J.; Jiao, Q. Promising fuels for energetics: Spherical Al-Li powders with high reactivity via incorporation of Li. Fuel 2022, 323, 124393. [Google Scholar] [CrossRef]
- Diez, G.A.; Manship, T.D.; Terry, B.C.; Gunduz, I.E.; Son, S.F. Characterization of an Aluminum–Lithium-Alloy-Based Composite Propellant at Elevated Pressures. J. Propuls. Power 2021, 37, 332–337. [Google Scholar] [CrossRef]
- Blackman, A.W.; Kuehl, D.K. Use of Binary Light Metal Mixtures and Alloys as Additives for Solid Propellants. ARS J. 1961, 31, 1265–1272. [Google Scholar] [CrossRef]
- Terry, B.C.; Sippel, T.R.; Pfeil, M.A.; Gunduz, I.E.; Son, S.F. Removing hydrochloric acid exhaust products from high per-formance solid rocket propellant using aluminum-lithium alloy. J. Hazard. Mater. 2016, 317, 259–266. [Google Scholar] [CrossRef] [Green Version]
- Terry, B.; Gunduz, I.; Pfeil, M.; Sippel, T.; Son, S. A mechanism for shattering microexplosions and dispersive boiling phenomena in aluminum–lithium alloy based solid propellant. Proc. Combust. Inst. 2017, 36, 2309–2316. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Huang, X.; Zhou, D. Experiments and Numerical Calculations on Laser-Induced Ignition of Single Micron-Sized Alu-Minum Fuel Particle. Propellants Explos. Pyrotech. 2017, 42, 523–531. [Google Scholar] [CrossRef]
- Chen, J.-H.; Li, C.-R. Thermal Analysis and Its Applications; Science Press: Beijing, China, 1985. [Google Scholar]
- Rufino, B.; Boulc’H, F.; Coulet, M.-V.; Lacroix, G.; Denoyel, R. Influence of particles size on thermal properties of aluminium powder. Acta Mater. 2007, 55, 2815–2827. [Google Scholar] [CrossRef]
- Pranda, P.; Prandov, K.; Hlavacek, V. Combustion of fly-ash carbon: Part I. TG/DTA study of ignition temperature. Fuel Process. Technol. 1999, 61, 211–221. [Google Scholar] [CrossRef]
- Hou, F.; Li, S.; Wang, Y.; Huang, X. Laser-Induced Ignition and Combustion of Individual Aluminum Particles Below 10 μm by Microscopic High-Speed Cinematography. Processes 2020, 8, 280. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Pan, X.; Jiang, Y.; Chang, S.; Jin, X.; Yang, Y.; Huang, X.; Guo, Y. Ignition and Combustion Behaviors of High Energetic Polyhedral Boron Cluster. Propellants Explos. Pyrotech. 2019, 44, 1319–1326. [Google Scholar] [CrossRef]
- Ahmad, M. Thermal oxidation behavior of an Al-Li-Cu-Mg-Zr alloy. Met. Mater. Trans. A 1987, 18, 681–689. [Google Scholar] [CrossRef]
- Partridge, P.G. Oxidation of aluminium-lithium alloys in the solid and liquid states. Int. Mater. Rev. 1990, 35, 37–58. [Google Scholar] [CrossRef]
- Li, S.; Zhuo, Z.; He, L.; Huang, X. Atomization characteristics of nano-Al/ethanol nanofluid fuel in electrostatic field. Fuel 2018, 236, 811–819. [Google Scholar] [CrossRef]
- Schlöffel, G.; Eichhorn, A.; Albers, H.; Mundt, C.; Seiler, F.; Zhang, F. The effect of a shock wave on the ignition behavior of aluminum particles in a shock tube. Combust. Flame 2010, 157, 446–454. [Google Scholar] [CrossRef]
- Beckstead, M.W. Correlating Aluminum Burning Times. Combust. Explos. Shock. Waves 2005, 41, 533–546. [Google Scholar] [CrossRef]
- Braconnier, A.; Gallier, S.; Halter, F.; Chauveau, C. Aluminum combustion in CO2-CO-N2 mixtures. Proc. Combust. Inst. 2020, 38, 4355–4363. [Google Scholar] [CrossRef]
- Kuryavtsev, V.M.; Sukhov, A.V.; Voronetskii, A.V.; Shpara, A.P. High-pressure combustion of metals (Three-zone model). Combust. Explos. Shock. Waves 1979, 15, 731–737. [Google Scholar] [CrossRef]
- Huang, X.; Zhang, M.; Lin, C.; Yang, Y.; Li, S.; Li, H.; Yang, Y.; Qin, Z.; Zhao, F. Comparison on ignition and combustion of AlMgB composite fuel and B fuel. Chem. Eng. J. 2022, 450, 138133. [Google Scholar] [CrossRef]
- Brzustowski, T.A.; Glassman, I. Spectroscopic Investigation of Metal Combustion. Prog. Astronaut. Rocket. 1964, 15, 41–73. [Google Scholar]
- Lasheras, J.; Fernandez-Pello, A.; Dryer, F. Experimental observations on the disruptive combustion of free droplets of mul-ticomponent fuels. Combus. Sci. Technol. 1980, 22, 195–209. [Google Scholar] [CrossRef]
- Desjardin, P.E.; Felske, J.D.; Carrara, M.D. Mechanistic Model for Aluminum Particle Ignition and Combustion in Air. J. Propuls. Power 2005, 21, 478–485. [Google Scholar] [CrossRef]
- Bazyn, T.; Krier, H.; Glumac, N. Combustion of nanoaluminum at elevated pressure and temperature behind reflected shock waves. Combust. Flame 2006, 145, 703–713. [Google Scholar] [CrossRef]
- Meda, L.; Marra, G.; Galfetti, L.; Severini, F.; De Luca, L. Nano-aluminum as energetic material for rocket propellants. Mater. Sci. Eng. 2007, 27, 1393–1396. [Google Scholar] [CrossRef]
Ignition Power (mW) | Ignition Power Density (×105 W/cm2) | Experimental Runs (Round) | Ignition Runs (Round) | Ignition Probability |
---|---|---|---|---|
1600 | 5.77 | 20 | 19 | 95% |
1300 | 4.69 | 20 | 15 | 75% |
800 | 2.88 | 20 | 12 | 60% |
700 | 2.52 | 20 | 9 | 45% |
600 | 2.16 | 20 | 0 | 0 |
Atmosphere | Ignition Probability | Averaged Ignition Delay Time (s) | Burn Time (s) |
---|---|---|---|
Air | 95% | 0.483 | 2.223 |
N2 | 30% | 1.350 | 2.380 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, D.; Wang, F.; Li, S.; Huang, X.; Li, H.; Guo, Y. Laser-Induced Ignition and Combustion of Single Micron-Sized Al-Li Alloy Particles in High Pressure Air/N2. Aerospace 2023, 10, 299. https://doi.org/10.3390/aerospace10030299
Xu D, Wang F, Li S, Huang X, Li H, Guo Y. Laser-Induced Ignition and Combustion of Single Micron-Sized Al-Li Alloy Particles in High Pressure Air/N2. Aerospace. 2023; 10(3):299. https://doi.org/10.3390/aerospace10030299
Chicago/Turabian StyleXu, Dunhui, Fang Wang, Shengji Li, Xuefeng Huang, Heping Li, and Yanhui Guo. 2023. "Laser-Induced Ignition and Combustion of Single Micron-Sized Al-Li Alloy Particles in High Pressure Air/N2" Aerospace 10, no. 3: 299. https://doi.org/10.3390/aerospace10030299
APA StyleXu, D., Wang, F., Li, S., Huang, X., Li, H., & Guo, Y. (2023). Laser-Induced Ignition and Combustion of Single Micron-Sized Al-Li Alloy Particles in High Pressure Air/N2. Aerospace, 10(3), 299. https://doi.org/10.3390/aerospace10030299