Jet Engine Turbine Mechanical Properties Prediction by Using Progressive Numerical Methods
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Methodology for Deformation and Stress Prediction
2.2. The Object of Interest: Small Jet Engine iSTC-21v
- Outside air temperature T0 (°C) and atmospheric pressure P0 (Atm).
- Total air temperature at the inlet of the radial compressor T1C (°C).
- Total air temperature at the outlet from the diffuser of the radial compressor T2C (°C).
- Total gas temperature at the inlet of the gas turbine T3C (°C).
- Total gas temperature at the outlet of the gas turbine T4C (°C).
- Total pressure of air at the outlet of the compressor P2c (Atm).
- Total pressure of gases at the inlet of the gas turbine P3c (Atm).
- Fuel flow supply FF (1/min).
- Thrust Th (kg).
- Shaft speed of the turbine/compressor, n1 (rpm).
2.3. The Finite Element Models and ANN Surrogate Model Description
3. Results
3.1. The Finite Element Analyses of the iSTC-21v Turbine Section
3.2. ANN with Scaled Conjugate Gradient Backpropagation for Mechanical Properties Prediction
4. Conclusions
- Seventy FEM models were created, and 35 results were used for the training process of the ANN.
- The best training algorithm for the ANN and mechanical stress prediction is the scaled conjugate backpropagation (SCG) algorithm. As shown in Figure 9, the maximal error is 2.57% for the predicted mechanical stress. The ANN with SCG algorithm predicts the maximal deformation with a maximal error of 3.74%.
- The hypothesis stated in the Introduction section that it is possible to predict mechanical properties using a surrogate model trained based on the FEA results has been confirmed. Based on the results, it is possible to proclaim a quite accurate match between the surrogate model and FEA results in deformation and stress prediction. The accuracy of the prediction is also supported by the high R values (every R value is higher than 0.99), as shown in Figure 11.
- In future research, the results should be validated using experimental stress and strain measurements; however, main goal of this paper was to apply numerical methods in a 3D turbine section cyclic region to create preliminary surrogate models. According to the measured temperatures, pressures and rpm, CFD models were created, and the results were mapped into the mechanical analyses in order to define the relationship between these parameters and the calculated stress.
- It is possible to apply the trained ANN into the FADEC system and monitor mechanical stress and deformation during jet engine operation, which ensures a higher level of safety. This method also surrogates on some level the FEM analysis, which is not able to predict mechanical stress as fast as the ANN. The ANN predicted the mechanical properties for the whole engine run for 70 regimes in 0.00003 s; thus, one regime is predicted by the ANN in a fraction of a second. In comparison, FEA takes several hours for the prediction of one regime.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mansoor, M.; Ejaz, N. Thermal fatigue failure of fuel spray bars of a jet engine afterburner. Eng. Fail. Anal. 2011, 18, 492–498. [Google Scholar] [CrossRef]
- Li, D.; Liu, J.; Sun, Y.; Huang, W.; Li, N.; Yang, L. Microstructure and mechanical degradation of K403 Ni-based superalloy from ultra-long-term serviced turbine blade. J. Alloys Compd. 2023, 957, 170378. [Google Scholar] [CrossRef]
- Li, L.; Zeng, Y.; Li, J.; Zhao, Y.; Yuan, T.; Yue, Z. Effect of Crystal Orientation on Elastic Stresses and Vibration Characteristics of Nickel-based Single Crystal Turbine Blade. Mater. Today Commun. 2023, 35, 106135. [Google Scholar] [CrossRef]
- Kułaszka, A.; Błachnio, J.; Borowczyk, H. The Impact of Temperature on the Surface Colour of Gas Turbine Blades Heated in the Presence of Kerosene. Aerospace 2023, 10, 375. [Google Scholar] [CrossRef]
- Spodniak, M.; Semrád, K.; Draganová, K. Turbine Blade Temperature Field Prediction Using the Numerical Methods. Appl. Sci. 2021, 11, 2870. [Google Scholar] [CrossRef]
- Zych, P.; Żywica, G. Fatigue Analysis of the Microturbine Rotor Disc Made of 7075 Aluminium Alloy Using a New Hybrid Calculation Method. Materials 2022, 15, 834. [Google Scholar] [CrossRef]
- Sun, Z.; Jiang, X.; Qiu, C.; Cheng, S.; Liu, X.; Li, H.; Liu, X.; Wang, Y.; Dong, J.; Lou, L. The investigations of rejuvenation heat treatment on the microstructure and mechanical properties of a serviced gas turbine blade. J. Alloys Compd. 2023, 948, 169759. [Google Scholar] [CrossRef]
- Olufayo, O.A.; Che, H.; Songmene, V.; Katsari, C.; Yue, S. Machinability of Rene 65 Superalloy. Materials 2019, 12, 2034. [Google Scholar] [CrossRef]
- Balitskii, A.I.; Kvasnytska, Y.H.; Ivaskevych, L.M.; Kvasnytska, K.H.; Balitskii, O.A.; Shalevska, I.A.; Shynskii, O.Y.; Jaworski, J.M.; Dowejko, J.M. Hydrogen and Corrosion Resistance of Nickel Superalloys for Gas Turbines, Engines Cooled Blades. Energies 2023, 16, 1154. [Google Scholar] [CrossRef]
- Yadav, M.; Misra, A.; Malhotra, A.; Kumar, N. Design and analysis of a high-pressure turbine blade in a jet engine using advanced materials. Mater. Today Proc. 2020, 25, 4. [Google Scholar] [CrossRef]
- Agüero, A.; Baráibar, I.; Gutiérrez, M.; Tuurna, S.; Toivonen, A.; Penttilä, S.; Auerkari, P. Steam Oxidation of Aluminide-Coated and Uncoated TP347HFG Stainless Steel under Atmospheric and Ultra-Supercritical Steam Conditions at 700 °C. Coatings 2020, 10, 839. [Google Scholar] [CrossRef]
- Wee, S.; Do, J.; Kim, K.; Lee, C.; Seok, C.; Choi, B.-G.; Choi, Y.; Kim, W. Review on Mechanical Thermal Properties of Superalloys and Thermal Barrier Coating Used in Gas Turbines. Appl. Sci. 2020, 10, 5476. [Google Scholar] [CrossRef]
- García-Martínez, M.; Gordillo, J.; González, M.; Muro, A.; Caballero, B. Failure study of an aircraft engine high pressure turbine (HPT) first stage blade. Eng. Fail. Anal. 2023, 149, 107251. [Google Scholar] [CrossRef]
- Mishra, R.K.; Thomas, J.; Srinivasan, K.; Nandi, V.; Bhatt, R.R. Failure analysis of an un-cooled turbine blade in an aero gas turbine engine. Eng. Fail. Anal. 2017, 79, 836–844. [Google Scholar] [CrossRef]
- Poursaeidi, E.; Tafrishi, H.; Amani, H. Experimental-numerical investigation for predicting erosion in the first stage of an axial compressor. Powder Technol. 2017, 306, 80–87. [Google Scholar] [CrossRef]
- Vo, D.; Mai, T.; Kim, B.; Jung, J.; Ryu, J. Numerical investigation of crack initiation in high-pressure gas turbine blade subjected to thermal-fluid-mechanical low-cycle fatigue. Int. J. Heat Mass Transf. 2023, 202, 123748. [Google Scholar] [CrossRef]
- Sakamoto, J.; Tada, N.; Uemori, T.; Kuniyasu, H. Finite Element Study of the Effect of Internal Cracks on Surface Profile Change due to Low Loading of Turbine Blade. Appl. Sci. 2020, 10, 4883. [Google Scholar] [CrossRef]
- Badshah, S.; Naeem, A.; Farhan Rafique, A.; Ul Haq, I.; Abdullah Malik, S. Numerical Study on the Critical Frequency Response of Jet Engine Rotors for Blade-Off Conditions against Bird Strike. Appl. Sci. 2019, 9, 5568. [Google Scholar] [CrossRef]
- De Giorgi, M.G.; Menga, N.; Ficarella, A. Exploring Prognostic and Diagnostic Techniques for Jet Engine Health Monitoring: A Review of Degradation Mechanisms and Advanced Prediction Strategies. Energies 2023, 16, 2711. [Google Scholar] [CrossRef]
- Aghasharifian Esfahani, M.; Namazi, M.; Nikolaidis, T.; Jafari, S. Advanced Control Algorithm for FADEC Systems in the Next Generation of Turbofan Engines to Minimize Emission Levels. Mathematics 2022, 10, 1780. [Google Scholar] [CrossRef]
- Kozakiewicz, A.; Kieszek, R. Artificial Neural Network Structure Optimisation in the Pareto Approach on the Example of Stress Prediction in the Disk-Drum Structure of an Axial Compressor. Materials 2022, 15, 4451. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Li, D.; Li, D.; Liu, C.; Yang, X.; Zhu, G. Remaining Useful Life Prediction of Aircraft Turbofan Engine Based on Random Forest Feature Selection and Multi-Layer Perceptron. Appl. Sci. 2023, 13, 7186. [Google Scholar] [CrossRef]
- Zhao, X.; Ru, D.; Wang, P.; Gan, L.; Wu, H.; Zhong, Z. Fatigue life prediction of a supercritical steam turbine rotor based on neural networks. Eng. Fail. Anal. 2021, 127, 105435. [Google Scholar] [CrossRef]
- Liu, S.; Chu, J.; Wang, Y. Research on Prediction Method of Bolt Tightening for Aviation Components Based on Neural Network. Appl. Sci. 2023, 13, 6771. [Google Scholar] [CrossRef]
- Yan, C.; Yin, Z.; Shen, X.; Mi, D.; Guo, F.; Long, D. Surrogate-based optimization with improved support vector regression for non-circular vent hole on aero-engine turbine disk. Aerosp. Sci. Technol. 2020, 96, 105332. [Google Scholar] [CrossRef]
- Quevedo-Reina, R.; Álamo, M.G.; Padrón, A.L.; Aznárez, J.J. Surrogate model based on ANN for the evaluation of the fundamental frequency of offshore wind turbines supported on jackets. Comput. Struct. 2023, 274, 106917. [Google Scholar] [CrossRef]
- Hashemi, A.; Jang, J.; Beheshti, J. A Machine Learning-Based Surrogate Finite Element Model for Estimating Dynamic Response of Mechanical Systems. IEEE Access 2023, 11, 54509–54525. [Google Scholar] [CrossRef]
- Zhang, C.; Janeway, M. Optimization of Turbine Blade Aerodynamic Designs Using CFD and Neural Network Models. Int. J. Turbomach. Propuls. Power 2022, 7, 20. [Google Scholar] [CrossRef]
- Andoga, R.; Főző, L.; Kovács, R.; Beneda, K.; Moravec, T.; Schreiner, M. Robust Control of Small Turbojet Engines. Machines 2019, 7, 3. [Google Scholar] [CrossRef]
- Andoga, R.; Főző, L.; Judičák, J.; Bréda, R.; Szabo, S.; Rozenberg, R.; Džunda, M. Intelligent Situational Control of Small Turbojet Engines. Int. J. Aerosp. Eng. 2018, 2018, 8328792. [Google Scholar] [CrossRef]
- ANSYS, Inc. ANSYS; ANSYS, Inc.: Canonsburg, PA, USA, 2023; Available online: https://www.ansys.com (accessed on 10 October 2023).
- MathWorks. MATLAB, Version 9.12.0 (R2022b); The MathWorks Inc.: Portola Valley, CA, USA, 2023. [Google Scholar]
- Pinelli, L.; Lori, F.; Marconcini, M.; Pacciani, R.; Arnone, A. Validation of a Modal Work Approach for Forced Response Analysis of Bladed Disks. Appl. Sci. 2021, 11, 5437. [Google Scholar] [CrossRef]
- Annala, L.; Äyrämö, S.; Pölönen, I. Comparison of Machine Learning Methods in Stochastic Skin Optical Model Inversion. Appl. Sci. 2020, 10, 7097. [Google Scholar] [CrossRef]
- Draganová, K.; Laššák, M.; Praslička, D.; Kán, V. Attitude-Independent 3-axis accelerometer calibration based on adaptive neural network. Procedia Eng. 2014, 87, 1255–1258. [Google Scholar] [CrossRef]
- Khan, F.; Eker, O.F.; Khan, A.; Orfali, W. Adaptive Degradation Prognostic Reasoning by Particle Filter with a Neural Network Degradation Model for Turbofan Jet Engine. Data 2018, 3, 49. [Google Scholar] [CrossRef]
- Corte-Valiente, A.D.; Castillo-Sequera, J.L.; Castillo-Martinez, A.; Gómez-Pulido, J.M.; Gutierrez-Martinez, J.-M. An Artificial Neural Network for Analyzing Overall Uniformity in Outdoor Lighting Systems. Energies 2017, 10, 175. [Google Scholar] [CrossRef]
- Duan, W.; Song, C.; Peng, S.; Xiao, F.; Shao, Y.; Song, S. An Improved Gated Recurrent Unit Network Model for State-of-Charge Estimation of Lithium-Ion Battery. Energies 2020, 13, 6366. [Google Scholar] [CrossRef]
- Ren, X.; Dong, K.; Feng, C.; Zhu, R.; Wei, G.; Wang, C. Application of MLR, BP and PCA-BP Neural Network for Predicting FeO in Bottom-Blowing O2-CaO Converter. Metals 2023, 13, 782. [Google Scholar] [CrossRef]
Regime | RPM | T3c | P3c | T4c | FEA Deformation | FEA Stress |
---|---|---|---|---|---|---|
1 | 558 | 89.30 | 101,289.8 | 124.93 | 0.124 | 69.36 |
2 | 558 | 89.25 | 101,290.9 | 124.78 | 0.124 | 69.36 |
3 | 558 | 89.25 | 101,285.5 | 124.53 | 0.124 | 69.36 |
4 | 8368 | 81.09 | 103,915.3 | 117.08 | 0.137 | 83.23 |
5 | 12,662 | 60.55 | 107,964.6 | 74.96 | 0.141 | 64.87 |
6 | 19,641 | 881.30 | 126,341.9 | 652.55 | 0.333 | 667.78 |
7 | 31,746 | 896.22 | 173,515.5 | 744.10 | 0.337 | 699.56 |
8 | 38,650 | 862.16 | 218,992.6 | 581.55 | 0.375 | 827.38 |
9 | 41,037 | 907.30 | 240,131.1 | 486.71 | 0.387 | 849.50 |
10 | 40,574 | 899.81 | 233,450.1 | 450.14 | 0.383 | 842.70 |
11 | 40,704 | 910.25 | 234,975.5 | 443.15 | 0.385 | 844.09 |
12 | 38,205 | 833.65 | 206,537.3 | 430.95 | 0.372 | 826.25 |
13 | 36,381 | 852.21 | 198,581.7 | 419.18 | 0.362 | 783.73 |
14 | 36,008 | 845.65 | 197,067.2 | 421.01 | 0.358 | 775.17 |
15 | 36,117 | 851.71 | 198,305.2 | 423.88 | 0.363 | 794.54 |
16 | 37,755 | 866.72 | 212,386 | 439.23 | 0.371 | 811.97 |
17 | 38,131 | 874.80 | 213,906.5 | 436.11 | 0.373 | 816.07 |
18 | 37,783 | 862.07 | 211,341.3 | 428.03 | 0.371 | 801.87 |
19 | 37,858 | 863.04 | 212,391 | 427.01 | 0.371 | 814.85 |
20 | 39,624 | 894.53 | 227,341.2 | 439.05 | 0.380 | 833.73 |
21 | 40,029 | 896.94 | 229,540 | 439.90 | 0.381 | 837.52 |
22 | 40,126 | 890.70 | 229,021 | 438.84 | 0.380 | 838.44 |
23 | 39,996 | 891.62 | 228,563.6 | 437.43 | 0.380 | 837.35 |
24 | 41,792 | 925.94 | 247,162.6 | 448.40 | 0.394 | 860.81 |
25 | 41,957 | 915.61 | 24,7095 | 448.61 | 0.391 | 859.36 |
26 | 42,124 | 920.79 | 24,8787.8 | 447.52 | 0.393 | 862.45 |
27 | 41,820 | 919.52 | 24,6957.3 | 443.74 | 0.392 | 859.55 |
28 | 43,256 | 944.96 | 26,1480 | 452.51 | 0.407 | 886.22 |
29 | 43,921 | 940.74 | 26,5423.6 | 459.52 | 0.407 | 891.10 |
30 | 43,916 | 938.03 | 26,6028.8 | 458.27 | 0.407 | 890.47 |
31 | 44,112 | 944.02 | 26,9109.6 | 458.28 | 0.411 | 896.31 |
32 | 45,206 | 971.24 | 28,1054.2 | 464.25 | 0.420 | 920.45 |
33 | 45,926 | 981.85 | 28,7743.2 | 471.74 | 0.422 | 934.27 |
34 | 45,977 | 968.51 | 28,8586.4 | 472.26 | 0.421 | 930.91 |
35 | 46,035 | 979.07 | 28,8518.8 | 472.00 | 0.422 | 935.32 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Spodniak, M.; Hovanec, M.; Korba, P. Jet Engine Turbine Mechanical Properties Prediction by Using Progressive Numerical Methods. Aerospace 2023, 10, 937. https://doi.org/10.3390/aerospace10110937
Spodniak M, Hovanec M, Korba P. Jet Engine Turbine Mechanical Properties Prediction by Using Progressive Numerical Methods. Aerospace. 2023; 10(11):937. https://doi.org/10.3390/aerospace10110937
Chicago/Turabian StyleSpodniak, Miroslav, Michal Hovanec, and Peter Korba. 2023. "Jet Engine Turbine Mechanical Properties Prediction by Using Progressive Numerical Methods" Aerospace 10, no. 11: 937. https://doi.org/10.3390/aerospace10110937
APA StyleSpodniak, M., Hovanec, M., & Korba, P. (2023). Jet Engine Turbine Mechanical Properties Prediction by Using Progressive Numerical Methods. Aerospace, 10(11), 937. https://doi.org/10.3390/aerospace10110937