A Coupled Heat Transfer Calculation Strategy for Composite Cooling Liquid Rocket Engine
Abstract
:1. Introduction
2. Governing Equation and Numerical Algorithms
2.1. Flow and Combustion
2.2. Solid Heat Conduction
2.3. Regenerative Cooling
2.4. Radiation of Gas
2.5. Outer Wall Radiation
3. Coupled Computing Strategy
3.1. Data Transfer Policy
3.2. Data Transmission of Unmatched Grids
3.3. Flow Chart of Calculation
3.4. Condition of Convergence
4. Results and Discussion
4.1. AEDC High Enthalpy Nozzle
4.2. Composite Cooling Liquid Rocket Engine
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Yoshida, M.; Kimura, T.; Hashimoto, T.; Moriya, S.; Takada, S. Overview of Research and Development Status of Reusable Rocket Engine; Luca, L.T.D., Shimada, T., Sinditskii, V.P., Calabro, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Huzel, D.K.; Hwang, D.H. Modern Engineering for Design of Liquid Rocket Engines. Progress in Astronautics and Aeronautics; AIAA: Reston, VA, USA, 1992. [Google Scholar]
- Shine, S.R.; Nidhi, S.S. Review on film cooling of liquid rocket engines. Propuls. Power Res. 2018, 7, 1–18. [Google Scholar] [CrossRef]
- Han, Z.X.; Dennis, B.H.; Dulikravich, G.S. Simultaneous prediction of external flow-field and temperature in internally cooled 3-D turbine blade material. In Turbo Expo: Power for Land, Sea, and Air; American Society of Mechanical Engineers: New York, NY, USA, 2000. [Google Scholar]
- He, L.; Oldfield, M.L.G. Unsteady Conjugate Heat Transfer Modelin. J. Turbomach. 2011, 133, 031022. [Google Scholar] [CrossRef]
- Altuna, A.; Chaquet, J.M.; Corral, R.; Gisbert, F.; Pastor, G. Application of a fast loosely coupled fluid/solid heat transfer method to the transient analysis of low-pressure-turbine disk cavities. In Turbo Expo: Power for Land, Sea, and Air; American Society of Mechanical Engineers: New York, NY, USA, 2013. [Google Scholar]
- Illingworth, J.B.; Hills, N.J.; Barnes, C.J. 3D fluid–solid heat transfer coupling of an aero engine pre-swirl system. In Turbo Expo: Power for Land, Sea, and Air; American Society of Mechanical Engineers: New York, NY, USA, 2005. [Google Scholar]
- Heidmann, J.D.; Kassab, A.J.; Divo, E.A.; Rodriguez, F.; Steinthorsson, E. Conjugate heat transfer effects on a realistic film-cooled turbine vane. In Turbo Expo: Power for Land, Sea, and Air; American Society of Mechanical Engineers: New York, NY, USA, 2003. [Google Scholar]
- Verstraete, T.; Alsalihi, Z.; Van den Braembussche, R.A. Numerical Study of the Heat Transfer in Micro Gas Turbines. J. Turbomach. 2007, 129, 835–841. [Google Scholar] [CrossRef]
- Verstraete, T.; Van den Braembussche, R. A novel method for the computation of conjugate heat transfer with coupled solvers. In Proceedings of the International Symposium on Heat Transfer in Gas Turbine Systems, Antalya, Turkey, 9–14 August 2009. [Google Scholar]
- Remiddi, A.; Indelicato, G.; Lapenna, P.E.; Creta, F. Efficient time-resolved thermal characterization of single and multi-injector rocket combustion chambers. Proc. Combust. Inst. 2022; in press. [Google Scholar] [CrossRef]
- Han, Z.-P.; Zhang, Q.; Zhang, J.-W.; Xu, X. Coupling Heat Transfer Strategy for Small Thrust Liquid Rocket Engine Based on Lagrange Film Method. J. Propuls. Technol. 2018, 39, 2035–2042. [Google Scholar]
- Gang, W.; Xin, C.; Liu, Z. Mesh deformation on 3D complex configurations using multistep radial basis functions interpolation. Chin. J. Aeronaut. 2018, 31, 660–671. [Google Scholar]
- Zhang, L.; Xu, X. Performance prediction of apogee attitude and orbit control thruster for MMH/NTO hypergolic bipropellant. In Proceedings of the 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Cleveland, OH, USA, 28–30 July 2014. [Google Scholar]
- Shine, S.R.; Sunil Kumar, S.; Suresh, B.N. Influence of coolant injector configuration on film cooling effectiveness for gaseous and liquid film coolants. Heat Mass Transf. 2012, 48, 849–861. [Google Scholar] [CrossRef]
- Shine, S.R.; Kumar, S.S.; Suresh, B.N. Internal wall-jet film cooling with straight cylindrical holes. J. Thermophys. Heat Transf. 2012, 26, 439–449. [Google Scholar] [CrossRef]
- Xiang, J.-X.; Zhang, M.; Li, Z.-Q.; Liu, P.; Wang, H.; Cui F, J. Numerical Simulation of Transcritical Liquid Film Cooling in LOX/Methane Liquid Rocket Engine Thrust Chambers. J. Propuls. Technol. 2022, 43, 291–302. [Google Scholar]
- Xiang, J.; Sun, B. Research on coupled heat transfer of film cooling in LOX/GH2 thrust chambers. J. Therm. Sci. Technol. 2018, 13, JTST0035. [Google Scholar] [CrossRef]
- Xiang, J.; Sun, B.; Wang, T.; Yuan, J. Effects of angled film-cooling on cooling performance in a GO2/GH2 subscale thrust chamber. Appl. Therm. Eng. 2020, 166, 114627. [Google Scholar] [CrossRef]
- Fu, P.; Hou, L.; Ren, Z.; Zhang, Z.; Mao, X.; Yu, Y. A droplet/wall impact model and simulation of a bipropellant rocket engine. Aerosp. Sci. Technol. 2019, 88, 32–39. [Google Scholar] [CrossRef]
- Ulas, A.; Boysan, E. Numerical analysis of regenerative cooling in liquid propellant rocket engines. Aerosp. Sci. Technol. 2013, 24, 187–197. [Google Scholar] [CrossRef]
- Pizzarelli, M.; Nasuti, F.; Onofri, M. Analysis on the effect of channel aspect ratio on rocket thermal behavior. In Proceedings of the 48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Atlanta, Georgia, 30 July–August 2012; p. 3991. [Google Scholar]
- Pizzarelli, M.; Carapellese, S.; Nasuti, F. A quasi-2-d model for the prediction of the wall temperature of rocket engine cooling channels. Numer. Heat Transf. Part A Appl. 2011, 60, 1–24. [Google Scholar] [CrossRef]
- Gamil, A.A.; Nikolaidis, T.; Lelaj, I.; Laskaridis, P. Assessment of numerical radiation models on the heat transfer of an aero-engine combustion chamber. Case Stud. Therm. Eng. 2020, 22, 100772. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, X. A hybrid strategy of lattice Boltzmann method and finite volume method for combined conduction and radiation in irregular geometry. Int. J. Heat Mass Transf. 2018, 121, 1039–1054. [Google Scholar] [CrossRef]
- Hu, H.-B.; Chen, H.-Y.; Yan, Y.; Zhang, F.; Yin, J.-H.; Zheng, D. Investigation of Chemical Kinetic Model for Hypergolic Propellant of Monomethylhydrazine and Nitrogen Tetroxide. J. Energy Resour. Technol. 2021, 143, 062304. [Google Scholar]
- Hou, L.; Fu, P.; Ba, Y. Chemical Mechanism of MMH/NTO and Simulation in a Small Liquid Rocket Engine. Combust. Sci. Technol. 2019, 191, 2208–2225. [Google Scholar] [CrossRef]
- Song, J.; Sun, B. Coupled numerical simulation of combustion and regenerative cooling in LOX/Methane rocket engines. Appl. Therm. Eng. Des. Process. Equip. Econ. 2016, 106, 762–773. [Google Scholar] [CrossRef]
- Daimon, Y.; Negishi, H.; Tani, H.; Matsuura, Y.; Iihara, S.; Takata, S. Flow Field and Heat Transfer Analysis in AMON/MMH Bipropellant Rocket Engine. Int. J. Energetic Mater. Chem. Propuls. 2017, 16, 263–280. [Google Scholar] [CrossRef]
- Song, J.; Sun, B. Coupled heat transfer analysis of thrust chambers with recessed shear coaxial injectors. Acta Astronaut. 2016, 132, 150–160. [Google Scholar] [CrossRef]
- Hötte, F.; Haupt, M.C. Transient 3D conjugate heat transfer simulation of a rectangular GOX–GCH4 rocket combustion chamber and validation. Aerosp. Sci. Technol. 2020, 105, 106043. [Google Scholar] [CrossRef]
- Li, C.; Cai, G.; Wang, P.; Tian, H. Flow field and injector heat characteristics of hybrid rocket motor with annular-gap injector. Aerosp. Sci. Technol. 2019, 93, 105326. [Google Scholar] [CrossRef]
- Betti, B.; Pizzarelli, M.; Nasuti, F. Coupled heat transfer analysis in regeneratively cooled thrust chambers. J. Propuls. Power 2014, 30, 360–367. [Google Scholar] [CrossRef]
- Anderson, J.D. Hypersonic and High-Temperature Gas Dynamics, 2nd ed.; McGraw-Hill: New York, NY, USA, 2006; pp. 696–699. [Google Scholar]
- Reid, R.C.; Prausnitz, J.M.; Sherwood, T.K. The Properties of Gases and Liquids, 3rd ed.; McGraw-Hill: New York, NY, USA, 1977. [Google Scholar]
- Toro, E.F. Riemann Solvers and Numerical Methods for Fluid Dynamics; Springer Press: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Shuen, J.S. Upwind differencing and LU factorization for chemical non-equilibrium Navier-Stokes equations. J. Comput. Phys. 1992, 99, 233–250. [Google Scholar] [CrossRef]
- Chen, B.; Xu, X.; Wei, B.; Zhang, Y. Numerical simulations of turbulent flows in aeroramp injector/gas-pilot flame scramjet. Chin. J. Aeronaut. 2017, 30, 1373–1390. [Google Scholar] [CrossRef]
- Chai, J.C.; Lee, H.O.S.; Patankar, S.V. Finite volume method for radiation heat transfer. J. Thermophys. Heat Transf. 1994, 8, 419–425. [Google Scholar] [CrossRef]
- Shope, F.L. Conjugate conduction-convection heat transfer with a high-speed boundary layer. J. Thermophys. Heat Transf. 1994, 8, 275–281. [Google Scholar] [CrossRef]
- Engblom, W.; Fletcher, B.; Georgiadis, N. Validation of conjugate heat-transfer capability for water-cooled high-speed flows. In Proceedings of the 39th AIAA Thermophysics Conference, Miami, FL, USA, 25–28 June 2007; p. 4392. [Google Scholar]
- Barbosa, F.I.; Zaparoli, E.L.; Andrade, C.R. Unified approach for conjugate heat-transfer analysis of high speed air flow through a water-cooled nozzle. Aeronaut. J. 2016, 120, 355–373. [Google Scholar] [CrossRef]
0.9 | 0.5 | 0.5 | 1.0 |
Air Total Pressure (atm) | Air Total Temperature (K) | Water Mass Flow Rate (kg/s) | Water Inlet Temperature (K) |
---|---|---|---|
126.5 | 5000 | 5.234 | 309 |
Experimental Temperature Rise (K) | Calculate Temperature Rise (K) |
---|---|
13.9 | 12.7 |
Propellant | Thrust Chamber Pressure (MPa) | Mass Flow Rate (kg/s) | Cooling Channel Inlet Temperature (k) | Film Cooling Flow Rate (kg/s) |
---|---|---|---|---|
UDMH | 5.15 | 0.621 | 284.35 | 0.0994 |
NTO | 1.405 | 284.55 | 0.3232 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, B.; Chen, B.; Peng, J.; Zhou, W.; Xu, X. A Coupled Heat Transfer Calculation Strategy for Composite Cooling Liquid Rocket Engine. Aerospace 2023, 10, 473. https://doi.org/10.3390/aerospace10050473
Xu B, Chen B, Peng J, Zhou W, Xu X. A Coupled Heat Transfer Calculation Strategy for Composite Cooling Liquid Rocket Engine. Aerospace. 2023; 10(5):473. https://doi.org/10.3390/aerospace10050473
Chicago/Turabian StyleXu, Bo, Bing Chen, Jian Peng, Wenyuan Zhou, and Xu Xu. 2023. "A Coupled Heat Transfer Calculation Strategy for Composite Cooling Liquid Rocket Engine" Aerospace 10, no. 5: 473. https://doi.org/10.3390/aerospace10050473
APA StyleXu, B., Chen, B., Peng, J., Zhou, W., & Xu, X. (2023). A Coupled Heat Transfer Calculation Strategy for Composite Cooling Liquid Rocket Engine. Aerospace, 10(5), 473. https://doi.org/10.3390/aerospace10050473