Numerical Modeling of Thermal Behavior during Lunar Soil Drilling
Abstract
:1. Introduction
2. Thermal Simulation Model
2.1. Particle Heat Conduction Model
2.2. Assumptions
- Because most temperatures do not exceed the sublimation temperature of water ice during drilling, the gaseous water generated can be ignored. Therefore, it is assumed that heat conduction plays a significant role, and effective heat conduction between particles is considered equivalent to all of the heat transfer in a particle system;
- The simulated lunar soil is assumed to be composed of spherical particles;
- The temperature inside each individual particle is assumed to be uniformly distributed;
- The internal temperature of the thermal sieve is also assumed to be uniform;
- The temperature of the particles and the geometry remain fixed during each simulation time step.
2.3. Simulation Model
2.3.1. Particle Parameters of Simulation Model
2.3.2. Simulation Model
3. Simulation Matching Test Design
3.1. Simulation Matching Test Model
3.2. Design of Simulation Test Group
4. Analysis of Simulation Matching Test Results
5. Verification and Analysis of the Drilling Test of the Lunar Icy Regolith
5.1. Experiment Equipment and Process
5.2. Simulation Process
5.3. Result Aanalysis
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, C.; Zhang, X.J.; Yao, W. Research progress in in situ development and utilization of water ice resources in the lunar polar region. J. Deep Space Explor. 2020, 7, 241–247. [Google Scholar]
- Liu, D.Y.; Zhang, H.; Yang, S.; Yin, S.; Zhang, J.; Sun, Q.; Lai, X. Lunar polar drilling and sampling technology. J. Deep Space Explor. 2020, 7, 278–288. [Google Scholar]
- Cundall, P.A. A Computer Model for Simulating Progressive Large Scale Movements in Blocky System. Proc. Symp. Int. Rock Mech. 1971, 2, 8–12. [Google Scholar]
- Cundall, P.A. The Measurement and Analysis of Acceleration in Rock Slopes; University of London: London, UK, 1971. [Google Scholar]
- Strack, O.D.L.; Cundall, P.A. Part I Report to the National Science Foundation; University of Minnesota: Minneapolis, MN, USA, 1978; pp. 36–46. [Google Scholar]
- Cundall, P.A.; Strack, O.D.L. Part II Report to the National Seience Foundation; University of Minnesota: Minneapolis, MN, USA, 1979; pp. 56–67. [Google Scholar]
- Cundall, P.A.; Strack, O.D.L. A Discrete Numerical Model for Granular Assembles. Geotechnique 1979, 29, 47–65. [Google Scholar] [CrossRef]
- Cundall, P.A.; Strack, Q.D.L. Modeling of Microscopic Mechanisms in Granular Material. Stud. Appl. Mech. 1983, 63, 137–149. [Google Scholar]
- Vargas, W.L.; MeCarthy, J.J. Stress Effects on the Conductivity of Particulate Beds. Chem. Eng. Seienee 2002, 57, 3119–3131. [Google Scholar] [CrossRef]
- Vargas, W.L.; McCarthy, J.J. Heat Conduction in Granular Materials. AIChE J. 2001, 47, 1052–1059. [Google Scholar] [CrossRef]
- Vargas, W.L.; McCarthy, J.J. Conductivity of Granular Media with Stagnant Interstitial Fluids via Thermal Particle Dynamics Simulation. Int. J. Heat Mass Trans. 2002, 45, 4847–4856. [Google Scholar] [CrossRef]
- Zhang, H.W.; Zhou, Q.; Xing, H.L.; Muhlhaus, H. A DEM Study on the Effective Thermal Conductivity of Granular Assemblies. Powder Technol. 2011, 205, 172–183. [Google Scholar] [CrossRef]
- Zhou, Q.; Zhang, H.W.; Zheng, Y.G. A Homogenization Technique for Heat Transfer in Periodic Granular Materials. Adv. Powder Technol. 2012, 23, 104–114. [Google Scholar] [CrossRef]
- Batchelor, F.G.K.; O’ Brien, R.W. Thermal or electrical conduction through a granular material. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1977, 355, 313–333. [Google Scholar]
- Cui, J.S. Research on Mechanics-Thermotics Characteristic of Drill-Lunar Regolith Interaction and Prediction of the Temperature Field. Master’s Thesis, Harbin Institute of Technology, Harbin, China, 2016. [Google Scholar]
- Cundall, P.A. Formulation of a three-dimensional distinct element model-part Ⅰ. 449 A scheme to detect and represent contacts in a system composed of many polyhedral blocks. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1988, 25, 107–116. [Google Scholar] [CrossRef]
- Potyondy, D.O.; Cundall, P.A. A bonded-particle model for rock. Int. J. Rock Mech. Min. Sci. 2004, 41, 1329–1364. [Google Scholar] [CrossRef]
- Yin, N.; Li, S.Y.; Shi, Y.H.; Sun, Z.; Yin, Z. Discrete element analysis of cemented behavior of frozen loess under different confining pressures. J. Glaciol. Geocryol. 2017, 39, 858–867. [Google Scholar]
- Zhao, D.M.; Hou, X.Y.; Tang, D.W.; Yuan, J.; Jiang, S.; Deng, Z. DEM Parameter Matching of High-Dense Lunar Soil Simulant. In Proceedings of the 2015 IEEE International Conference on Information and Automation, Lijiang, China, 8–10 August 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 1920–1925. [Google Scholar]
- Cui, J.S. Research on Filling Model and Characteristic of Lunar Soil Simulant. Master’s Thesis, Harbin Institute of Technology, Harbin, China, 2011. [Google Scholar]
- Norman, R.D.; Dennis, K.J.L. Small Response-Surface Designs. Technometrics 1990, 32, 187–194. [Google Scholar]
- Liu, J.W.; Zhang, W.W.; Tian, Y. Analysis and prediction of uniaxial compressive strength of icy lunar regolith under extreme temperature. Adv. Space Res. 2022, 69, 4391–4407. [Google Scholar] [CrossRef]
- Zacny, K.; Glaser, D.; Bartlett, P.; Davis, K.; Gorevan, S. Drilling Results in Ice-Bound Simulated Lunar Regolith. AIP Conf. Proc. 2007, 880, 838–845. [Google Scholar]
- Formisano, M.; De Sanctis, M.C.; Federico, C.; Magni, G.; Altieri, F.; Ammannito, E.; De Angelis, S.; Ferrari, M.; Frigeri, A. Subsurface Thermal Modeling of Oxia Planum, Landing Site of ExoMars 2022. Adv. Astron. 2021, 2021, 9924571. [Google Scholar] [CrossRef]
Parameter | Numerical Value |
---|---|
Particle thermal conductivity (W/m·K) | 14.76 |
Specific heat capacity of particles (J/kg °C) | 800 |
Particle diameter (mm) | First region 0.6, Second region 2.4 |
Particle density (kg/m3) | 3 × 103 |
Particle shear modulus (Pa) | 3 × 109 |
Particle Poisson’s ratio | 0.25 |
Particle recovery coefficient | 0.24 |
Particle–particle static friction coefficient | 0.8 |
Particle–particle rolling friction coefficient | 0.6 |
Parameter | Numerical Value |
---|---|
Normal stiffness per unit area | 3 × N/ |
Normal range | 0 N/ |
Tangential stiffness per unit area | 1.5 × |
Tangential range | 0 N/ |
Normal strength | 1.2 × Pa |
Shear strength | 6 × Pa |
Bonded disk scale | 1 |
Test Number | Specific Heat Capacity of Thermal Sieve (J/kg °C) | Thermal Conductivity of Thermal Sieve (W/m K) |
---|---|---|
W1 | 1200 | 17 |
W2 | 1200 | 300 |
W3 | 2048 | 300 |
W4 | 1200 | 300 |
W5 | 1800 | 100 |
W6 | 600 | 500 |
W7 | 1800 | 500 |
W8 | 1200 | 582 |
W9 | 351 | 300 |
W10 | 600 | 100 |
W11 | 1200 | 300 |
Code Value (Horizontal) | Non-Coded Value (Actual Value) | |
---|---|---|
Specific Heat Capacity of Thermal Sieve (J/kg °C) | Thermal Conductivity of Thermal Sieve (W/m K) | |
−a | 351 | 17 |
−1 | 600 | 100 |
0 | 1200 | 300 |
+1 | 1800 | 500 |
+a | 2048 | 582 |
Mineral Category | Particle Size | Percentage Content |
---|---|---|
Plagioclase | 0.025–0.05 mm | 31.568% |
0.05–0.075 mm | 6.797% | |
0.075–0.1 mm | 10.545% | |
0.25–0.5 mm | 10.545% | |
0.5–1 mm | 10.545% | |
Basalt | 0.025–0.05 mm | 13.502% |
0.05–0.075 mm | 2.920% | |
0.075–0.1 mm | 4.526% | |
0.25–0.5 mm | 4.526% | |
0.5–1 mm | 4.526% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, D.; Cheng, Z.; Zhang, W.; Cui, J.; Wang, H. Numerical Modeling of Thermal Behavior during Lunar Soil Drilling. Aerospace 2023, 10, 472. https://doi.org/10.3390/aerospace10050472
Zhao D, Cheng Z, Zhang W, Cui J, Wang H. Numerical Modeling of Thermal Behavior during Lunar Soil Drilling. Aerospace. 2023; 10(5):472. https://doi.org/10.3390/aerospace10050472
Chicago/Turabian StyleZhao, Deming, Zhisheng Cheng, Weiwei Zhang, Jinsheng Cui, and He Wang. 2023. "Numerical Modeling of Thermal Behavior during Lunar Soil Drilling" Aerospace 10, no. 5: 472. https://doi.org/10.3390/aerospace10050472
APA StyleZhao, D., Cheng, Z., Zhang, W., Cui, J., & Wang, H. (2023). Numerical Modeling of Thermal Behavior during Lunar Soil Drilling. Aerospace, 10(5), 472. https://doi.org/10.3390/aerospace10050472