Experimental Study on the Propagation Characteristics of Rotating Detonation Wave with Liquid Hydrocarbon/High-Enthalpy Air Mixture
Abstract
:1. Introduction
2. Experimental Facilities
3. Results and Discussion
3.1. One-Direction Propagation Mode for the Rotating Detonation Wave
3.2. Transition of Tangential Thermo-Acoustic Combustion to Rotating Detonation Combustion
3.3. Axial Pressure Pulsation Superimposed on Rotating Detonation Combustion
3.4. Rotating Detonation Combustion Mode of Two-Wave Collision
4. Conclusions
- (1)
- With the use of liquid hydrocarbon fuel, a fully developed rotating detonation wave can be achieved under conditions of high incoming air total temperature of 1250 K.
- (2)
- The stability of the rotating detonation wave is more favorable at higher inlet mass flux. In the tested engine structure, the rotating detonation pressure peak and velocity in single-wave mode are close to those of C-J theoretical values at an equivalent ratio of 0.8 when the mass flux is 400 kg/(m2s).
- (3)
- When the mixture equivalent ratio decreases from 0.8 to 0.5 at the same inlet mass flux, the quantity of rotating detonation waves in the combustion chamber increases while the pressure peak of the detonation wave and its propagation velocity decrease.
- (4)
- A transformation from thermo-acoustic combustion to rotating detonation operation is observed. This effect shows an increase in mean chamber pressure and Isp of the engine—both of which indicate a potential for higher performance of an engine from detonative operation.
- (5)
- At an inlet mass flux of 350 kg/(m2s), axial pressure pulsation is observed superimposed on rotating detonation combustion in the combustion chamber, indicating a positive correlation between the pressure peak of the detonation wave and the change in static pressure in the combustion chamber.
- (6)
- In collision mode, the rotating detonation wave undergoes a transition process from transmitted shock to detonation wave during each period, resulting in the propagation velocity significantly lower than the C-J theoretical velocity.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kailasanath, K. Recent developments in the research on pulse detonation engines. AIAA J. 2003, 41, 145–159. [Google Scholar] [CrossRef]
- Roy, G.D.; Frolov, S.M.; Borisov, A.A.; Netzer, D.W. Pulse detonation propulsion: Challenges, current status, and future perspective. Prog. Energy Combust. Sci. 2004, 30, 545–672. [Google Scholar] [CrossRef]
- Wolański, P. Detonative propulsion. Proc. Combust. Inst. 2013, 34, 125–158. [Google Scholar] [CrossRef]
- Lu, F.K.; Eric, M.B. Rotating detonation wave propulsion: Experimental challenges, modeling, and engine concepts. J. Propuls. Power 2014, 30, 1125–1142. [Google Scholar] [CrossRef] [Green Version]
- Pratt, D.T.; Humphrey, J.W.; Glenn, D.E. Morphology of standing oblique detonation waves. J. Propuls. Power 1991, 7, 837–845. [Google Scholar] [CrossRef]
- Powers, J.M. Oblique Detonations-Theory and Propulsion Applications. Combustion in High-Speed Flows; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1994; pp. 345–371. [Google Scholar] [CrossRef] [Green Version]
- Teng, H.H.; Ng, H.D.; Li, K.; Luo, C.; Jiang, Z. Evolution of cellular structures on oblique detonation surfaces. Combust. Flame 2015, 162, 470–477. [Google Scholar] [CrossRef] [Green Version]
- Naples, A.; Hoke, J.; Battelle, R.T.; Wagner, M.; Schauer, F.R. RDE implementation into an open-loop T63 gas turbine engine. In Proceedings of the 55th AIAA Aerospace Sciences Meeting, Grapevine, TX, USA, 9–13 January 2017. [Google Scholar] [CrossRef]
- Assad, M.; Penyzkov, O.; Chernukho, I. Symbiosis of deflagration and detonation in one jet system–A hybrid detonation engine. Appl. Energy 2022, 322, 119474. [Google Scholar] [CrossRef]
- Nicholls, J.A.; Cullen, R.E.; Ragland, K.W. Feasibility studies of a rotating detonation wave rocket motor. J. Spacecr. Rocket. 1966, 3, 893–898. [Google Scholar] [CrossRef]
- Fotia, M.; Kaemming, T.A.; Hoke, J.; Schauer, F. Study of the experimental performance of a rotating detonation engine with nozzled exhaust flow. In Proceedings of the 53rd AIAA Aerospace Sciences Meeting, Kissimmee, FL, USA, 5–9 January 2015. [Google Scholar] [CrossRef]
- Tang, X.M.; Wang, J.P.; Shao, Y.T. Three-dimensional numerical investigations of the rotating detonation engine with a hollow combustor. Combust. Flame 2015, 162, 997–1008. [Google Scholar] [CrossRef]
- Lin, W.; Zhou, J.; Liu, S.; Lin, Z. An experimental study on CH4/O2 continuously rotating detonation wave in a hollow combustion chamber. Exp. Therm Fluid Sci. 2015, 62, 122–130. [Google Scholar] [CrossRef]
- Stoddard, W.; St. George, A.C.; Driscoll, R.B.; Anand, V.; Gutmark, E.J. Experimental validation of expanded centerbodiless RDE design. In Proceedings of the 54th AIAA Aerospace Sciences Meeting, San Diego, CA, USA, 4–8 January 2016. [Google Scholar] [CrossRef]
- Wiggins, R.; Gaetano, A.; Pritschau, T.; Betancourt, J.; Shaw, V.; Anand, V.; Gutmark, E. Rotating Detonations in Hollow and Flow-Through Combustors. AIAA J. 2023, 61, 86–96. [Google Scholar] [CrossRef]
- Rodriguez, V.; Jourdain, C.; Vidal, P.; Zitoun, R. An experimental evidence of steadily-rotating overdriven detonation. Combust. Flame 2019, 202, 132–142. [Google Scholar] [CrossRef]
- Yokoo, R.; Goto, K.; Kasahara, J.; Athmanathan, V.; Braun, J.; Paniagua, G.; Meyer, T.R.; Kawasaki, A.; Matsuoka, K.; Matsuo, A.; et al. Experimental study of internal flow structures in cylindrical rotating detonation engines. Proc. Combust. Inst. 2021, 38, 3759–3768. [Google Scholar] [CrossRef]
- Braun, E.M.; Lu, F.K.; Wilson, D.R.; Camberos, J.A. Airbreathing rotating detonation wave engine cycle analysis. Aerosp. Sci. Technol. 2013, 27, 201–208. [Google Scholar] [CrossRef] [Green Version]
- Frolov, S.M.; Zvegintsev, V.I.; Ivanov, V.S.; Aksenov, V.S.; Shamshin, I.O.; Vnuchkov, D.A.; Nalivaichenko, D.G.; Berlin, A.A.; Fomin, V.M.; Shiplyuk, A.N.; et al. Hydrogen-fueled detonation ramjet model: Wind tunnel tests at approach air stream Mach number 5.7 and stagnation temperature 1500 K. Int. J. Hydrogen Energy 2018, 43, 7515–7524. [Google Scholar] [CrossRef]
- Liu, S.; Liu, W.; Wang, Y.; Lin, Z. Free jet test of continuous rotating detonation ramjet engine. In Proceedings of the 21st AIAA International Space Planes and Hypersonics Technologies Conference, Xiamen, China, 6–9 March 2017. [Google Scholar]
- Bykovskii, F.A.; Zhdan, S.A.; Vedernikov, E.F. Vedernikov. Continuous spin detonations. J. Propuls. Power 2006, 22, 1204–1216. [Google Scholar] [CrossRef]
- Deng, L.; Ma, H.; Xu, C.; Zhou, C.; Liu, X. Investigation on the propagation process of rotating detonation wave. Acta Astronaut. 2017, 139, 278–287. [Google Scholar] [CrossRef]
- Deng, L.; Ma, H.; Xu, C.; Liu, X.; Zhou, C. The feasibility of mode control in rotating detonation engine. Appl. Therm. Eng. 2018, 129, 1538–1550. [Google Scholar] [CrossRef]
- Zhou, S.; Ma, H.; Zhou, C.; Hu, N. Experimental research on the propagation process of rotating detonation wave with a gaseous hydrocarbon mixture fuel. Acta Astronaut. 2021, 179, 1–10. [Google Scholar] [CrossRef]
- Teng, H.; Zhou, L.; Yang, P.; Jiang, Z. Numerical investigation of wavelet features in rotating detonations with a two-step induction-reaction model. Int. J. Hydrogen Energy 2020, 45, 4991–5001. [Google Scholar] [CrossRef]
- Yao, K.; Yang, P.; Teng, H.; Chen, Z.; Wang, C. Effects of injection parameters on propagation patterns of hydrogen-fueled rotating detonation waves. Int. J. Hydrogen Energy 2022, 47, 38811–38822. [Google Scholar] [CrossRef]
- Zhao, M.; Wang, K.; Zhu, Y.; Wang, Z.; Yan, Y.; Wang, Y.; Fan, W. Effects of the exit convergent ratio on the propagation behavior of rotating detonations utilizing liquid kerosene. Acta Astronaut. 2022, 193, 35–43. [Google Scholar] [CrossRef]
- Ding, C.; Wu, Y.; Xu, G.; Xia, Y.; Li, Q.; Weng, C. Effects of the oxygen mass fraction on the wave propagation modes in a kerosene-fueled rotating detonation combustor. Acta Astronaut. 2022, 195, 204–214. [Google Scholar] [CrossRef]
- Kindracki, J.; Wacko, K.; Woźniak, P.; Siatkowski, S.; Mężyk, Ł. Influence of Gaseous Hydrogen Addition on Initiation of Rotating Detonation in Liquid Fuel–Air Mixtures. Energies 2020, 13, 5101. [Google Scholar] [CrossRef]
- Jia, B.; Zhang, Y.; Pan, H.; Hong, Y. Experimental study on initiation process of liquid hydrocarbon rotating detonation engine. J. Propuls. Technol. 2021, 42, 906–914. [Google Scholar] [CrossRef]
- Ge, G.; Ma, Y.; Xia, Z.; Ma, H.; Deng, L.; Zhou, C. Experimental Research of Two-phase Rotating Detonation Combustor Operating with High Total Temperature Air. J. Appl. Fluid Mech. 2022, 15, 1437–1449. [Google Scholar] [CrossRef]
- Bykovskii, F.A.; Zhdan, S.A.; Vedernikov, E.F. Continuous spin detonation of a heterogeneous kerosene–air mixture with addition of hydrogen. Combust. Explos. Shock 2016, 52, 371–373. [Google Scholar] [CrossRef]
- Bykovskii, F.A.; Zhdan, S.A.; Vedernikov, E.F. Continuous detonation of the liquid kerosene—Air mixture with addition of hydrogen or syngas. Combust. Explos. Shock 2019, 55, 589–598. [Google Scholar] [CrossRef]
- Xu, S.; Song, F.; Zhou, J.; Yang, X.; Cheng, P. Experimental Study on Propagation Characteristics of Kerosene/Air RDE with Different Diameters. Energies 2022, 15, 4442. [Google Scholar] [CrossRef]
- Le Naour, B.; Falempin, F.H.; Coulon, K. MBDA R&T effort regarding continuous detonation wave engine for propulsion-status in 2016. In Proceedings of the 21st AIAA International Space Planes and Hypersonics Technologies Conference, Xiamen, China, 6–9 March 2017. [Google Scholar] [CrossRef]
- Anderson, W.S.; Heister, S.D. Response of a liquid jet in a multiple-detonation driven crossflow. J. Propuls. Power 2019, 35, 303–312. [Google Scholar] [CrossRef]
- Hoeper, M.W.; Webb, A.M.; Athmanathan, V.; Wang, R.B.; Perkins, H.D.; Roy, S.; Meyer, T.R.; Fugger, C.A. Liquid fuel refill dynamics in a rotating detonation combustor using megahertz planar laser-induced fluorescence. Proc. Combust. Inst. 2023, 39, 3051–3061. [Google Scholar] [CrossRef]
- Black, C.H.; Winter, T.R.; Jackson, D.R.; Frederick, M.; Gejji, R.; Slabaugh, C.D.; Perkins, H.D.; Fugger, C.A. Liquid Jet Response to Detonation Waves in a Linear Detonation Combustor. In Proceedings of the AIAA SCITECH 2023 Forum, National Harbor, MD, USA & Online, 23–27 January 2023. [Google Scholar] [CrossRef]
- Raman, V.; Prakash, S.; Gamba, M. Nonidealities in Rotating Detonation Engines. Annu. Rev. Fluid Mech. 2023, 55, 639–674. [Google Scholar] [CrossRef]
- Burr, J.R.; Paulson, E. Thermodynamic performance results for rotating detonation rocket engine with distributed heat addition using Cantera. In Proceedings of the AIAA Propulsion and Energy 2021 Forum, Online, 9–11 August 2021. [Google Scholar] [CrossRef]
- Ayers, Z.M.; Athmanathan, V.; Meyer, T.R.; Paxson, D.E. Variably Premixed Rotating Detonation Engine for Evaluation of Detonation Cycle Dynamics. J. Propuls. Power 2023, 39, 351–364. [Google Scholar] [CrossRef]
- Athmanathan, V.; Braun, J.; Ayers, Z.M.; Fugger, C.A.; Webb, A.M.; Slipchenko, M.N.; Paniagua, G.; Roy, S.; Meyer, T.R. On the effects of reactant stratification and wall curvature in non-premixed rotating detonation combustors. Combust. Flame 2022, 240, 112013. [Google Scholar] [CrossRef]
- Jesuthasan, A. Near-Limit Propagation of Detonations in Annular Channels. Master’s Thesis, McGill University, Montreal, QC, Canada, 2011. [Google Scholar]
- NASA Glenn Research Center. CEAgui-Win, Chemical Equilibrium with Applications GUI for Windows, Software Package, Version 28; NASA Glenn Research Center: Cleveland, OH, USA, 2005.
Condition No. | Inlet Mass Flux kg/(m2s) | Equivalent Ratio Range |
---|---|---|
1 | 400 | 0.5~0.8 |
2 | 375 | 0.5~0.8 |
3 | 350 | 0.5~0.8 |
4 | 300 | 0.5~0.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, B.; Zhang, Y.; Meng, H.; Meng, F.; Pan, H.; Hong, Y. Experimental Study on the Propagation Characteristics of Rotating Detonation Wave with Liquid Hydrocarbon/High-Enthalpy Air Mixture. Aerospace 2023, 10, 682. https://doi.org/10.3390/aerospace10080682
Jia B, Zhang Y, Meng H, Meng F, Pan H, Hong Y. Experimental Study on the Propagation Characteristics of Rotating Detonation Wave with Liquid Hydrocarbon/High-Enthalpy Air Mixture. Aerospace. 2023; 10(8):682. https://doi.org/10.3390/aerospace10080682
Chicago/Turabian StyleJia, Bingyue, Yining Zhang, Hao Meng, Fanxiao Meng, Hu Pan, and Yanji Hong. 2023. "Experimental Study on the Propagation Characteristics of Rotating Detonation Wave with Liquid Hydrocarbon/High-Enthalpy Air Mixture" Aerospace 10, no. 8: 682. https://doi.org/10.3390/aerospace10080682
APA StyleJia, B., Zhang, Y., Meng, H., Meng, F., Pan, H., & Hong, Y. (2023). Experimental Study on the Propagation Characteristics of Rotating Detonation Wave with Liquid Hydrocarbon/High-Enthalpy Air Mixture. Aerospace, 10(8), 682. https://doi.org/10.3390/aerospace10080682