Hybrid Turbo-Shaft Engine Digital Twinning for Autonomous Aircraft via AI and Synthetic Data Generation
Abstract
:1. Introduction
2. Literature Review
- Longer range and endurance due to the presence of two storage systems (electric storage and fuel storage) [12].
- Improved maintenance workability due to the reduction in the components [12].
- Lower vibration and noise increase the engine’s lifespan [12].
- In case of engine failure, the electric backup system offers a few minutes of endurance [12].
3. Materials and Methods
3.1. Data Linearization
3.2. Referencing Data to Take-Off Condition
3.3. Noise/Error Generation
- The mean = 0 (“center”) of the distribution.
- The standard deviation = 0.001 (spread or “width”) of the distribution.
3.4. Prediction and Filtering
3.4.1. Rolling Linear Regression
3.4.2. Implementation of Kalman filter
4. Results
5. Discussion and Validation
6. Limitations and Future Study
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
DT | digital twin |
UAV | unmanned aircraft vehicle |
UAS | unmanned aircraft system |
UAM | urban air mobility |
AAM | advanced air mobility |
CPS | cyber-physical system |
DTaaS | DT as a service |
SaaS | software as a service |
VTOL | vertical take-off and landing |
References
- Wei, L.; Justin, C.Y.; Briceno, S.I.; Mavris, D.N. Door-to-door travel time comparative assessment for conventional transportation methods and short take-off and landing on demand mobility concepts. In Proceedings of the 2018 Aviation Technology, Integration, and Operations Conference, Atlanta, GA, USA, 25–29 June 2018; p. 3055. [Google Scholar]
- Johnson, W.; Silva, C. NASA concept vehicles and the engineering of advanced air mobility aircraft. Aeronaut. J. 2022, 126, 59–91. [Google Scholar] [CrossRef]
- Kulkarni, S.; Panicker, R.; Kadeppagari, M.; Elahi, I. Next-Gen Maintenance Framework for Urban Air Mobility Vehicles. SAE Int. J. Adv. Curr. Prac. Mobility 2023, 5, 779–785. [Google Scholar] [CrossRef]
- Definition of a Digital Twin. Available online: https://www.digitaltwinconsortium.org/initiatives/the-definition-of-a-digital-twin/ (accessed on 30 May 2023).
- Duo, W.; Zhou, M.; Abusorrah, A. A survey of cyber attacks on cyber physical systems: Recent advances and challenges. IEEE/CAA J. Autom. Sin. 2022, 9, 784–800. [Google Scholar] [CrossRef]
- Erkoyuncu, J.A.; del Amo, I.F.; Ariansyah, D.; Bulka, D.; Roy, R. A design framework for adaptive digital twins. CIRP Ann. 2020, 69, 145–148. [Google Scholar] [CrossRef]
- Xiong, M.; Wang, H.; Fu, Q.; Xu, Y. Digital twin–driven aero-engine intelligent predictive maintenance. Int. J. Adv. Manuf. Technol. 2021, 114, 3751–3761. [Google Scholar] [CrossRef]
- Hribernik, K.; Cabri, G.; Mandreoli, F.; Mentzas, G. Autonomous, context-aware, adaptive Digital Twins—State of the art and roadmap. Comput. Ind. 2021, 133, 103508. [Google Scholar] [CrossRef]
- Lo, C.; Chen, C.; Zhong, R.Y. A review of digital twin in product design and development. Adv. Eng. Inform. 2021, 48, 101297. [Google Scholar] [CrossRef]
- Pons-Prats, J.; Živojinović, T.; Kuljanin, J. On the understanding of the current status of urban air mobility development and its future prospects: Commuting in a flying vehicle as a new paradigm. Transp. Res. Part E Logist. Transp. Rev. 2022, 166, 102868. [Google Scholar] [CrossRef]
- Rice, S.; Winter, S.R.; Crouse, S.; Ruskin, K.J. Vertiport and air taxi features valued by consumers in the United States and India. Case Stud. Transp. Policy 2022, 10, 500–506. [Google Scholar] [CrossRef]
- Song, K.; Yeo, H. Development of optimal scheduling strategy and approach control model of multicopter VTOL aircraft for urban air mobility (UAM) operation. Transp. Res. Part C Emerg. Technol. 2021, 128, 103181. [Google Scholar] [CrossRef]
- Li, Z.; Ma, Y.; Wei, Z.; Ruan, S. Structured neural-network-based modeling of a hybrid-electric turboshaft engine’s startup process. Aerosp. Sci. Technol. 2022, 128, 107740. [Google Scholar] [CrossRef]
- Donateo, T.; De Pascalis, C.L.; Strafella, L.; Ficarella, A. Off-line and on-line optimization of the energy management strategy in a Hybrid Electric Helicopter for urban air-mobility. Aerosp. Sci. Technol. 2021, 113, 106677. [Google Scholar] [CrossRef]
- He, B.; Bai, K.J. Digital twin-based sustainable intelligent manufacturing: A review. Adv. Manuf. 2021, 9, 1–21. [Google Scholar] [CrossRef]
- Wang, J.; Moreira, J.; Cao, Y.; Gopaluni, B. Time-Variant Digital Twin Modeling through the Kalman-Generalized Sparse Identification of Nonlinear Dynamics. In Proceedings of the 2022 American Control Conference (ACC), Atlanta, GA, USA, 8–10 June 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 5217–5222. [Google Scholar]
- Zhou, X.; He, S.; Dong, L.; Atluri, S.N. Real-Time Prediction of Probabilistic Crack Growth with a Helicopter Component Digital Twin. AIAA J. 2022, 60, 2555–2567. [Google Scholar] [CrossRef]
- Allen, B.D. Digital Twins and Living Models at NASA. NTRS Author Affiliations: Langley Research Center NTRS Meeting Information: Digital Twin Summit; 2021-11-03 to 2021-11-04; undefined NTRS Document ID: 20210023699 NTRS Research Center: Langley Research Center LaRC. Available online: https://ntrs.nasa.gov/citations/20210023699 (accessed on 30 May 2023).
- Butilă, E.V.; Boboc, R.G. Urban Traffic Monitoring and Analysis Using Unmanned Aerial Vehicles (UAVs): A Systematic Literature Review. Remote Sens. 2022, 14, 620. [Google Scholar] [CrossRef]
- Gohari, A.; Ahmad, A.B.; Rahim, R.B.A.; Supa’at, A.S.M.; Abd Razak, S.; Gismalla, M.S.M. Involvement of Surveillance Drones in Smart Cities: A Systematic Review. IEEE Access 2022, 10, 56611–56628. [Google Scholar] [CrossRef]
- Hildmann, H.; Kovacs, E. Review: Using Unmanned Aerial Vehicles (UAVs) as Mobile Sensing Platforms (MSPs) for Disaster Response, Civil Security and Public Safety. Drones 2019, 3, 59. [Google Scholar] [CrossRef] [Green Version]
- Reynoso Vanderhorst, H.; Suresh, S.; Renukappa, S.; Heesom, D. UAS Application for Urban Planning Development. 2021. Available online: https://ec-3.org/publications/conference/paper/?id=EC32021_182 (accessed on 30 May 2023).
- Gillis, D.; Petri, M.; Pratelli, A.; Semanjski, I.; Semanjski, S. Urban Air Mobility: A State of Art Analysis. In Proceedings of the Computational Science and Its Applications—ICCSA 2021, Cagliari, Italy, 13–16 September 2021; Gervasi, O., Murgante, B., Misra, S., Garau, C., Blečić, I., Taniar, D., Apduhan, B.O., Rocha, A.M.A., Tarantino, E., Torre, C.M., Eds.; Springer: Cham, Switzerland, 2021; pp. 411–425. [Google Scholar]
- Causa, F.; Franzone, A.; Fasano, G. Strategic and Tactical Path Planning for Urban Air Mobility: Overview and Application to Real-World Use Cases. Drones 2023, 7, 11. [Google Scholar] [CrossRef]
- Fraser, B.; Al-Rubaye, S.; Aslam, S.; Tsourdos, A. Enhancing the Security of Unmanned Aerial Systems using Digital-Twin Technology and Intrusion Detection. In Proceedings of the 2021 IEEE/AIAA 40th Digital Avionics Systems Conference (DASC), San Antonio, TX, USA, 3–7 October 2021; pp. 1–10. [Google Scholar] [CrossRef]
- Iqbal, D.; Buhnova, B. Model-based Approach for Building Trust in Autonomous Drones through Digital Twins. In Proceedings of the 2022 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Prague, Czech Republic, 9–12 October 2022; pp. 656–662. [Google Scholar] [CrossRef]
- Shen, G.; Lei, L.; Li, Z.; Cai, S.; Zhang, L.; Cao, P.; Liu, X. Deep Reinforcement Learning for Flocking Motion of Multi-UAV Systems: Learn From a Digital Twin. IEEE Internet Things J. 2022, 9, 11141–11153. [Google Scholar] [CrossRef]
- Miao, J.; Zhang, P. UAV Visual Navigation System based on Digital Twin. In Proceedings of the 2022 18th International Conference on Mobility, Sensing and Networking (MSN), Guangzhou, China, 14–16 December 2022; pp. 865–870. [Google Scholar] [CrossRef]
- Madni, A.M.; Erwin, D.; Madni, C.C. Digital Twin-enabled MBSE Testbed for Prototyping and Evaluating Aerospace Systems: Lessons Learned. In Proceedings of the 2021 IEEE Aerospace Conference (50100), Big Sky, MT, USA, 6–13 March 2021; pp. 1–8. [Google Scholar] [CrossRef]
- Esposito, A.; Lo Iacono, F.; Orlando, C.; Navarra, G.; Alaimo, A. Whole body vibration during simulated flight via uncertain models and interval analysis. Mech. Adv. Mater. Struct. 2022, 1–10. [Google Scholar] [CrossRef]
- Aheleroff, S.; Xu, X.; Zhong, R.Y.; Lu, Y. Digital Twin as a Service (DTaaS) in Industry 4.0: An Architecture Reference Model. Adv. Eng. Inform. 2021, 47, 101225. [Google Scholar] [CrossRef]
- Dietz, M.; Putz, B.; Pernul, G. A Distributed Ledger Approach to Digital Twin Secure Data Sharing. In Proceedings of the Data and Applications Security and Privacy XXXIII, Charleston, SC, USA, 15–17 July 2019; Foley, S.N., Ed.; Springer: Cham, Switzerland, 2019; pp. 281–300. [Google Scholar]
- Raes, L.; Michiels, P.; Adolphi, T.; Tampere, C.; Dalianis, A.; McAleer, S.; Kogut, P. DUET: A Framework for Building Interoperable and Trusted Digital Twins of Smart Cities. IEEE Internet Comput. 2022, 26, 43–50. [Google Scholar] [CrossRef]
- CHİODO, L.S.; DONATEO, T.; Ficarella, A. Effect of Coordination on Transient Response of a Hybrid Electric Propulsion System. Int. J. Aviat. Sci. Technol. 2022, 3, 4–12. [Google Scholar] [CrossRef]
- Aoki, M. State Space Modeling of Time Series; Universitext; Springer: Berlin, Germany, 1990. [Google Scholar]
- Bay, J.S. Fundamentals of Linear State Space Systems; McGraw-Hill International Editions Series; Irwin Professional Publishing: Maidenhead, UK, 1998. [Google Scholar]
- Abughali, A.; Habash, O.; Elshamy, A.; Alansari, M.; Alhammadi, K. Design and Analysis of a Linear Controller for Parrot AR Drone 2.0. In Proceedings of the 2022 International Conference on Electrical and Computing Technologies and Applications (ICECTA), Ras Al Khaimah, United Arab Emirates, 23–25 November 2022; IEEE: Piscataway, NJ, USA, 2022. [Google Scholar] [CrossRef]
- Nejad, H.H.; Sauter, D.; Aberkane, S. On-line scheduling and fault detection in NCS with communication constraints in Drone application. In Proceedings of the 2010 Conference on Control and Fault-Tolerant Systems (SysTol), Nice, France, 6–8 October 2010; IEEE: Piscataway, NJ, USA, 2010. [Google Scholar] [CrossRef]
- Gehrig, D.; Göttgens, M.; Paden, B.; Frazzoli, E. Scale-Corrected Monocular-SLAM for the AR.Drone 2.0. 2017. Available online: https://www.research-collection.ethz.ch/handle/20.500.11850/130886 (accessed on 30 May 2023).
- Jaw, L.; Mattingly, J. Aircraft Engine Controls; American Institute of Aeronautics and Astronautics: New York, NY, USA, 2009. [Google Scholar]
- Azam, N.; Michala, L.; Ansari, S.; Truong, N.B. Data Privacy Threat Modelling for Autonomous Systems: A Survey From the GDPR’s Perspective. IEEE Trans. Big Data 2023, 9, 388–414. [Google Scholar] [CrossRef]
- Rani, C.; Modares, H.; Sriram, R.; Mikulski, D.; Lewis, F.L. Security of unmanned aerial vehicle systems against cyber-physical attacks. J. Def. Model. Simul. 2016, 13, 331–342. [Google Scholar] [CrossRef]
TIMES (S) | SPEED (m/s) | ALTITUDE (m) | POWER (kW) | |
---|---|---|---|---|
MISSION A START | 0.1 | 30.6 | 0 | 48 |
MISSION A END | 1650 | 30.6 | 0 | 48 |
MISSION B START | 0.1 | 0 | 1150 | 172 |
MISSION B END | 1246 | 1 | 1149 | 152 |
MISSION C START | 0.1 | 0 | 7 | 168 |
MISSION C END | 2079 | 1.59 | 6.22 | 147 |
MISSION D START | 0.1 | 0 | 7 | 168 |
MISSION D END | 935 | 1.54 | 6.41 | 151 |
Parameter | Explanation |
---|---|
High-pressure spool speed | |
Referenced parameter value to the take-off condition | |
Measured value of the parameter | |
Predicted value of the parameter | |
Compressor outlet total pressure | |
Referenced parameter value to the take-off condition | |
Measured value of the parameter | |
Predicted value of the parameter | |
Turbine inlet total temperature | |
Referenced parameter value to the take-off condition | |
Measured value of the parameter | |
Predicted value of the parameter | |
Fuel flow rate | |
Referenced parameter value to the take-off condition | |
Measured value of the parameter | |
Predicted value of the parameter | |
Measured and referenced (to the take-off condition) power level angle. | |
Measured torque value |
Parameter | Explanation |
---|---|
Updated high-pressure spool speed | |
Updated compressor outlet total pressure | |
Updated turbine inlet total temperature | |
Updated fuel flow rate | |
State transition model | |
Control input model | |
Observation model | |
Process noise | |
Observation noise |
Parameter | Value |
---|---|
sigma (standard deviation of distribution) | 0.1 |
time window | 5000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aghazadeh Ardebili, A.; Ficarella, A.; Longo, A.; Khalil, A.; Khalil, S. Hybrid Turbo-Shaft Engine Digital Twinning for Autonomous Aircraft via AI and Synthetic Data Generation. Aerospace 2023, 10, 683. https://doi.org/10.3390/aerospace10080683
Aghazadeh Ardebili A, Ficarella A, Longo A, Khalil A, Khalil S. Hybrid Turbo-Shaft Engine Digital Twinning for Autonomous Aircraft via AI and Synthetic Data Generation. Aerospace. 2023; 10(8):683. https://doi.org/10.3390/aerospace10080683
Chicago/Turabian StyleAghazadeh Ardebili, Ali, Antonio Ficarella, Antonella Longo, Adem Khalil, and Sabri Khalil. 2023. "Hybrid Turbo-Shaft Engine Digital Twinning for Autonomous Aircraft via AI and Synthetic Data Generation" Aerospace 10, no. 8: 683. https://doi.org/10.3390/aerospace10080683
APA StyleAghazadeh Ardebili, A., Ficarella, A., Longo, A., Khalil, A., & Khalil, S. (2023). Hybrid Turbo-Shaft Engine Digital Twinning for Autonomous Aircraft via AI and Synthetic Data Generation. Aerospace, 10(8), 683. https://doi.org/10.3390/aerospace10080683