A High-Reliability Photoelectric Detection System for Mars Sample Return’s Orbiting Sample
Abstract
:1. Introduction
The Capture, Containment, and Return System
2. The Capture Sensor Suite
2.1. Driving Requirements
2.2. Concept of Operation
2.3. System Redundancy
3. Design Implementation
3.1. Capture Sensor Electronics
FPGA Architecture and Signal Processing
3.2. OS Detection Algorithm
3.3. Sensor Arrays
3.3.1. Optoelectronic Subassemblies
3.3.2. Sensor Array Geometry
3.3.3. Structural Design
3.3.4. Structural Analysis
- Quasistatic launch loading of 63 G in three axes (shown in Figure 18).
- Random vibration of 14.1 Grms in three axes; standard proto-flight General Environmental Verification Standard (GEVS) input.
- Bulk Survival Cold Thermal environment of −40 °C.
- Hot and cold operational thermal loading, nodes thermally mapped based on thermal analysis results.
4. Development and Validation
5. Conclusions and Future Work
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sarli, B.; Gough, K.; Hagedorn, A.; Bowman, E.; Rondey, J.; Yew, C.; Neuman, M.; Parvez, E. NASA Capture, Containment, and Return System: Bringing Mars Samples to Earth. In Proceedings of the 34th International Symposium on Space Technology and Science, Fufkuoka, Japan, 3–9 June 2023. [Google Scholar]
- Mars Rock Samples Collected by the Perseverance Rover. National Aeronautics and Space Administration (NASA). Available online: https://mars.nasa.gov/mars-rock-samples (accessed on 10 March 2024).
- National Research Council. Vision and Voyages for Planetary Science in the Decade 2013–2022; The National Academies Press: Washington, DC, USA, 2021. [Google Scholar]
- Cataldo, G.; Childs, B.; Corliss, J.; Feehan, B.; Gage, P.; Lin, J.; Mukherjee, S.; Neuman, M.; Pellerano, F.; Sarli, B.; et al. Mars Sample Return–An Overview of the Capture, Containment and Return System. In Proceedings of the 73rd International Astronautical Congress, Paris, France, 18–22 September 2022. [Google Scholar]
- Ishigo, A.; Marteau, E.; Ohta, P.; Elliott, E.; Younse, P. Dynamic Modeling, Simulation, and Analysis of Orbiting Sample Capture for Potential Mars Sample Return. In Proceedings of the 2020 IEEE Aerospace Conference, Big Sky, MT, USA, 7–14 March 2020; pp. 1–15. [Google Scholar] [CrossRef]
- Yew, C.; Cataldo, G.; Feehan, B.; De Marco, E.; Antoun, G.; Pinon, E. Probabilistic Approach to Assessing CCRS Capture System Performance Margin. AIAA 2024–2052. In Proceedings of the AIAA SCITECH 2024 Forum, Orlando, FL, USA, 8–12 January 2024. [Google Scholar] [CrossRef]
- Younse, P.; Chiu, C.Y.; Cameron, J.; Dolci, M.; Elliot, E.; Ishigo, A.; Kogan, D.; Marteau, E.; Mayo, J.; Munger, J.; et al. Concept for an On-orbit Capture and Orient Module for Potential Mars Sample Return. In Proceedings of the 2020 IEEE Aerospace Conference, Big Sky, MT, USA, 7–14 March 2020; pp. 1–22. [Google Scholar] [CrossRef]
- Kornfeld, R.; Parrish, J.; Sell, S. Mars Sample Return: Testing the Last Meter of Rendezvous and Sample Capture. J. Spacecr. Rocket. 2007, 44, 692–702. [Google Scholar] [CrossRef]
- Goertzel, G. An Algorithm for the Evaluation of Finite Trigonometric Series. Am. Math. Mon. 1958, 65, 34–35. [Google Scholar] [CrossRef]
- McClelland, R. Generative Design and Digital Manufacturing: Using AI and robots to build lightweight instruments. In Proceedings of the Current Developments in Lens Design and Optical Engineering XXIII, San Diego, CA, USA, 21–26 August 2022; Volume 12217, p. 1221700. [Google Scholar] [CrossRef]
- Figueroa, O.; Elbel, J.; Boll, N.; Kearns, S. Mars Sample Return (MSR) Independent Review Board-2 Final Report. NASA. 2023. Available online: https://www.nasa.gov/wp-content/uploads/2023/09/mars-sample-return-independent-review-board-report.pdf (accessed on 29 January 2024).
- Connelly, S.; Gramling, J.; Thibault, S.; Meyer, M. Mars Sample Return Independent Review Response Planning and Updates. Planetary Advisory Committee (PAC), National Aeronautics and Space Administration. 2023. Available online: https://science.nasa.gov/wp-content/uploads/2023/11/day1-1345-pac-13nov2023-smd-msr-finalv1.pdf (accessed on 14 February 2024).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Church, W.F.; Guzman-Garcia, D.; Bertelsmann, K.; Ruiz-Escribano, V.A.; Ventura, C.; Jackson, M.I.; Waltman, E. A High-Reliability Photoelectric Detection System for Mars Sample Return’s Orbiting Sample. Aerospace 2024, 11, 789. https://doi.org/10.3390/aerospace11100789
Church WF, Guzman-Garcia D, Bertelsmann K, Ruiz-Escribano VA, Ventura C, Jackson MI, Waltman E. A High-Reliability Photoelectric Detection System for Mars Sample Return’s Orbiting Sample. Aerospace. 2024; 11(10):789. https://doi.org/10.3390/aerospace11100789
Chicago/Turabian StyleChurch, William F., David Guzman-Garcia, Karina Bertelsmann, Victor A. Ruiz-Escribano, Cesar Ventura, Molly I. Jackson, and Eric Waltman. 2024. "A High-Reliability Photoelectric Detection System for Mars Sample Return’s Orbiting Sample" Aerospace 11, no. 10: 789. https://doi.org/10.3390/aerospace11100789
APA StyleChurch, W. F., Guzman-Garcia, D., Bertelsmann, K., Ruiz-Escribano, V. A., Ventura, C., Jackson, M. I., & Waltman, E. (2024). A High-Reliability Photoelectric Detection System for Mars Sample Return’s Orbiting Sample. Aerospace, 11(10), 789. https://doi.org/10.3390/aerospace11100789