MicroGravity Explorer Kit (MGX): An Open-Source Platform for Accessible Space Science Experiments
Abstract
:1. Introduction
2. The Microgravity Environment
2.1. Drop Tower
2.2. Parabolic Flight
2.3. Orbital Flight
2.4. Suborbital Flight
3. Methodology
4. MGX Design
4.1. Review of Microgravity Experiments
4.2. Requirements
4.3. Architecture
4.4. Hardware Implementation
4.5. Software Implementation and Functionality
5. Final Remarks
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Malméjac, Y.; Bewersdorff, A.; Da Riva de la Cavada, I.; Napolitano, L.G. Challenges & prospectives of microgravity research in space. In Technical Report; Aeronauticos: Paris, France, 1981. [Google Scholar]
- Seibert, G. The History of Sounding Rockets and Their Contribution to European Space Research. In ESA History Study Reports; European Space Agency: Paris, France, 2006. [Google Scholar]
- Saenz-Otero, A.; Miller, D. SPHERES-A platform for formation-flight research. In Proceedings of the SPIE—The International Society for Optical Engineering, San Diego, CA, USA, 31 July–4 August 2005. [Google Scholar] [CrossRef]
- An, C.Y.; Boschetti, C.; Ribeiro, M.F.; Toledo, R.C.; Freitas, F.E.; Castilho, F.F.; Bandeira, I.N. Solidification Furnace for Microgravity Experiments on Sounding Rockets. J. Aerosp. Technol. Manag. 2012, 4, 237–240. [Google Scholar] [CrossRef]
- Toledo, R.C.; Ribeiro, M.F.; Bandeira, I.N.; An, C.Y. Solidification Furnace Developed for Sounding Rockets: Rio Verde Mission. J. Aerosp. Technol. Manag. 2019, 11, e2519. [Google Scholar] [CrossRef]
- Toledo, R.C.; Tenório, P.I.G.; Sampaio, M.; da Silva, J.P.; Bandeira, I.N.; An, C.Y. Solidification Furnace Developed for Sounding Rockets: Santa Branca Mission. Microgravity Sci. Technol. 2024, 36, 18. [Google Scholar] [CrossRef]
- Pletser, V.; Paulis, P.; Loosveldt, E.; Gering, D.; Body, M.; Schewijck, R. A new ESA educational initiative: Euro Space Center class teachers in microgravity during parabolic flights. Acta Astronaut. 2005, 57, 910–919. [Google Scholar] [CrossRef]
- Stamminger, A.; Altenbuchner, L.; Ettl, J.; Jung, W.; Kirchhartz, R.; Turner, P. MORABA—Overview on DLR’s Mobile Rocket Base and Projects. In Proceedings of the 12th International Conference on Space Operations, Stockholm, Sweden, 11–15 June 2012. [Google Scholar] [CrossRef]
- Perondi, L.F. The Coming of Age of Space Satellite Industry: Transitioning from a Growth to a Maturity Life Cycle Phase. J. Aerosp. Technol. Manag. 2023, 15, e0323. [Google Scholar] [CrossRef]
- Pessoa Filho, J.B. Space Age: Past, Present and Possible Futures. J. Aerosp. Technol. Manag. 2021, 13, e3421. [Google Scholar] [CrossRef]
- Motta, F.; Pessoa Filho, J.B.; de Oliveira Moraes, A. Is there a market for micro-launch vehicles? Space Policy 2024, 101629. [Google Scholar] [CrossRef]
- Kedarisetty, S. Microgravity Enabling Multirotors: Compact Like Drop Towers and Programmable Like Parabolic Flights. Microgravity Sci. Technol. 2021, 33, 36. [Google Scholar] [CrossRef]
- Vashi, A.; Sreejith, K.R.; Nguyen, N.T. Lab-on-a-chip technologies for microgravity simulation and space applications. Micromachines 2022, 14, 116. [Google Scholar] [CrossRef]
- Raudonis, M.; Roura, A.; Meister, M.; Lotz, C.; Overmeyer, L.; Herrmann, S.; Gierse, A.; Lämmerzahl, C.; Bigelow, N.P.; Lachmann, M.; et al. Microgravity facilities for cold atom experiments. Quantum Sci. Technol. 2023, 8, 044001. [Google Scholar] [CrossRef]
- Gierse, A.; Könemannb, T.; von Kampenc, P.; Avilad, M. The GraviTower Bremen Pro–Experiences with a next-generation drop tower system. In Proceedings of the 44th COSPAR Scientific Assembly, Athens, Greece, 16–24 July 2022. [Google Scholar]
- Ferranti, F.; Del Bianco, M.; Pacelli, C. Advantages and Limitations of Current Microgravity Platforms for Space Biology Research. Appl. Sci. 2021, 11, 68. [Google Scholar] [CrossRef]
- Belser, V.; Breuninger, J.; Reilly, M.; Laufer, R.; Dropmann, M.; Herdrich, G.; Hyde, T.; Röser, H.P.; Fasoulas, S. Aerodynamic and Engineering Design of a 1.5 Seconds High Quality Microgravity Drop Tower Facility. Acta Astronaut. 2016, 129, 335–344. [Google Scholar] [CrossRef]
- De Witt, J.; Perusek, G.; Lewandowski, B.; Gilkey, K.; Savina, M.; Samorezov, S.; Edwards, W.B. Locomotion in Simulated and Real Microgravity: Horizontal Suspension vs. Parabolic Flight. Aviat. Space Environ. Med. 2010, 81, 1092–1099. [Google Scholar] [CrossRef] [PubMed]
- Elgindi, M.; Sapudom, J.; Hamed, I.; Al-Sayegh, M.; Chen, W.; Garcia-Sabaté, A.; Teo, J. May the Force Be with You (Or Not): The Immune System under Microgravity. Cells 2021, 10, 1941. [Google Scholar] [CrossRef] [PubMed]
- Silva, I.d.C.e.; Russomano, T.; Ferreira, R.A.; Cupertino, M.d.C.; Alcântara, F.A.; Geller, M.; Cima, O.M.D.; Siqueira-Batista, R. Physiological Adaptations to Life in Space: An Update. J. Aerosp. Technol. Manag. 2023, 15, e2823. [Google Scholar] [CrossRef]
- Jirak, P.; Wernly, B.; Lichtenauer, M.; Paar, V.; Franz, M.; Knost, T.; Abusamrah, T.; Kelm, M.; Muessig, J.; Bimpong-Buta, N.Y.; et al. Dynamic Changes of Heart Failure Biomarkers in Response to Parabolic Flight. Int. J. Mol. Sci. 2020, 21, 3467. [Google Scholar] [CrossRef]
- Sentse, N. ESA User Guide to Low Gravity Platforms; ESA: Paris, France, 2014. [Google Scholar]
- Camberos, V.; Baio, J.; Mandujano, A.; Martinez, A.; Bailey, L.; Hasaniya, N.; Kearns-Jonker, M. The Impact of Spaceflight and Microgravity on the Human Islet-1+ Cardiovascular Progenitor Cell Transcriptome. Int. J. Mol. Sci. 2021, 22, 3577. [Google Scholar] [CrossRef]
- Yoshida, K.; Hada, M.; Hayashi, M.; Kizu, A.; Kitada, K.; Eguchi-Kasai, K.; Kokubo, T.; Teramura, T.; Hashizume Suzuki, H.; Watanabe, H.; et al. Transcriptome Analysis by RNA Sequencing of Mouse Embryonic Stem Cells Stocked on International Space Station for 1584 Days in Frozen State after Culture on the Ground. Int. J. Mol. Sci. 2024, 25, 3283. [Google Scholar] [CrossRef]
- Tran, V.; Carpo, N.; Shaka, S.; Zamudio, J.; Choi, S.; Cepeda, C.; Espinosa-Jeffrey, A. Delayed Maturation of Oligodendrocyte Progenitors by Microgravity: Implications for Multiple Sclerosis and Space Flight. Life 2022, 12, 797. [Google Scholar] [CrossRef]
- Tran, V.; Carpo, N.; Cepeda, C.; Espinosa-Jeffrey, A. Oligodendrocyte Progenitors Display Enhanced Proliferation and Autophagy after Space Flight. Biomolecules 2023, 13, 201. [Google Scholar] [CrossRef]
- Vandenbrink, J.; Kiss, J. Space, the final frontier: A critical review of recent experiments performed in microgravity. Plant Sci. 2015, 243, 115–119. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Guo, S.; Zhao, P.; Wang, L.; Wang, X.; Li, J.; Bian, Q. Research on lettuce growth technology onboard Chinese Tiangong II Spacelab. Acta Astronaut. 2017, 144, 97–102. [Google Scholar] [CrossRef]
- Zhao, J.; Du, W.; Qi, K.; Ding, L.; Li, K.; Li, W.; Liu, Y.C.; Luo, X.; Jianyin, M.; Qinggong, W.; et al. Recent Progress of Microgravity Science Research in China. Chin. J. Space Sci. 2022, 42, 772–785. [Google Scholar] [CrossRef]
- Halper, M. LEDs Magazine. 2022. Available online: https://www.ledsmagazine.com/leds-lighting-reports/article/14224241/leds-magazine-news-insights-26-jan-2022-editors-column (accessed on 3 July 2024).
- Silva, F.; Perondi, L. A Proposal of a Life-Cycle for the Development of Sounding Rockets Missions. J. Aerosp. Technol. Manag. 2021, 13, e2021. [Google Scholar] [CrossRef]
- Ishizuka, S.; Kimura, Y.; Sakon, I.; Kimura, H.; Yamazaki, T.; Takeuchi, S.; Inatomi, Y. Sounding-rocket microgravity experiments on alumina dust. Nat. Commun. 2018, 9, 3820. [Google Scholar] [CrossRef]
- Amselem, S. Remote Controlled Autonomous Microgravity Lab Platforms for Drug Research in Space. Pharm. Res. 2019, 36, 183. [Google Scholar] [CrossRef]
- Villas Boas, D.; Souza, C.; Silva, F.; Moraes, A. Proposal of low cost launchers for scientific missions using cubesats. Adv. Space Res. 2019, 66, 162–175. [Google Scholar] [CrossRef]
- Boas, D.J.F.V.; Pessoa Filho, J.B.; de Oliveira Moraes, A.; Souza, C.H.M. Innovative and low-cost launch systems. In Next Generation CubeSats and SmallSats; Elsevier: Amsterdam, The Netherlands, 2023; pp. 403–419. [Google Scholar]
- Oliveira, É.J.; Souza, C.H.; Korzenowski, H.; Gasbarri, P.; Vilas Bôas, D.J. Atmospheric re-entry stability analysis of the space vehicle SARA. In Proceedings of the 68th International Astronautical Congress (IAC 2017). International Astronautical Federation, IAF, Adelaide, Australia, 25–29 September 2017; Volume 9, pp. 6077–6084. [Google Scholar]
- Pinto, A.; Maciel, M.; Pinho, M.; Medeiros, R.; S, F.; Moraes, A. Evaluation of lossy compression algorithms using Discrete Cosine Transform for sounding rocket vibration data. Meas. Sci. Technol. 2022, 34, 015117. [Google Scholar] [CrossRef]
- Simões, L.P.; dos Santos, C.R.; Moraes, A. A Proposed Methodology for Assessment of Li-ion Cell Suitability and Safety for Suborbital Vehicle Applications. Microgravity Sci. Technol. 2024, 36, 24. [Google Scholar] [CrossRef]
- Garcia, A.; Cunha, S.; Barbosa, A.; Bizarria, F.; Jung, W.; Scheuerpflug, F. VSB-30 sounding rocket: History of flight performance. J. Aerosp. Technol. Manag. 2011, 3, 325–330. [Google Scholar] [CrossRef]
- Ettl, J.; Pfander, J. Rate control system for sounding rockets. In Proceedings of the 19th ESA Symposium on European Rocket and Balloon Programmes and Related Research, Bad Reichenhall, Germany, 7–11 June 2009. [Google Scholar]
- Fugivara, S.; Merladet, A.; Lahoz, C. STPA Analysis of Brazilian Sounding Rockets Launching Operations. Microgravity Science and Technology 2021, 33, 43. [Google Scholar] [CrossRef]
- Demets, R. Biology on Sounding Rockets: History, Requirements, Results and Scientific Interpretation. In Proceedings of the 20th Symposium on European Rocket and Balloon Programmes and Related Research, Hyere, France, 22–26 May 2011. [Google Scholar]
- Cazzaniga, A.; Maier, J.; Castiglioni, S. Impact of simulated microgravity on human bone stem cells: New hints for space medicine. Biochem. Biophys. Res. Commun. 2016, 473, 181–186. [Google Scholar] [CrossRef] [PubMed]
- Kopp, S.; Krüger, M.; Feldmann, S.; Oltmann, H.; Schütte, A.; Schmitz, B.; Bauer, J.; Schulz, H.; Saar, K.; Huebner, N.; et al. Thyroid cancer cells in space during the TEXUS-53 sounding rocket mission—The THYROID Project. Sci. Rep. 2018, 8, 10355. [Google Scholar] [CrossRef] [PubMed]
- Aventaggiato, M.; Barreca, F.; Vernucci, E.; Bizzarri, M.; Ferretti, E.; Russo, M.A.; Tafani, M. Putative Receptors for Gravity Sensing in Mammalian Cells: The Effects of Microgravity. Appl. Sci. 2020, 10, 2028. [Google Scholar] [CrossRef]
- Grimm, D. Microgravity and Space Medicine. Int. J. Mol. Sci. 2021, 22, 6697. [Google Scholar] [CrossRef]
- Kirchhartz, R.; Hörschgen-Eggers, M.; Jung, W. Sounding Rockets are unique Experimental Platforms. In Proceedings of the 69th International Astronautical Congress, Bremen, Germany, 1–5 October 2018. [Google Scholar]
- Romero-Calvo, A.; García-Salcedo, A.; Garrone, F.; Rivoalen, I.; Cano-Gómez, G.; Castro-Hernández, E.; Herrada, M.; Maggi, F. StELIUM: A student experiment to investigate the sloshing of magnetic liquids in microgravity. Acta Astronaut. 2020, 173, 344–355. [Google Scholar] [CrossRef]
- Fernandez, J.; Salgado Sánchez, P.; Tinao, I.; Porter, J.; Ezquerro, J. The CFVib Experiment: Control of Fluids in Microgravity with Vibrations. Microgravity Sci. Technol. 2017, 29, 351–364. [Google Scholar] [CrossRef]
- Paiva, K.V.; Mantelli, M.B.H.; Florez, J.P.M.; Nuernberg, G.G.V. Mini Heat Pipes Experiments under Microgravity Conditions. What Have We Learned? Heat Pipe Sci. Technol. An Int. J. 2014, 5, 521–529. [Google Scholar] [CrossRef]
- Paiva, K.; Mantelli, M.; Slongo, L. Experimental testing of mini heat pipes under microgravity conditions aboard a suborbital rocket. Aerosp. Sci. Technol. 2015, 45, 367–375. [Google Scholar] [CrossRef]
- Hanke, W.; Sieber, M.; Spencer, P.; Schwertner, J.; Fernandes de Lima, V.M. Properties of Wave Propagation in a Gel-type Belousov–Zhabothinsky Reaction under Micro-gravity. Microgravity Sci. Technol. 2009, 21, 239–246. [Google Scholar] [CrossRef]
- Savio Odriozola, S. Rocket in situ observation of equatorial plasma irregularities in the region between E and F layers over Brazil. Ann. Geophys. 2017, 35, 413–422. [Google Scholar] [CrossRef]
- Bowcutt, K.; Paull, A.; Dolvin, D.; Smart, M. HIFiRE: An international collaboration to advance the science and technology of hypersonic flight. In Proceedings of the 28th International Congress of the Aeronautical Sciences, Brisbane, Australia, 23–28 September 2012; Volume 1, pp. 65–76. [Google Scholar]
- Chowdhury, S.M.; Charleston, M.A.; Marashdeh, Q.M.; Teixeira, F.L. Propellant Mass Gauging in a Spherical Tank under Micro-Gravity Conditions Using Capacitance Plate Arrays and Machine Learning. Sensors 2023, 23, 8516. [Google Scholar] [CrossRef]
- Ghritli, R.; Okano, Y.; Inatomi, Y.; Dost, S. Control of growth interface shape during InGaSb growth by Vertical Gradient Freezing under microgravity, and optimization using machine learning. Jpn. J. Appl. Phys. 2022, 61, 115502. [Google Scholar] [CrossRef]
- Mangini, D.; Mameli, M.; Georgoulas, A.; Araneo, L.; Filippeschi, S.; Marengo, M. A pulsating heat pipe for space applications: Ground and microgravity experiments. Int. J. Therm. Sci. 2015, 95, 53. [Google Scholar] [CrossRef]
- Azzolin, M.; Bortolin, S.; Nguyen, L.; Lavieille, P.; Glushchuk, A.; Queeckers, P.; Miscevic, M.; Iorio, C.s.; Col, D. Experimental investigation of in-tube condensation in microgravity. Int. Commun. Heat Mass Transf. 2018, 96, 69–79. [Google Scholar] [CrossRef]
- Weidling, R.; Güttler, C.; Blum, J. Free Collisions in a Microgravity Many-Particle Experiment. I. Dust Aggregate Sticking at Low Velocities. Icarus 2011, 218, 688–700. [Google Scholar] [CrossRef]
- Nomura, H.; Murakoshi, T.; Suganuma, Y.; Ujiie, Y.; Hashimoto, N.; Nishida, H. Microgravity experiments of fuel droplet evaporation in sub- and supercritical environments. Proc. Combust. Inst. 2017, 36, 2425–2432. [Google Scholar] [CrossRef]
- Nejati, I.; Sielaff, A.; Franz, B.; Zimmermann, M.; Hänichen, P.; Schweikert, K.; Krempel, J.; Stephan, P.; Martin, A.; Scheerer, H.; et al. Experimental Investigation of Single Bubble Nucleate Boiling in Microgravity. Microgravity Sci. Technol. 2020, 32, 597–607. [Google Scholar] [CrossRef]
- Wang, Q.; Li, Z.; Liu, H.; Xu, Q.; Yan, S.; Zhang, L.; Zhang, S.; Song, X.; Ziqiang, Q.; Liu, L.; et al. MEMS Microgravity Measurement Module with Nano-g/Hz Noise Floor for Spaceborne Higher-Level Microgravity Scientific Experiment Applications. ACS Appl. Electron. Mater. 2021, 3, 3379–3390. [Google Scholar] [CrossRef]
- Liu, M.; Zhu, H.; Xu, X.; Ma, Y.; Zhang, S.; Wang, J. Precise measurement method of carrier motion state in microgravity environment. Measurement 2023, 222, 113500. [Google Scholar] [CrossRef]
- Blazejczyk, M.; Maraj, K.; Switek, K.; Synowiec, K. Design and results of an experiment with the goal of gathering data on the motion of a non-rigid body in microgravity. In Proceedings of the 8th European Conference on Space Debris, Virtual, 20–23 April 2021. [Google Scholar]
- Amberkar, N.; Duraisamy, V.V.; Mastroliberti, M.; Munasinghe, M.; Maupin, G.; Llanos, P.; Gangadharan, S. Suborbital Payload Testing Aboard Level 3 Rocket Research Platform. In Proceedings of the AIAA Scitech 2020 Forum, Orlando, FL, USA, 6–10 January 2020. [Google Scholar] [CrossRef]
- Strobino, D.; Zumbrunen, E.; Putzu, R.; Pontelandolfo, P. Propellant Management in Microgravity- Further Analysis of an Experiment Flown on REXUS-14. In Proceedings of the 22nd ESA Symposium on European Rocket and Balloon Programmes and Related Research, Tromsø, Norway, 7–12 June 2015; Ouwehand, L., Ed.; ESA Special Publication: Graz, Austria, 2015; Volume 730, p. 317. [Google Scholar]
- Stone, T.; Murbach, M.; Alema, R.; Gilstrap, R. SOAREX-8 suborbital experiments 2015—A new paradigm for small spacecraft communication. In Proceedings of the 2015 IEEE Aerospace Conference, Big Sky, MT, USA, 7–14 March 2015; pp. 1–7. [Google Scholar] [CrossRef]
- Pfeuffer, H.; Ettl, J.; Hassenpflug, F. New Techniques and Instrumentation—TEXUS Service Module (TSM). In Proceedings of the 19th Symposium on European Rocket and Balloon Programmes and Related Research, Bad Reichenhall, Germany, 7–11 June 2009; Volume SP-671. [Google Scholar]
- Andrade, R.; Moraes, A.; Motta, F. IoT-Based Sounding Rocket Telemetry System. In Proceedings of the 2022 Symposium on Internet of Things, Sao Paulo, Brazil, 24–28 October 2022; pp. 1–4. [Google Scholar] [CrossRef]
- EuroLaunch. REXUS User Manual. In Technical Report; EuroLaunch: London, UK, 2017. [Google Scholar]
- IEEE Standard 29148-2018; Systems and Software Engineering—Life Cycle Processes—Requirements Engineering. IEEE: New York, NY, USA, 2018. Available online: https://ieeexplore.ieee.org/document/8559686 (accessed on 10 September 2024).
- dos Santos, C.R.; Marques, J.C. A Requirements Specification Method: An Experience Report in Aerospace. In Proceedings of the WER, Shanghai, China, 14–18 December 2023. [Google Scholar]
- Viitanen, M.; Koivula, A.; Lemmetti, A.; Ylä-Outinen, A.; Vanne, J.; Hämäläinen, T.D. Kvazaar: Open-source HEVC/H. 265 encoder. In Proceedings of the 24th ACM international conference on Multimedia, Amsterdam, The Netherlands, 15–19 October 2016; pp. 1179–1182. [Google Scholar]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. In Proceedings of the Advances in Neural Information Processing Systems, Lake Tahoe, NV, USA, 3–6 December 2012; Volume 25. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015: 18th International Conference, Munich, Germany, 5–9 October 2015; Proceedings, Part III 18. Springer: Berlin, Germany, 2015; pp. 234–241. [Google Scholar]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 40, 834–848. [Google Scholar] [CrossRef] [PubMed]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788. [Google Scholar]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Ogneva, I.V.; Usik, M.A.; Biryukov, N.S.; Zhdankina, Y.S. Sperm motility of mice under simulated microgravity and hypergravity. Int. J. Mol. Sci. 2020, 21, 5054. [Google Scholar] [CrossRef]
- Ogneva, I.V.; Usik, M.A.; Burtseva, M.V.; Biryukov, N.S.; Zhdankina, Y.S.; Sychev, V.N.; Orlov, O.I. Drosophila melanogaster sperm under simulated microgravity and a hypomagnetic field: Motility and cell respiration. Int. J. Mol. Sci. 2020, 21, 5985. [Google Scholar] [CrossRef]
Phase | Description |
---|---|
Phase 0—mission analysis | the mission objectives and high-level requirements are established in this phase. The expected outcomes of the potential missions will be studied, focusing on the questions the experiment may aim to answer. This phase will further refine by the MGX user as they tailor the experiment to their specific needs. |
Phase A—feasibility | In this phase, the Concept of Operations (ConOps) will be established. Architectural studies and the selection of a viable architecture will be defined based on the high-level studies conducted in Phase 0. The concept of models (qualification, acceptance, etc., or protoflight) and methodologies for verifying the high-level requirements will be proposed. |
Phase B/C—design | In Phase B/C, the mission requirements, constraints, and specifications are refined to enable the detailed design and verification of the MGX. |
Phase D—manufacturing, assembly, integration, and testing | In this phase, with the design already approved, the manufacturing and verification of the MGX are completed. The MGX is now ready to be integrated with the rocket. |
Phase E/F—launching and mission closeout | In this phase, the MGX is integrated into the service module of the suborbital rocket and will be launched. When applicable, recovery. |
Experiment Title | Sensors | C | A | CM | DM |
---|---|---|---|---|---|
A student experiment to investigate the sloshing of magnetic liquids in microgravity, Romero-Calvo et al. [48]. |
| M | Yes | Yes | No |
The CFVib Experiment: Control of Fluids in Microgravity with Vibrations, Fernandez et al. [49]. |
| M | Yes | No | No |
Solidification of Eutectic Alloys in Microgravity, Toledo et al. [5,6]. |
| SO | No | No | No |
Experimental testing of mini heat pipes under microgravity conditions aboard a suborbital rocket, Paiva et al. [50,51]. |
| SO | Yes | Yes | No |
Properties of Wave Propagation in a Gel-type Belousov–Zhabothinsky Reaction under Micro-gravity, Hanke et al. [52]. |
| SO | Yes | No | No |
Rocket in situ observation of equatorial plasma irregularities in the region between E and F layers over Brazil, Savio Odriozola et al. [53] |
| SO | No | No | No |
HIFIRE: An international collaboration to advance the science and technology of Hypersonic Flight, Bowcutt et al. [54]. |
| H | No | No | No |
Propellant Mass Gauging in a Spherical Tank under Micro-Gravity Conditions Using Capacitance Plate Arrays and Machine Learning, Chowdhury et al. [55]. |
| M | No | No | Yes |
Control of growth interface shape during InGaSb growth by vertical gradient freezing under microgravity and optimization using machine learning, Ghritli et al. [56]. |
| M | No | No | Yes |
A pulsating heat pipe for space applications: Ground and microgravity experiments, Mangini et al. [57]. |
| SO | Yes | Yes | No |
Experimental Investigation of In-Tube Condensation in Microgravity, Azzolin et al. [58]. |
| SO | Yes | Yes | No |
Free Collisions in a Microgravity Many-Particle Experiment. I. Dust Aggregate Sticking at Low Velocities, Weidling et al. [59]. |
| M | Yes | Yes | No |
Microgravity experiments of fuel droplet evaporation in sub- and supercritical environments, Nomura et al. [60]. |
| DT | No | Yes | No |
Experimental Investigation of Single Bubble Nucleate Boiling in Microgravity, Nejati et al. [61]. |
| SO | No | Yes | No |
MEMS Microgravity Measurement Module with Nano-g/HzNoise Floor for Spaceborne Higher-Level Microgravity Scientific Experiment Applications, Wang et al. [62]. |
| SO | No | No | No |
Precise Measurement Method of Carrier Motion State in Microgravity Environment, Liu et al. [63]. |
| DT | No | Yes | No |
Design and Results of an Experiment to gather Data on the Motion of a Non-rigid Body in Microgravity, Blazejczyk et al. [64]. |
| DT | No | No | No |
Suborbital Payload Testing Aboard Level 3 Rocket Research Platform, Amberkar et al. [65]. |
| SO | No | No | No |
Propellant management in microgravity: further analysis of an experiment flown on REXUS-14, Strobino et al. [66]. |
| M | Yes | Yes | No |
SOAREX-8 Suborbital Experiments 2015—A New Paradigm for Small Spacecraft Communication, Stone et al. [67]. |
| M | No | No | No |
REQ-[ID] | Description |
---|---|
REQ-1 | The MGX shall be powered by a main power supply. |
REQ-2 | The main power supply shall provide 28 Volts ±4 Volts. |
REQ-3 | The main power supply shall provide 5 Ampere. |
REQ-4 | The main power reference shall be connected to the device case through a 100 KΩ path. |
REQ-5 | The MGX shall generate interval voltages. |
REQ-6 | The MGX shall generate an internal voltage of +3.3 Vdc. |
REQ-7 | The +3.3 Vdc shall be available through a D-Sub 15 power socket connector. |
REQ-8 | The +3.3 Vdc shall have the reference isolated from other references. |
REQ-9 | The MGX shall generate an internal voltage of +5 Vdc. |
REQ-10 | The +5 Vdc shall be available through a D-Sub 15 power socket connector. |
REQ-11 | The +5 Vdc shall has reference isolated from other references. |
REQ-12 | The MGX shall generate an internal voltage of +12 Vdc. |
REQ-13 | The +12 Vdc shall be available through a D-Sub 15 power socket connector. |
REQ-14 | The +12 Vdc shall have the reference isolated from other references. |
REQ-15 | The MGX shall contain one inertial measurement unit (IMU). |
REQ-16 | The IMU shall provide a gyroscope with a range of ±2000°/s. |
REQ-17 | The IMU shall provide an accelerometer ranging from ±16g. |
REQ-18 | The MGX shall contain two cameras. |
REQ-19 | The camera shall have a USB (Universal Serial Bus) interface. |
REQ-20 | The camera shall support 4K images. |
REQ-21 | The MGX shall contain one pressure sensor. |
REQ-22 | The pressure sensor shall range from 0 to 40 KPa. |
REQ-23 | The MGX shall contain one temperature sensor. |
REQ-24 | The MGX temperature sensor shall withstand temperatures ranging from −10 °C to 85 °C. |
REQ-25 | The MGX shall withstand a random vibration profile of 0.1 g²/Hz from 20 Hz to 2000 Hz, with 10 grms, in 3 axes. |
REQ-26 | The MGX shall withstand shocks of 40 g amplitude for 110 milliseconds, following a half-sine waveform. |
REQ-27 | The MGX shall withstand shocks of 40 g amplitude for 110 milliseconds, following a half-sine waveform. |
REQ-28 | The MGX shall not compromise the EMI/EMC vehicle networks. |
REQ-29 | The MGX shall provide 2 UART (Universal Asynchronous Receiver / Transmitter) ports. |
REQ-30 | The UART1 port shall adhere to the RS-232 standard. |
REQ-31 | The UART1 shall be available through a D-Sub 9 socket connector. |
REQ-32 | The UART2 port shall adhere to the RS-422 standard. |
REQ-33 | The UART2 shall be available through a D-Sub 9 socket connector. |
REQ-34 | The UARTs shall be isolated. |
REQ-35 | The UARTs baud rate shall be configured via software. |
REQ-36 | The MGX UARTs shall be programmable and capable of communicating at 9600 bps, 14,400 bps, 19,200 bps, 38,400 bps, 57,600 bps, and 115,200 bps. |
REQ-37 | The MGX shall provide 16 General Purpose Input/Output (GPIO). |
REQ-38 | The GPIOs shall be available through a D-Sub 25 socket connector. |
REQ-39 | The GPIOs shall operate at TTL (Transistor–transistor logic) levels. |
REQ-40 | The MGX shall provide 2 I2C port. |
REQ-41 | The I2C port shall be available through a D-Sub 9 pin connector. |
REQ-42 | The I2C shall operate up to 1 MHz |
REQ-43 | The MGX shall provide 12 analog channels. |
REQ-44 | The analog channels shall operate at 0–5 Vdc. |
REQ-45 | The analog channels shall be available through a D-Sub 25 pin connector. |
REQ-46 | The Analog channel sample rate shall be configured via software. |
REQ-47 | The MGX shall support SSD (solid-state drive) M.2 NVMe storage expansion. |
REQ-48 | The MGX shall record the collected data and video in non-volatile memory. |
REQ-49 | The non-volatile memory shall have the capacity of 500 G Byte. |
REQ-50 | The MGX shall operate in a temperature environment ranging from −40 °C to +75 °C. |
REQ-51 | When powered on, the MGX shall immediately begin operating according to its programmed sequence. |
REQ-52 | The MGX shall be developed using a high-performance computer (HPC) equipped with a GPU. |
REQ-53 | The MGX shall be capable of making autonomous decisions during flight. |
REQ-54 | The HPC (High-Performance Computer) shall support Machine learning frameworks. |
REQ-55 | The HPC (High-Performance Computer) vendor should provide a software development kit (SDK). |
REQ-56 | The MGX shall consist of two main modules: electronic processing and experimental modules. |
REQ-57 | The MGX electronic processing module dimension shall be 1U (10 cm × 10 cm × 10 cm). |
REQ-58 | The experiment module shall be developed by the experimenter, adhering to the rocket’s mechanical interface requirements. |
REQ-59 | The dimensions and shape of the experiment module must comply with the specified interface constraints to ensure proper integration with the rocket. |
REQ-60 | The MGX shall be four fixing points. |
REQ-61 | The fixing points shall support the M6 bolt. |
REQ-62 | The MGX shall be capable of connecting via Ethernet for ground tests. |
REQ-63 | The MGX shall collect data during System operation for instrument calibration purposes. |
REQ-64 | The MGX shall withstand random vibration levels of up to 6 grms. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moura, W.d.M.; dos Santos, C.R.; Freitas, M.J.d.S.; Pinto, A.C.; Simões, L.P.; Moraes, A. MicroGravity Explorer Kit (MGX): An Open-Source Platform for Accessible Space Science Experiments. Aerospace 2024, 11, 790. https://doi.org/10.3390/aerospace11100790
Moura WdM, dos Santos CR, Freitas MJdS, Pinto AC, Simões LP, Moraes A. MicroGravity Explorer Kit (MGX): An Open-Source Platform for Accessible Space Science Experiments. Aerospace. 2024; 11(10):790. https://doi.org/10.3390/aerospace11100790
Chicago/Turabian StyleMoura, Waldenê de Melo, Carlos Renato dos Santos, Moisés José dos Santos Freitas, Adriano Costa Pinto, Luciana Pereira Simões, and Alison Moraes. 2024. "MicroGravity Explorer Kit (MGX): An Open-Source Platform for Accessible Space Science Experiments" Aerospace 11, no. 10: 790. https://doi.org/10.3390/aerospace11100790
APA StyleMoura, W. d. M., dos Santos, C. R., Freitas, M. J. d. S., Pinto, A. C., Simões, L. P., & Moraes, A. (2024). MicroGravity Explorer Kit (MGX): An Open-Source Platform for Accessible Space Science Experiments. Aerospace, 11(10), 790. https://doi.org/10.3390/aerospace11100790