Pose-Constrained Control of Proximity Maneuvering for Tracking and Observing Noncooperative Targets with Unknown Acceleration
Abstract
:1. Introduction
2. Quaternions and Dual Quaternions
- Conjugation: and .
- Matrix generation: and , where .
- Dot product: .
- Circle product: .
- Scalar part: and .
- Vector part: and .
- Sign extraction: and , where is a sign function and .
- Function : and , where and .
- Jacobian matrix of function : .
- Jacobian matrix of function : .
3. Relative Kinematics and Dynamics of Proximity Maneuver Based on Dual Quaternion
3.1. Pose Representations Based on Unit Dual Quaternions
3.2. Coordinate Frame Definition
- (1)
- Earth-centered inertial frame
- (2)
- Service spacecraft body frame
- (3)
- Target spacecraft body frame
- (4)
- Desired frame
3.3. Kinematics Equations of Proximity Maneuver
3.4. Dynamics Equations of Proximity Maneuver
3.5. Unknown Integrated Disturbances
4. Design of ESO
5. Constraint Modeling
5.1. FOV Constraint Model
5.1.1. Geometric Constraints on Observation
5.1.2. Dual Quaternion Representation of FOV Constraint
- There exists the following:
5.2. Collision Avoidance Constraint Model
6. Control of Proximity Maneuver
6.1. Maneuver Tracking Objective
6.2. APF Design
6.3. Control Law Design
7. Numerical Simulations and Analyses
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wilde, M.; Clark, C.; Romano, M. Historical survey of kinematic and dynamic spacecraft simulators for laboratory experimentation of on-orbit proximity maneuvers. Prog. Aerosp. Sci. 2019, 110, 100552. [Google Scholar] [CrossRef]
- Wang, L.; Guo, Y.; Ma, G.; Zhang, H. Artificial potential function based spacecraft proximity maneuver 6-DOF control under multiple pyramid-type constraints. ISA Trans. 2022, 126, 316–325. [Google Scholar] [CrossRef] [PubMed]
- Li, W.J.; Cheng, D.Y.; Liu, X.G.; Wang, Y.B.; Shi, W.H.; Tang, Z.X.; Gao, F.; Zeng, F.M.; Chai, H.Y.; Luo, W.B.; et al. On-orbit service (OOS) of spacecraft: A review of engineering developments. Prog. Aerosp. Sci. 2019, 108, 32–120. [Google Scholar] [CrossRef]
- Guo, Y.; Zhang, D.; Li, A.J.; Song, S.; Wang, C.Q.; Liu, Z. Finite-time control for autonomous rendezvous and docking under safe constraint. Aerosp. Sci. Technol. 2021, 109, 106380. [Google Scholar] [CrossRef]
- Romano, M.; Friedman, D.A.; Shay, T.J. Laboratory experimentation of autonomous spacecraft approach and docking to a collaborative target. J. Spacecr. Rocket. 2007, 44, 164–173. [Google Scholar] [CrossRef]
- Zappulla, R.; Virgili-Llop, J.; Zagaris, C.; Park, H.; Romano, M. Dynamic air-bearing hardware-in-the-loop testbed to experimentally evaluate autonomous spacecraft proximity maneuvers. J. Spacecr. Rocket. 2017, 54, 825–839. [Google Scholar] [CrossRef]
- Yoshida, K. Engineering Test Satellite VII flight experiments for space robot dynamics and control: Theories on laboratory test beds ten years ago, now in orbit. Int. J. Robot. Res. 2003, 22, 321–335. [Google Scholar] [CrossRef]
- McCamish, S.B.; Romano, M.; Nolet, S.; Edwards, C.M.; Miller, D.W. Flight testing of multiple-spacecraft control on SPHERES during close-proximity operations. J. Spacecr. Rocket. 2009, 46, 1202–1213. [Google Scholar] [CrossRef]
- Dong, H.; Hu, Q.; Liu, Y.; Akella, M.R. Adaptive pose tracking control for spacecraft proximity operations under motion constraints. J. Guid. Control Dyn. 2019, 42, 2258–2271. [Google Scholar] [CrossRef]
- Zhang, Z.; Deng, L.; Feng, J.; Chang, L.; Li, D.; Qin, Y. A survey of precision formation relative state measurement technology for distributed spacecraft. Aerospace 2022, 9, 362. [Google Scholar] [CrossRef]
- Vela, C.; Fasano, G.; Opromolla, R. Pose determination of passively cooperative spacecraft in close proximity using a monocular camera and AruCo markers. Acta Astronaut. 2022, 201, 22–38. [Google Scholar] [CrossRef]
- Opromolla, R.; Fasano, G.; Rufino, G.; Grassi, M. A review of cooperative and uncooperative spacecraft pose determination techniques for close-proximity operations. Prog. Aerosp. Sci. 2017, 93, 53–72. [Google Scholar] [CrossRef]
- Wang, X.; Wang, Z.; Zhang, Y. Stereovision-based relative states and inertia parameter estimation of noncooperative spacecraft. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 2019, 233, 2489–2502. [Google Scholar] [CrossRef]
- Pasqualetto Cassinis, L.; Fonod, R.; Gill, E. Review of the robustness and applicability of monocular pose estimation systems for relative navigation with an uncooperative spacecraft. Prog. Aerosp. Sci. 2019, 110, 100548. [Google Scholar] [CrossRef]
- Pasqualetto Cassinis, L.; Menicucci, A.; Gill, E.; Ahrns, I.; Sanchez-Gestido, M. On-ground validation of a CNN-based monocular pose estimation system for uncooperative spacecraft: Bridging domain shift in rendezvous scenarios. Acta Astronaut. 2022, 196, 123–138. [Google Scholar] [CrossRef]
- Capuano, V.; Kim, K.; Harvard, A.; Chung, S.J. Monocular-based pose determination of uncooperative space objects. Acta Astronaut. 2020, 166, 493–506. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Y.; Xie, Y. Using consecutive point clouds for pose and motion estimation of tumbling non-cooperative target. Adv. Space Res. 2019, 63, 1576–1587. [Google Scholar] [CrossRef]
- Kang, G.; Zhang, Q.; Wu, J.; Zhang, H. Pose estimation of a non-cooperative spacecraft without the detection and recognition of point cloud features. Acta Astronaut. 2021, 179, 569–580. [Google Scholar] [CrossRef]
- Guo, W.; Hu, W.; Liu, C.; Lu, T. Pose initialization of uncooperative spacecraft by template matching with sparse point cloud. J. Guid. Control Dyn. 2021, 44, 1707–1720. [Google Scholar] [CrossRef]
- Pesce, V.; Lavagna, M.; Bevilacqua, R. Stereovision-based pose and inertia estimation of unknown and uncooperative space objects. Adv. Space Res. 2017, 59, 236–251. [Google Scholar] [CrossRef]
- Subbarao, K.; Welsh, S. Nonlinear control of motion synchronization for satellite proximity operations. J. Guid. Control Dyn. 2008, 31, 1284–1294. [Google Scholar] [CrossRef]
- Alex Pothen, A.; Crain, A.; Ulrich, S. Pose tracking control for spacecraft proximity operations using the Udwadia–Kalaba framework. J. Guid. Control Dyn. 2022, 45, 296–309. [Google Scholar]
- Di Mauro, G.; Schlotterer, M.; Theil, S.; Lavagna, M. Nonlinear control for proximity operations based on differential algebra. J. Guid. Control Dyn. 2015, 38, 2173–2187. [Google Scholar] [CrossRef]
- Sun, L.; Huo, W. Robust adaptive backstepping control for autonomous spacecraft proximity maneuvers. Int. J. Control Autom. Syst. 2016, 14, 753–762. [Google Scholar] [CrossRef]
- Gui, H.; de Ruiter, A.H.J. Adaptive fault-tolerant spacecraft pose tracking with control allocation. IEEE Trans. Control Syst. Technol. 2019, 27, 479–494. [Google Scholar]
- Wang, Y.; Liu, K.; Ji, H. Adaptive robust fault-tolerant control scheme for spacecraft proximity operations under external disturbances and input saturation. Nonlinear Dyn. 2022, 108, 207–222. [Google Scholar] [CrossRef]
- Lee, D. Nonlinear disturbance observer-based robust control of attitude tracking of rigid spacecraft. Nonlinear Dyn. 2017, 88, 1317–1328. [Google Scholar] [CrossRef]
- Fu, J.; Chen, L.; Zhang, D.; Zhang, J.; Shao, X. Disturbance observer-based prescribed performance predictive control for spacecraft on-orbit inspection. J. Guid. Control Dyn. 2022, 45, 1873–1889. [Google Scholar] [CrossRef]
- Dong, H.; Hu, Q.; Akella, M.R.; Mazenc, F. Partial Lyapunov strictification: Dual-quaternion-based observer for 6-DOF tracking control. IEEE Trans. Control Syst. Technol. 2019, 27, 2453–2469. [Google Scholar] [CrossRef]
- Sun, G.; Zhou, M.; Jiang, X. Non-cooperative spacecraft proximity control considering target behavior uncertainty. Astrodynamics 2022, 6, 399–411. [Google Scholar] [CrossRef]
- Zhang, L.; Xia, Y.; Shen, G.; Cui, B. Fixed-time attitude tracking control for spacecraft based on a fixed-time extended state observer. Sci. China Inf. Sci. 2021, 64, 212201. [Google Scholar] [CrossRef]
- Wang, K.; Meng, T.; Wang, W.; Song, R.; Jin, Z. Finite-time extended state observer based prescribed performance fault tolerance control for spacecraft proximity operations. Adv. Space Res. 2022, 70, 1270–1284. [Google Scholar] [CrossRef]
- Wang, X.; Wang, Z.; Zhang, Y. Model predictive control to autonomously approach a failed spacecraft. Int. J. Aerosp. Eng. 2018, 2018, 1–18. [Google Scholar] [CrossRef]
- Wang, X.; Li, Y.; Zhang, X.; Zhang, R.; Yang, D. Model predictive control for close-proximity maneuvering of spacecraft with adaptive convexification of collision avoidance constraints. Adv. Space Res. 2023, 71, 477–491. [Google Scholar] [CrossRef]
- Lee, K.; Park, C.; Eun, Y. Real-time collision avoidance maneuvers for spacecraft proximity operations via discrete-time Hamilton–Jacobi theory. Aerosp. Sci. Technol. 2018, 77, 688–695. [Google Scholar] [CrossRef]
- Li, Q.; Gao, D.; Sun, C.; Song, S.; Niu, Z.; Yang, Y. Prescribed performance-based robust inverse optimal control for spacecraft proximity operations with safety concern. Aerosp. Sci. Technol. 2023, 136, 108229. [Google Scholar] [CrossRef]
- Wang, Y.; Bai, Y.; Xing, J.; Radice, G.; Ni, Q.; Chen, X. Equal-collision-probability-curve method for safe spacecraft close-range proximity maneuvers. Adv. Space Res. 2018, 62, 2599–2619. [Google Scholar] [CrossRef]
- Ikeya, K.; Liu, K.; Girard, A.; Kolmanovsky, I. Learning reference governor for constrained spacecraft rendezvous and proximity maneuvering. J. Spacecr. Rocket. 2023, 60, 1127–1141. [Google Scholar] [CrossRef]
- Dong, H.; Hu, Q.; Akella, M.R. Dual-quaternion-based spacecraft autonomous rendezvous and docking under six-degree-of-freedom motion constraints. J. Guid. Control Dyn. 2018, 41, 1150–1162. [Google Scholar] [CrossRef]
- Yang, J.; Stoll, E. Adaptive sliding mode control for spacecraft proximity operations based on dual quaternions. J. Guid. Control Dyn. 2019, 42, 2356–2368. [Google Scholar] [CrossRef]
- Hamilton, W.R., XI. On quaternions; or on a new system of imaginaries in algebra. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1848, 33, 58–60. [Google Scholar] [CrossRef]
- Clifford. Preliminary sketch of biquaternions. Proc. Lond. Math. Soc. 1871, S1–S4, 381–395. [Google Scholar]
- Filipe, N. Nonlinear Pose Control and Estimation for Space Proximity Operations: An Approach Based on Dual Quaternions. Ph.D. Thesis, Georgia Institute of Technology, Atlanta, GA, USA, 2014. [Google Scholar]
- Sullivan, J.; Grimberg, S.; D’Amico, S. Comprehensive survey and assessment of spacecraft relative motion dynamics models. J. Guid. Control Dyn. 2017, 40, 1837–1859. [Google Scholar] [CrossRef]
- Moreno, J.A.; Osorio, M. A Lyapunov approach to second-order sliding mode controllers and observers. In Proceedings of the 2008 47th IEEE Conference on Decision and Control, Cancun, Mexico, 9–11 December 2008; pp. 2856–2861. [Google Scholar]
- Moreno, J.A. A linear framework for the robust stability analysis of a generalized super-twisting algorithm. In Proceedings of the 2009 6th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE), Toluca, México, 10–13 November 2009; pp. 1–6. [Google Scholar]
- Li, Q.; Yuan, J.; Zhang, B.; Wang, H. Artificial potential field based robust adaptive control for spacecraft rendezvous and docking under motion constraint. ISA Trans. 2019, 95, 173–184. [Google Scholar] [CrossRef]
- Zhou, H.; Dang, Z.; Zhang, Y.; Yuan, J. Collision-free control of a nano satellite in the vicinity of China Space Station using Lorentz augmented composite artificial potential field. Acta Astronaut. 2023, 203, 88–102. [Google Scholar] [CrossRef]
- Schaub, H.; Junkins, J.L. Gravitational potential field models. In Analytical Mechanics of Space Systems, 4th ed.; AIAA Education Series; American Institute of Aeronautics and Astronautics, Inc.: Washington, DC, USA, 2018; Chapter 11; pp. 621–646. [Google Scholar]
- Miller, S.; Walker, M.L.; Agolli, J.; Dankanich, J. Survey and performance evaluation of small-satellite propulsion technologies. J. Spacecr. Rocket. 2021, 58, 222–231. [Google Scholar] [CrossRef]
Orbital Element Parameters | Numerical Magnitude |
---|---|
Semi-major axis (km) | 6878.1366 |
Eccentricity (-) | 0.01454 |
Inclination (deg) | 45 |
Argument of periapsis (deg) | 90 |
Longitude of ascending node (deg) | 60 |
True anomaly at initial time (deg) | 0 |
Time Points | 3000 s | 4000 s | 5000 s |
---|---|---|---|
Errors of (-) | |||
Errors of () | |||
Errors of () | |||
Errors of () |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, M.; Zhang, Y.; Wang, X.; Fan, L. Pose-Constrained Control of Proximity Maneuvering for Tracking and Observing Noncooperative Targets with Unknown Acceleration. Aerospace 2024, 11, 828. https://doi.org/10.3390/aerospace11100828
Zheng M, Zhang Y, Wang X, Fan L. Pose-Constrained Control of Proximity Maneuvering for Tracking and Observing Noncooperative Targets with Unknown Acceleration. Aerospace. 2024; 11(10):828. https://doi.org/10.3390/aerospace11100828
Chicago/Turabian StyleZheng, Mingyue, Yulin Zhang, Xun Wang, and Li Fan. 2024. "Pose-Constrained Control of Proximity Maneuvering for Tracking and Observing Noncooperative Targets with Unknown Acceleration" Aerospace 11, no. 10: 828. https://doi.org/10.3390/aerospace11100828
APA StyleZheng, M., Zhang, Y., Wang, X., & Fan, L. (2024). Pose-Constrained Control of Proximity Maneuvering for Tracking and Observing Noncooperative Targets with Unknown Acceleration. Aerospace, 11(10), 828. https://doi.org/10.3390/aerospace11100828