The Maintenance of Orbital States in a Floating Partial Space Elevator Using the Reinforcement Learning Method †
Abstract
:1. Introduction
2. Mathematical Formulation
3. Maintenance of the Main Satellite’s Orbital States Using the RL Method
3.1. Problem Formation
3.2. RL-Based Mission Planning Method
4. Numerical Simulation and Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shi, G.; Zhu, Z.H. Cooperative game-based multi-objective optimization of cargo transportation with floating partial space elevator. Acta Astronaut. 2023, 205, 110–118. [Google Scholar] [CrossRef]
- Yang, G.; Shen, H.; Li, Q.; Wu, S.; Jiang, J. Orbit-attitude-structure-thermal coupled modelling method for large space structures in unified meshes. Appl. Math. Model. 2024, 135, 26–50. [Google Scholar] [CrossRef]
- Woo, P.; Misra, A.K. Energy considerations in the partial space elevator. Acta Astronaut. 2014, 99, 78–84. [Google Scholar] [CrossRef]
- Dixit, U.S.; Dwivedy, S.K.; Forward, T.W. Mechanical Sciences: The Way Forward; Springer: Heidelberg, Germany, 2020. [Google Scholar]
- Jiang, Y.; Lv, M.; Li, J. Station-keeping control design of double balloon system based on horizontal region constraints. Aerosp. Sci. Technol. 2020, 100, 105792. [Google Scholar] [CrossRef]
- Meng, J.; Zhang, L.; Li, J.; Lv, M. Dynamic modeling and simulation of tethered stratospheric satellite with thermal effects. Appl. Therm. Eng. 2017, 110, 181–189. [Google Scholar] [CrossRef]
- Nixon, A.; Knapman, J.; Wright, D.H. Space elevator tether materials: An overview of the current candidates. Acta Astronaut. 2023, 210, 483–487. [Google Scholar] [CrossRef]
- Jung, W.; Mazzoleni, A.P.; Chung, J. Nonlinear dynamic analysis of a three-body tethered satellite system with deployment/retrieval. Nonlinear Dyn. 2015, 82, 1127–1144. [Google Scholar] [CrossRef]
- Shi, G.; Zhu, Z.; Zhu, Z.H. Libration suppression of tethered space system with a moving climber in circular orbit. Nonlinear Dyn. 2017, 91, 923–937. [Google Scholar] [CrossRef]
- Kojima, H.; Fukatsu, K.; Trivailo, P.M. Mission-function control of tethered satellite/climber system. Acta Astronaut. 2015, 106, 24–32. [Google Scholar] [CrossRef]
- Li, G.; Zhu, Z.H.; Shi, G. A novel looped space tether transportation system with multiple climbers for high efficiency. Acta Astronaut. 2021, 179, 253–265. [Google Scholar] [CrossRef]
- Shi, G. A mission-based orbit keeping method of the partial space elevator. In Proceedings of the ASCEND 2021, Las Vegas, NV, USA, 15–17 November 2021; AIAA: Reston, VA, USA, 2021. [Google Scholar]
- Shi, G.; Zhu, Z.H. Libration-free cargo transfer of floating space elevator. Nonlinear Dyn. 2022, 110, 2263–2281. [Google Scholar] [CrossRef]
- Lorenzini, E.C.; Cosmo, M.; Vetrella, S.; Moccia, A. Dynamics and control of the tether elevator/crawler system. J. Guid. Control Dyn. 1989, 12, 404–411. [Google Scholar] [CrossRef]
- Misra, A.K.; Amier, Z.; Modi, V.J. Attidude dynamics of three-body tethered systems. Acta Astronaut. 1988, 17, 1059–1068. [Google Scholar] [CrossRef]
- Williams, P. Dynamic multibody modeling for tethered space elevators. Acta Astronaut. 2009, 65, 399–422. [Google Scholar] [CrossRef]
- Cohen, S.S.; Misra, A.K. The effect of climber transit on the space elevator dynamics. Acta Astronaut. 2009, 64, 538–553. [Google Scholar] [CrossRef]
- Woo, P.; Misra, A.K. Dynamics of a partial space elevator with multiple climbers. Acta Astronaut. 2010, 67, 753–763. [Google Scholar] [CrossRef]
- Shi, G.; Zhu, Z.; Zhu, Z.H. Dynamics and control of three-body tethered system in large elliptic orbits. Acta Astronaut. 2018, 144, 397–404. [Google Scholar] [CrossRef]
- Yu, B.S.; Ji, K.; Wei, Z.T.; Jin, D.P. In-plane global dynamics and ground experiment of a linear tethered formation with three satellites. Nonlinear Dyn. 2022, 108, 3247–3278. [Google Scholar] [CrossRef]
- Shi, G.; Li, G.; Zhu, Z.; Zhu, Z.H. A virtual experiment for partial space elevator using a novel high-fidelity FE model. Nonlinear Dyn. 2018, 95, 2717–2727. [Google Scholar] [CrossRef]
- Li, G.; Shi, G.; Zhu, Z.H. Three-Dimensional High-Fidelity Dynamic Modeling of Tether Transportation System with Multiple Climbers. J. Guid. Control Dyn. 2019, 42, 1797–1811. [Google Scholar] [CrossRef]
- Li, X.; Sun, G.; Xue, C. Fractional-order deployment control of space tethered satellite via adaptive super-twisting sliding mode. Aerosp. Sci. Technol. 2022, 121, 107390. [Google Scholar] [CrossRef]
- Zhang, F.; Huang, P. Releasing Dynamics and Stability Control of Maneuverable Tethered Space Net. IEEE/ASME Trans. Mechatron. 2017, 22, 983–993. [Google Scholar] [CrossRef]
- Wen, S.; Zhang, F.; Shen, G.; Huang, P. Smooth and Stable Deployment Control of Tether Satellite System using Nonlinear Model Predictive Control With Actuator Constraints. IEEE Trans. Aerosp. Electron. Syst. 2024, 1–10. [Google Scholar] [CrossRef]
- Shi, G.; Zhu, Z.H. Prescribed performance based dual-loop control strategy for configuration keeping of partial space elevator in cargo transportation. Acta Astronaut. 2021, 189, 241–249. [Google Scholar] [CrossRef]
- Williams, P.; Ockels, W. Climber motion optimization for the tethered space elevator. Acta Astronaut. 2010, 66, 1458–1467. [Google Scholar] [CrossRef]
- Wen, H.; Zhu, Z.H.; Jin, D.; Hu, H. Tension control of space tether via online quasi-linearization iterations. Adv. Space Res. 2016, 57, 754–763. [Google Scholar] [CrossRef]
- Shi, G.; Zhu, Z.; Zhu, Z.H. Parallel Optimization of Trajectory Planning and Tracking for Three-body Tethered Space system. IEEE/ASME Trans. Mechatron. 2019, 24, 240–247. [Google Scholar] [CrossRef]
Parameters | Values |
---|---|
Orbital radius of the main satellite, r (m) | 7.1 × 106 |
Initial True anomaly angular, (rad) | 0 |
Mass of the main satellite (net weight), M (kg) | 50,000 |
Mass of climber (net weight), m1 (kg) | 100 |
Mass of the payload (kg) | 400 |
Mass of end body, m2 (kg) | 1000 |
Fixed total tether length, L0 (m) | 2 × 104 |
Initial libration angle and angular velocity, (, ) | (0, 0) |
Initial libration angle and angular velocity, (, ) | (0, 0) |
Initial distance between the climber and the main satellite, L1 (m) | 19,500 |
Reward function parameter, λ | 100 |
Adaptable average orbital radius changing magnitude (m) | 100 |
Parameters | Values |
---|---|
Learning rate | 0.01 |
Gradient threshold | inf |
Discount factor | 0.99 |
Batch size | 100 |
Experience buffer length | 1000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, W.; Yang, X.; Shi, G. The Maintenance of Orbital States in a Floating Partial Space Elevator Using the Reinforcement Learning Method. Aerospace 2024, 11, 855. https://doi.org/10.3390/aerospace11100855
Xu W, Yang X, Shi G. The Maintenance of Orbital States in a Floating Partial Space Elevator Using the Reinforcement Learning Method. Aerospace. 2024; 11(10):855. https://doi.org/10.3390/aerospace11100855
Chicago/Turabian StyleXu, Weili, Xuerong Yang, and Gefei Shi. 2024. "The Maintenance of Orbital States in a Floating Partial Space Elevator Using the Reinforcement Learning Method" Aerospace 11, no. 10: 855. https://doi.org/10.3390/aerospace11100855
APA StyleXu, W., Yang, X., & Shi, G. (2024). The Maintenance of Orbital States in a Floating Partial Space Elevator Using the Reinforcement Learning Method. Aerospace, 11(10), 855. https://doi.org/10.3390/aerospace11100855