High-Resolution CAD-Based Shape Parametrisation of a U-Bend Channel
Abstract
:1. Introduction
2. Shape Parametrisation Approaches
2.1. Gradient-Free Approaches
2.2. Gradient-Based Approaches
2.3. CAD-Free vs. CAD-Based Parametrisation Approaches
3. Parametrisation Based on the Boundary Representation
3.1. Constraint Formulation
3.2. Constraint Recovery
4. Gradient-Based One-Shot Aerodynamic Shape Optimisation
4.1. Computation of Total Sensitivity with Adjoint CAD Sensitivity
4.2. Solving the KKT System
5. Flow Solver and Gradient Validation
5.1. Case Description and Objective Function
5.2. Flow and Adjoint Solver Mgopt
5.3. Mesh Convergence Study
5.4. CFD Solver Validation
5.5. Gradient Verification of Differentiated NSPCC
Ad Code vs. Complex Step Derivative
6. Effect of Choice of Design Space
6.1. Shape Parametrisation Using NURBS
6.2. Physical Mechanisms of Total Pressure Loss Reduction
6.3. Shape Optimisation
6.4. Flowfield of the Optimised Geometry
6.5. Off-Design Performance
6.6. Computational Time
7. Conclusions and Future Work
- Local shape control with orthogonal modes: The local support of B-Splines enables us to concentrate shape modes to deform only local areas. NSPCC computes an orthogonal basis for this design space, thus ensuring convergence of the optimisation in the case of very fine control nets as well.
- Smoothness: The B-Spline surfaces are smooth by construction up to the desired level of differentiability.
- Efficient constraint handling: Geometric constraints, such geometric continuity across NURBS patch interfaces ( and ) or thickness, curvature and box constraints can be imposed using the test point approach of NSPCC and are included in the orthogonalisation of the basis for the design space.
- Exact and Efficient CAD sensitivities: The NSPCC CAD kernel is differentiated using source transformation tool TAPENADE providing exact CAD sensitivities regardless of the local scaling of the geometry. The CAD kernel has been also differentiated in reverse mode, enabling it to compute the complete sensitivity of the objective function w.r.t. the design parameters in a single calculation, irrespective of the size of the design space.
- Portability: The NSPCC approach preserves the topology of the CAD model and consistently updates the parameters of the model in the design loop. The optimal shape is then available as a CAD geometry to support meshing for further multi-disciplinary analyses, but also to serve as an exact datum surface for multi-disciplinary coupling.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AD | Algorithmic Differentiation |
BFGS | Broyden–Fletcher–GoldFarb–Shanno Quasi-Newton method |
BRep | Boundary Representation |
CAD | Computer-Aided Design |
CSD | Complex Step Derivative |
DoE | Design of Experiments |
FD | Finite Difference |
FFD | Free Form Deformation |
IDW | Inverse Distance Weighting mesh morphing |
KKT | Karush–Kahn–Tucker |
LES | Large Eddy Simulation |
NSPCC | NURBS-based Parametrisation with Complex Constraints |
NURBS | Non-Uniform Rational B-Splines |
RANS | Reynolds-Averaged Navier–Stokes |
RBF | Radial Basis Function |
RSM | Response Surface Method |
SD | Steepest Descent |
SVD | Singular Value Decomposition |
References
- Yu, Y.; Lyu, Z.; Xu, Z.; Martins, J.R. On the influence of optimization algorithm and initial design on wing aerodynamic shape optimization. Aerosp. Sci. Technol. 2018, 75, 183–199. [Google Scholar] [CrossRef]
- Jameson, A. Optimum aerodynamic design using CFD and control theory. AIAA Pap. 1995, 1729, 124–131. [Google Scholar]
- Schmidt, S.; Ilic, C.; Gauger, N.; Schulz, V. Shape Gradients and Their Smoothness for Practical Aerodynamic Design Optimization; DFG SFB 1253 Preprint-Number SPP1253-10-03; Universität Erlangen: Erlangen, Germany, 2008. [Google Scholar]
- Hojjat, M.; Stavropoulou, E.; Bletzinger, K.U. The Vertex Morphing method for node-based shape optimization. Comput. Methods Appl. Mech. Eng. 2014, 268, 494–513. [Google Scholar] [CrossRef]
- Jaworski, A.; Müller, J.D. Toward modular multigrid design optimisation. In Proceedings of the Lecture Notes in Computational Science and Engineering; Bischof, C., Utke, J., Eds.; Springer: New York, NY, USA, 2008; Volume 64, pp. 281–291. [Google Scholar]
- Coletti, F.; Verstraete, T.; Bulle, J.; Van der Wielen, T.; Van den Berge, N.; Arts, T. Optimization of a U-Bend for Minimal Pressure Loss in Internal Cooling Channels-Part II: Experimental Validation. J. Turbomach. 2013, 135, 051016. [Google Scholar] [CrossRef]
- Verstraete, T.; Coletti, F.; Bulle, J.; Vanderwielen, T.; Arts, T. Optimization of a U-Bend for Minimal Pressure Loss in Internal Cooling Channels Part I: Numerical Method. J. Turbomach. 2013, 135, 051015. [Google Scholar] [CrossRef]
- Namgoong, H.; Ireland, P.; Son, C. Optimisation of a 180° U-shaped bend shape for a turbine blade cooling passage leading to a pressure loss coefficient of approximately 0.6. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 2016, 230, 1371–1384. [Google Scholar] [CrossRef]
- Alessi, G.; Verstraete, T.; Koloszar, L.; van Beeck, J.P.A.J. Comparison of large eddy simulation and Reynolds-averaged Navier–Stokes evaluations with experimental tests on U-bend duct geometry. Proc. Inst. Mech. Eng. Part A J. Power Energy 2020, 234, 315–322. [Google Scholar] [CrossRef]
- Kiyici, F.; Yilmazturk, S.; Arican, E.; Costa, E.; Porziani, S. U-turn optimization of a ribbed turbine blade cooling channel using a meshless optimization technique. In Proceedings of the 55th AIAA Aerospace Sciences Meeting, Grapevine, TX, USA, 9–13 January 2017; p. 1534. [Google Scholar]
- Willeke, S.; Verstraete, T. Adjoint Optimization of an Internal Cooling Channel U-Bend. In Proceedings of the ASME Turbo Expo 2015: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, Montreal, QC, Canada, 15–19 June 2015. [Google Scholar]
- He, P.; Mader, C.A.; Martins, J.R.; Maki, K.J. Aerothermal optimization of a ribbed U-bend cooling channel using the adjoint method. Int. J. Heat Mass Transf. 2019, 140, 152–172. [Google Scholar] [CrossRef]
- Verstraete, T.; Müller, L.; Müller, J.D. Adjoint-based design optimisation of an internal cooling channel U-bend for minimised pressure losses. Int. J. Turbomach. Propuls. Power 2017, 2, 10. [Google Scholar] [CrossRef]
- Kim, C.; Son, C. Rapid design approach for U-bend of a turbine serpentine cooling passage. Aerosp. Sci. Technol. 2019, 92, 417–428. [Google Scholar] [CrossRef]
- Alessi, G.; Verstraete, T.; Koloszar, L.; Blocken, B.; van Beeck, J. Adjoint shape optimization coupled with LES-adapted RANS of a U-bend duct for pressure loss reduction. Comput. Fluids 2021, 228, 105057. [Google Scholar] [CrossRef]
- Robinson, T.; Armstrong, C.; Chua, H.; Othmer, C.; Grahs, T. Optimizing Parameterized CAD Geometries Using Sensitivities Based on Adjoint Functions. Comput.-Aided Des. Appl. 2012, 9, 253–268. [Google Scholar] [CrossRef]
- Agarwal, D.; Christos, K.; Robinson, T.T.; Armstrong, C.G. Using Parametric Effectiveness for Efficient CAD-Based Adjoint Optimization. Comput. Aided Des. Appl. 2019, 16, 703–719. [Google Scholar] [CrossRef]
- Dannenhoffer, J.; Haimes, R. Design sensitivity calculations directly on CAD-based geometry. In Proceedings of the 53rd AIAA Aerospace Sciences Meeting, Kissimmee, FL, USA, 5–9 January 2015; p. 1370. [Google Scholar]
- Auriemma, S. Applications of differentiated CAD kernel in gradient-based aerodynamic shape optimisation. In Proceedings of the 2018 Joint Propulsion Conference, Cincinnati, OH, USA, 9–11 July 2018; p. 4828. [Google Scholar]
- Banović, M.; Mykhaskiv, O.; Auriemma, S.; Walther, A.; Legrand, H.; Müller, J.D. Algorithmic differentiation of the Open CASCADE Technology CAD kernel and its coupling with an adjoint CFD solver. Optim. Methods Softw. 2018, 33, 813–828. [Google Scholar] [CrossRef]
- Mueller, J.; Banovic, M.; Auriemma, S.; Mohanamuraly, P.; Walther, A.; Legrand, H. NURBS-based and Parametric-based Shape Optimisation with differentiated CAD Kernel. Comput.-Aided Des. Appl. 2018, 15, 916–926. [Google Scholar]
- He, P.; Mader, C.A.; Martins, J.; Maki, K. Aerothermal optimization of internal cooling passages using a discrete adjoint method. In Proceedings of the 2018 Joint Thermophysics and Heat Transfer Conference, Atlanta, GA, USA, 25–29 June 2018; p. 4080. [Google Scholar]
- Jesudasan, R.; Zhang, X.; Mueller, J.D. Adjoint optimisation of internal turbine cooling channel using NURBS-based automatic and adaptive parametrisation method. In Proceedings of the ASME 2017 Gas Turbine India Conference, American Society of Mechanical Engineers, Bangalore, India, 7–8 December 2017; p. V001T02A009. [Google Scholar]
- Müller, J.D.; Zhang, X.; Akbarzadeh, S.; Wang, Y. Geometric continuity constraints of automatically derived parametrisations in CAD-based shape optimisation. Int. J. Comput. Fluid Dyn. 2019, 33, 272–288. [Google Scholar] [CrossRef]
- Hascoët, L.; Pascual, V. The Tapenade Automatic Differentiation tool: Principles, Model, and Specification. ACM Trans. Math. Softw. 2013, 39, 1–43. [Google Scholar] [CrossRef]
- Xu, S.; Jahn, W.; Müller, J.D. CAD-based shape optimisation with CFD using a discrete adjoint. Int. J. Numer. Methods Fluids 2013, 74, 153–168. [Google Scholar] [CrossRef]
- Piegl, L.; Tiller, W. The NURBS Book; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Mueller, J.D.; Hueckelheim, J.; Mykhaskiv, O. STAMPS: A finite-volume solver framework for adjoint codes derived with source-transformation AD. In Proceedings of the 2018 Multidisciplinary Analysis and Optimization Conference, Atlanta, GA, USA, 25–29 June 2018; p. 2928. [Google Scholar]
- Gugala, M. Output-Based Mesh Adaptation Using Geometric Multi-Grid for Error Estimation. Ph.D. Thesis, School of Engineering and Materials Science, Queen Mary University of London, London, UK, 2018. [Google Scholar]
- Jaworski, A.; Müller, J.D.; Rokicki, J. One-shot optimisation with grid adaptation using adjoint sensitivities. In Proceedings of the ECCOMAS 2012, Vienna, Austria, 10–14 September 2012; pp. 3685–3693. [Google Scholar]
- Verstraete, T. The VKI U-Bend Optimization Test Case; Technical Report; The von Karman Institute for Fluid Dynamics: Sint-Genesius-Rode, Belgium, 2016. [Google Scholar]
- Xu, S.; Radford, D.; Meyer, M.; Müller, J.D. Stabilisation of discrete steady adjoint solvers. J. Comput. Phys. 2015, 299, 175–195. [Google Scholar] [CrossRef]
- Forsythe, N. A Partitioned Approach to Fluid-Structure Interaction for Artificial Heart Valves. Ph.D. Thesis, School of Mechanical and Aerospace Engineering, Queen’s University Belfast, Belfast, UK, 2006. [Google Scholar]
- McHale, M.; Friedman, J.; Karian, J. Standard for Verification and Validation in Computational Fluid Dynamics and Heat Transfer; The American Society of Mechanical Engineers, ASME V&V: New York, NY, USA, 2009; pp. 20–2009. [Google Scholar]
- Squire, W.; Trapp, G. Using Complex Variables to Estimate Derivatives of Real Functions. SIAM-Rev. 1998, 10, 110–112. [Google Scholar] [CrossRef]
- Cusdin, P. Automatic Sensitivity Code for Computational Fluid Dynamics. Ph.D. Thesis, School of Aeronautical Engineering, Queen’s University Belfast, Belfast, UK, 2005. [Google Scholar]
- Martins, J.R.; Sturdza, P.; Alonso, J.J. The complex-step derivative approximation. ACM Trans. Math. Softw. (TOMS) 2003, 29, 245–262. [Google Scholar] [CrossRef]
- Mao, X.; Kikukawa, M.; Fujita, N.; Imamiya, A. Line integral convolution for 3D surfaces. In Visualization in Scientific Computing’97, Proceedings of the Eurographics Workshop, Boulogne-sur-Mer, France, 28–30 April 1997; Springer: Berlin/Heidelberg, Germany, 1997; pp. 57–69. [Google Scholar]
- Luo, J.; Razinsky, E.H. Analysis of turbulent flow in 180 deg turning ducts with and without guide vanes. J. Turbomach. 2009, 131, 021011. [Google Scholar] [CrossRef]
- Lambe, A.B.; Martins, J.R. Extensions to the design structure matrix for the description of multidisciplinary design, analysis, and optimization processes. Struct. Multidiscip. Optim. 2012, 46, 273–284. [Google Scholar] [CrossRef]
- Triep, M.; Hess, D.; Chaves, H.; Brücker, C.; Balmert, A.; Westhoff, G.; Bleckmann, H. 3D flow in the venom channel of a spitting cobra: Do the ridges in the fangs act as fluid guide vanes? PLoS ONE 2013, 8, e61548. [Google Scholar] [CrossRef] [PubMed]
- Mykhaskiv, O.; Mohanamuraly, P.; Mueller, J.D.; Xu, S.; Timme, S. CAD-based shape optimisation of the NASA CRM wing-body intersection using differentiated CAD-kernel. In Proceedings of the 35th AIAA Applied Aerodynamics Conference, Denver, CO, USA, 5–9 June 2017; p. 4080. [Google Scholar]
Reference | Dimension | Objective Function | Reynolds Number | Parametrisation Method | No. of Design Variables | Optimisation Method |
---|---|---|---|---|---|---|
Verstraete et al. [7] | 2D | Pressure loss | Bezier curves + DoE | 26 | RANS + Kriging + Differential Evolution | |
Namgoong et al. [8] | 3D | Pressure loss | Spline curves + DoE | 24 | RANS + Kriging + Genetic Algorithm | |
Verstraete et al. [13] | 3D | Pressure loss | Tri-variate B-splines | 540 | RANS + adjoint | |
He et al. [22] | 3D with and without ribs | Pressure loss + heat transfer | FFD | 113 without ribs 146 with ribs | RANS + adjoint | |
Banovic et al. [20] | 3D | Pressure loss | Parametric CAD | 252 | RANS + adjoint | |
Jesudasan et al. [23] | 3D | Pressure loss | Adaptive NURBS | 1008 | RANS + adjoint | |
Kiyici et al. [10] | 3D with ribs | Pressure loss + heat transfer | RBF Mesh Morphing + DoE | - | RANS + RSM + Genetic Algorithm | |
Kim et al. [14] | 3D | Pressure loss | Topology optimisation | - | RANS + adjoint | |
Alessi et al. [15] | 3D with deformation alone | Pressure loss | Node-based | - | LES + adjoint |
Level | Dimension | Reynolds Number | Total No. of Free Control Points (N) | Size of the Design Space | Percentage Drop in Total Pressure Loss |
---|---|---|---|---|---|
L1 | 3-D | 192 | 442 | −25.34% | |
L2 | 3-D | 432 | 1082 | −26.67% | |
L3 | 3-D | 576 | 2100 | −27.52% |
Computation | Percentage over Total Time | ||
---|---|---|---|
L1 | L2 | L3 | |
Primal | 44.99 | 44.87 | 44.74 |
Adjoint | 54.75 | 54.59 | 54.43 |
Surface Mesh Mapping | 0.16 | 0.22 | 0.33 |
SVD null space | 0.05 | 0.22 | 0.34 |
CAD perturbation | 0.01 | 0.01 | 0.02 |
Constraint recovery | 0.02 | 0.05 | 0.11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jesudasan, R.; Müeller, J.-D. High-Resolution CAD-Based Shape Parametrisation of a U-Bend Channel. Aerospace 2024, 11, 663. https://doi.org/10.3390/aerospace11080663
Jesudasan R, Müeller J-D. High-Resolution CAD-Based Shape Parametrisation of a U-Bend Channel. Aerospace. 2024; 11(8):663. https://doi.org/10.3390/aerospace11080663
Chicago/Turabian StyleJesudasan, Rejish, and Jens-Dominik Müeller. 2024. "High-Resolution CAD-Based Shape Parametrisation of a U-Bend Channel" Aerospace 11, no. 8: 663. https://doi.org/10.3390/aerospace11080663
APA StyleJesudasan, R., & Müeller, J. -D. (2024). High-Resolution CAD-Based Shape Parametrisation of a U-Bend Channel. Aerospace, 11(8), 663. https://doi.org/10.3390/aerospace11080663