Quantitative Clarification of Stable Ignition Region for HKP110 Green Hypergolic Bipropellant
Abstract
:1. Introduction
2. Single-Drop Experiment
2.1. Experimental Apparatus and Test Conditions
2.1.1. Propellants
2.1.2. Single-Drop Test Apparatus
2.1.3. Test Conditions of Drop Test
2.2. Results
2.3. Discussions
3. Impinging-Jet Experiment
3.1. Experimental Apparatus and Test Conditions
3.1.1. Propellants
3.1.2. Injector and Chamber
3.1.3. Impinging-Jet Test System
3.1.4. Test Conditions
3.2. Results
3.2.1. Observed Hypergolic Ignition Phenomena in Chamber
3.2.2. Hard Start Phenomena
3.3. Discussion
3.3.1. Cause of Hard Start Phenomena
3.3.2. Region of Stable Ignition
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
GN2 | Gas nitrogen |
H2O2 | Hydrogen peroxide |
MAPA | 3-methylaminopropylamine |
MMH | Monomethylhydrazine |
NAWCWD | Naval air warfare center weapons division |
NTO | Nitrogen tetroxide |
SCAPE | Self-contained atmospheric protective ensemble suits |
SVHC | Substance of very high concern |
A | Cross-sectional area of orifice (m2) |
Cd | Discharge coefficient |
Isp | Specific impulse (s) |
MR | Mixture ratio (oxidizer to fuel mass ratio) |
Pif | Injector pressure (fuel line) (MPaG) |
Pio | Injector pressure (oxidizer line) (MPaG) |
Ptf | Fuel tank pressure (MPaG) |
Pto | Oxidizer tank pressure (MPaG) |
R2 | Coefficient of determination |
Differential pressure (MPa) | |
Density (kg/m3) |
References
- Rohr, T.; Nikulainen, M. Impact of REACH Legislation on European Space Programs. In Proceedings of the International Workshop on Environment and Alternative Energy, Madrid, Spain, 22 April 2015. [Google Scholar]
- Rusek, J.J.; Anderson, N.; Lormand, B.M.; Purcell, N.L. Non-Toxic Hypergolic Miscible Bipropellant. US Patent 5,932,837 B2, 3 August 1999. [Google Scholar]
- Lormand, B.M. Non-Toxic Hypergolic Miscible Fuel with Stable Storage Characteristics. US Patent 6,419,771 B1, 16 July 2002. [Google Scholar]
- Diede, A. Reduced Toxicity Hypergolic Bipropellant Fuels. US Patent 6,695,938 B2, 24 February 2004. [Google Scholar]
- Palmer, R.K.; Rusek, J.J. Low toxicity reactive hypergolic fuels for use with hydrogen peroxide. In Proceedings of the 2nd International Conference on Green Propellants for Space Propulsion, Sardinia, Italy, 7–8 June 2004; pp. 199–204. [Google Scholar]
- Funk, J.E.; Heister, S.D. Development Testing of Non-Toxic Storable Hypergolic Liquid Propellants. In Proceedings of the 35th Joint Propulsion Conference & Exhibit, Los Angeles, CA, USA, 20–24 June 1999. [Google Scholar]
- Pourpoint, T.; Anderson, W.E. Hypergolic Reaction Mechanisms of Catalytically Promoted Fuels with Rocket Grade Hydrogen Peroxide. Combust. Sci. Technol. 2007, 179, 2107–2133. [Google Scholar] [CrossRef]
- Mahakali, R.; Kuipers, F.; Yan, A.; Anderson, W.; Pourpoint, T. Development of Reduced Toxicity Hypergolic Propellants. In Proceedings of the 47th AIAA/SAE/ASEE Joint Propulsion Conference, San Diego, CA, USA, 31 July–3 August 2011. [Google Scholar]
- Florczuk, W.; Rarata, G. Assessment of Various Fuel Additives for Reliable Hypergolic Ignition with 98% HTP. In Proceedings of the 66th International Astronautical Congress, Jerusalem, Israel, 12–16 October 2015. [Google Scholar]
- Kang, H.; Jang, D.; Kwon, S. Demonstration of 500N Scale Bipropellant Thruster Using Non-Toxic Hypergolic Fuel and Hydrogen Peroxide. Aerosp. Sci. Technol. 2016, 49, 209–214. [Google Scholar] [CrossRef]
- Kang, H.; Kwon, S. Green hypergolic combination Diethylenetriamine based fuel and hydrogen peroxide. Acta Astronaut. 2017, 137, 25–30. [Google Scholar] [CrossRef]
- Austin, B.L.; Heister, S.D.; Anderson, W.E. Characterization of Pintle Engine Performance for Nontoxic Hypergolic Bipropellants. J. Propuls. Power 2005, 21, 627–635. [Google Scholar] [CrossRef]
- Hatai, K.; Ikeda, H. Research on Fuel Selection for Reduced-Toxicity Hypergolic Bipropellant. J. Jpn. Soc. Aeronaut. Space Sci. 2019, 67, 174–180. (In Japanese) [Google Scholar] [CrossRef]
- Hatai, K.; Nagata, T.; Ikeda, H. Research on Ignition Property of Reduced-Toxicity Hypergolic Bipropellant. J. Jpn. Soc. Aeronaut. Space Sci. 2021, 69, 105–112. (In Japanese) [Google Scholar] [CrossRef]
- Weiss, H.G.; Johnson, B.; Fisher, H.D.; Gerstein, M. Modifications of the Hydrazine-Nitrogen Tetroxide Ignition Delay. AIAA J. 1964, 2, 2222–2223. [Google Scholar] [CrossRef]
- Brief Profile of 3-Aminopropylmethylamine, European Chemical Agency. Available online: https://echa.europa.eu/brief-profile/-/briefprofile/110.025.950 (accessed on 15 December 2021).
- Bingham, E.; Cohrssen, B. Patty’s Toxicology, 6th ed.; John Wiley & Sons, Inc: New York, NY, USA, 2012; p. 875. [Google Scholar]
- Gordon, S.; McBride, B. Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications; NASA RP-1311: Washington, DC, USA, 1994. [Google Scholar]
- MIL-PRF-16005F, Performance Specification–Propellant, Hydrogen Peroxide. Available online: https://www.hydrogen-peroxide.us/chemical-specifications/MIL-PRF-16005F_Rocket_Propellant_Hydrogen_Peroxide.pdf (accessed on 1 August 2003).
- Schumb, W.C.; Satterfield, C.N.; Wentworth, R.L. Hydrogen Peroxide; Reinhold Publishing Corporation: New York, NY, USA, 1955; pp. 194–198. [Google Scholar]
- Rasband, W.S.; ImageJ, U.S.; National Institute of Health. Bethesda: Maryland, USA, 1997–2012. Available online: https://imagej.nih.gov/ij/ (accessed on 1 February 2022).
HKP110 | (Ref.) MMH | |
---|---|---|
Composition | 3-methylaminopropylamine (MAPA) with 10 wt% of sodium borohydride dissolved | - |
Toxicity | (MAPA [16]) LD50 (oral): 982 mg/kg LD50 (dermal): 2293.6 mg/kg LC50 (inhalation): 11.1 mg/L/4 h | (MMH [17]) LD50 (oral): 32 mg/kg LD50 (dermal): 93 mg/kg LC50 (inhalation): 0.14 mg/L/4 h |
Hypergolicity | hypergolic with H2O2 | hypergolic with NTO |
Theoretical Isp | 326.1 s with 98 wt% H2O2 (*) | 331.6 s with NTO (*) |
Ignition delay | ~2 ms with 98 wt% H2O2 | 1~3 ms with NTO |
Test No. | Amount of Fuel (HKP110) | Amount of Oxidizer (H2O2) | Corresponding MR | Number of Tests |
---|---|---|---|---|
1 | 10 μL | 30 μL | 4.9 | 5 |
2 | 10 μL | 50 μL | 8.2 | 5 |
3 | 10 μL | 100 μL | 16.4 | 5 |
4 | 10 μL | 150 μL | 24.7 | 5 |
Item | Design |
---|---|
Chamber inner diameter | 7.5 mm |
Chamber length | 88 mm |
Chamber material | Quartz glass |
Throat | N/A |
Nozzle | N/A |
Item | Design |
---|---|
Impinging pattern | 2-on-1 triplet |
Hole diameter (oxidizer) | 0.36 mm × 2 |
Hole diameter (fuel) | 0.25 mm × 1 |
Impinging angle | 30° at half apex |
Film cooling | N/A |
R2 | |||
---|---|---|---|
Fuel | 1.059 | 0.669 | 0.999 |
Oxidizer | 6.427 | 0.446 | 0.995 |
Item | Value | |
---|---|---|
Ptf | 0.86 MPaG | 0.95 MPaG |
Pto | 0.70 MPaG | 0.70 MPaG |
Injection sequence | Fuel lead: 50, 100, 150, 200, 250 ms Oxidizer lead: 0, 50 ms | Fuel lead: 50, 100, 150, 200, 250 ms Oxidizer lead: N/A |
Firing duration | 300 ms (Excluding lead injection) | |
Environment | 12~18 °C in the atmosphere |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hatai, K.; Nagata, T. Quantitative Clarification of Stable Ignition Region for HKP110 Green Hypergolic Bipropellant. Aerospace 2022, 9, 129. https://doi.org/10.3390/aerospace9030129
Hatai K, Nagata T. Quantitative Clarification of Stable Ignition Region for HKP110 Green Hypergolic Bipropellant. Aerospace. 2022; 9(3):129. https://doi.org/10.3390/aerospace9030129
Chicago/Turabian StyleHatai, Keigo, and Taiichi Nagata. 2022. "Quantitative Clarification of Stable Ignition Region for HKP110 Green Hypergolic Bipropellant" Aerospace 9, no. 3: 129. https://doi.org/10.3390/aerospace9030129
APA StyleHatai, K., & Nagata, T. (2022). Quantitative Clarification of Stable Ignition Region for HKP110 Green Hypergolic Bipropellant. Aerospace, 9(3), 129. https://doi.org/10.3390/aerospace9030129