Analog Replicator of Long Chaotic Radio Pulses for Coherent Processing
Abstract
:1. Introduction
- Development of an approach to the formation of identical chaotic radio pulses of arbitrary duration, overcoming the limit associated with the instability of chaotic trajectories;
- Experimental verification of the possibility of generating long identical radio pulses in separate samples of the generators.
2. Generator Layout
3. Generator Operation Modes
4. Experimental Sample for Generation of Equal-Shape Signals
5. Formation of Chaotic Radio Pulses of the Same Shape
6. Formation of Long Repetitive Pulses
7. Results of Experiments
8. Auto- and Cross-Correlation Properties of Pulses
9. Discussion
10. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CMOS | Complementary Metal-Oxide Semiconductor |
FPGA | Field-Programmable Gate Array |
RF | Radio Frequency |
UWB | Ultra-Wide Band |
References
- Dmitriev, A.S.; Panas, A.I.; Starkov, S.O. Experiments on speech and music signals transmission using chaos. Int. J. Bifurc. Chaos 1995, 5, 1249–1254. [Google Scholar] [CrossRef]
- Andreyev, Y.V.; Dmitriev, A.S.; Efremova, E.V.; Khilinsky, A.D.; Kuzmin, L.V. Qualitative theory of dynamical systems, chaos and contemporary wireless communications. Int. J. Bifurc. Chaos 2005, 15, 3639–3651. [Google Scholar] [CrossRef]
- Kuzmin, L.V.; Efremova, E.V. Filtering and Detection of Ultra-Wideband Chaotic Radio Pulses with a Matched Frequency-Selective Circuit. Electronics 2023, 12, 1324. [Google Scholar] [CrossRef]
- Efremova, E.V.; Kuzmin, L.V.; Itskov, V.V. Measuring Received Signal Strength of UWB Chaotic Radio Pulses for Ranging and Positioning. Electronics 2023, 12, 4425. [Google Scholar] [CrossRef]
- Yao, Z.J.; Meng, Q.H.; Li, G.W.; Lin, P. Non-crosstalk real-time ultrasonic range system with optimized chaotic pulse position-width modulation excitation. In Proceedings of the 2008 IEEE Ultrasonics Symposium, Beijing, China, 2–5 November 2008; pp. 729–732. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, J.; Tao, J.; Liu, S. A New Pulse Modulation Method for Underwater Acoustic Communication Combined with Multiple Pulse Characteristics. In Proceedings of the 2018 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC), Qingdao, China, 14–16 September 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Bai, C.; Ren, H.P.; Baptista, M.S.; Grebogi, C. Digital underwater communication with chaos. Commun. Nonlinear Sci. Numer. Simul. 2019, 73, 14–24. [Google Scholar] [CrossRef]
- Lukin, K.A. Radar design using chaotic and noise waveforms. In Proceedings of the 2006 International Waveform Diversity & Design Conference, Orlando, FL, USA, 22–27 January 2006; pp. 1–5. [Google Scholar] [CrossRef]
- Haimovich, A.M.; Blum, R.S.; Cimini, L.J. MIMO Radar with Widely Separated Antennas. IEEE Signal Process. Mag. 2008, 25, 116–129. [Google Scholar] [CrossRef]
- Stove, A.; Galati, G.; De Palo, F.; Wasserzier, C.; Erdogan, A.Y.; Savci, K.; Lukin, K. Design of a Noise Radar Demonstrator. In Proceedings of the 2016 17th International Radar Symposium (IRS), Krakow, Poland, 10–12 May 2016; pp. 1–6. [Google Scholar] [CrossRef]
- Ben Jemaa, Z.; Belghith, S. Chaotic sequences with good correlation properties for MIMO radar application. In Proceedings of the 2016 24th International Conference on Software, Telecommunications and Computer Networks (SoftCOM), Split, Croatia, 22–24 September 2016; pp. 1–5. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, L.; Wu, Z. High Data Rate Discrete-Cosine-Spreading Aided M-Ary Differential Chaos Shift Keying Scheme with Low PAPR. IEEE Trans. Circuits Syst. II Express Briefs 2020, 67, 2492–2496. [Google Scholar] [CrossRef]
- Manikandan, M.S.K.; Ravikumar, S.; Abhaikumar, V.; Thiruvengadam, S.J. A Novel Pulse Based Ultrawide Band System Using Chaotic Spreading Sequences. In Proceedings of the 2007 2nd International Conference on Communication Systems Software and Middleware, Bangalore, India, 7–12 January 2007; pp. 1–5. [Google Scholar] [CrossRef]
- Kotti, A.; Meherzi, S.; Marcos, S.; Belghith, S. Asynchronous DS-UWB communication using spatiotemporal chaotic waveforms and sequences. In Proceedings of the 2009 First International Conference on Communications and Networking, Hammamet, Tunisia, 3–6 November 2009; pp. 1–5. [Google Scholar] [CrossRef]
- Liu, C.; Cheng, J.; Zhang, R. An orthogonal mixed chaotic spread spectrum algorithm for satellite communication. In Proceedings of the 2019 12th International Symposium on Computational Intelligence and Design (ISCID), Hangzhou, China, 14–15 December 2019; Volume 2, pp. 235–240. [Google Scholar] [CrossRef]
- Tang, G.; Zhu, L.; Wu, Q.; He, Q.; Yu, L. A Hybrid Spread Spectrum Communication Method Based on Chaotic Sequence. In Proceedings of the 2021 International Symposium on Networks, Computers and Communications (ISNCC), Dubai, United Arab Emirates, 31 October–2 November 2021; pp. 1–5. [Google Scholar] [CrossRef]
- Chien, T.I.; Wang, N.Z.; Liao, T.L.; Chang, S.B. Design of multiple-accessing chaotic digital communication system based on Interleaved Chaotic Differential Peaks Keying (I-CDPK). In Proceedings of the 2008 6th International Symposium on Communication Systems, Networks and Digital Signal Processing, Graz, Austria, 23–25 July 2008; pp. 638–642. [Google Scholar] [CrossRef]
- Sushchik, M.; Rulkov, N.; Larson, L.; Tsimring, L.; Abarbanel, H.; Yao, K.; Volkovskii, A. Chaotic pulse position modulation: A robust method of communicating with chaos. IEEE Commun. Lett. 2000, 4, 128–130. [Google Scholar] [CrossRef]
- Rulkov, N.; Sushchik, M.; Tsimring, L.; Volkovskii, A. Digital communication using chaotic-pulse-position modulation. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 2001, 48, 1436–1444. [Google Scholar] [CrossRef]
- Erkucuk, S.; Kim, D.I. Combined M-ary code shift keying/binary pulse position modulation for ultra wideband communications. In Proceedings of the 2004—GLOBECOM ’04, IEEE Global Telecommunications Conference, Dallas, TX, USA, 29 November–3 December 2004; Volume 2, pp. 804–808. [Google Scholar] [CrossRef]
- Yang, H.; Jiang, G.P. Delay-Variable Synchronized Chaotic Pulse Position Modulation for Ultra-Wide Bandwidth Communication. In Proceedings of the 2006 International Conference on Communications, Circuits and Systems, Guilin, China, 25–28 June 2006; Volume 4, pp. 2692–2694. [Google Scholar] [CrossRef]
- Hong, Y.P.; Jin, S.Y.; Song, H.Y. Coded N-ary PPM UWB Impulse Radio with Chaotic Time Hopping and Polarity Randomization. In Proceedings of the 2007 3rd International Workshop on Signal Design and Its Applications in Communications, Chengdu, China, 23–27 September 2007; pp. 252–256. [Google Scholar] [CrossRef]
- An, C.; Zhou, T. Design of chaotic spread-spectrum sequences with good correlation properties for DS/CDMA. In Proceedings of the 2003 IEEE International Symposium on Circuits and Systems (ISCAS), Bangkok, Thailand, 25–28 May 2003; Volume 3, p. III. [Google Scholar] [CrossRef]
- Rao, K.D.; Raju, B. Improved Robust Multiuser Detection in Non-Gaussian Channels Using a New M-Estimator and Spatiotemporal Chaotic Spreading Sequences. In Proceedings of the APCCAS 2006—2006 IEEE Asia Pacific Conference on Circuits and Systems, Singapore, 4–7 December 2006; pp. 1729–1732. [Google Scholar] [CrossRef]
- Velavan, P.; Santhi, M. Design and FPGA realization of MC-CDMA system using pseudo chaotic sequence generator. In Proceedings of the 2014 International Conference on Communication and Signal Processing, Tamil Nadu, India, 3–5 April 2014; pp. 498–502. [Google Scholar] [CrossRef]
- Litvinenko, A.; Aboltins, A. Use of cross-correlation minimization for performance enhancement of chaotic spreading sequence based asynchronous DS-CDMA system. In Proceedings of the 2016 IEEE 4th Workshop on Advances in Information, Electronic and Electrical Engineering (AIEEE), Vilnius, Lithuania, 10–12 November 2016; pp. 1–6. [Google Scholar] [CrossRef]
- Rastogi, U.; Anuradha, S.; Shekar, R.C.; Singh, S.; Rao, P.S.H. Optimal chaotic sequences for DS-CDMA using genetic algorithm. In Proceedings of the 2017 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET), Chennai, India, 22–24 March 2017; pp. 900–904. [Google Scholar] [CrossRef]
- Xiao, L.; Xuan, G.; Wu, Y. Research on an improved chaotic spread spectrum sequence. In Proceedings of the 2018 IEEE 3rd International Conference on Cloud Computing and Big Data Analysis (ICCCBDA), Chengdu, China, 20–22 April 2018; pp. 420–423. [Google Scholar] [CrossRef]
- Xue, R.; Xiong, Y.; Cheng, Q. A Novel Ranging Code based on improved Logistic Map Chaotic Sequences. In Proceedings of the 2019 21st International Conference on Advanced Communication Technology (ICACT), Pyeongchang, Republic of Korea, 17–20 February 2019; pp. 11–15. [Google Scholar] [CrossRef]
- Tsuneda, A. Various Auto-Correlation Functions of m-Bit Random Numbers Generated from Chaotic Binary Sequences. Entropy 2021, 23, 1295. [Google Scholar] [CrossRef]
- Zhang, J.; Cheng, J.; Li, G. Chaotic spread-spectrum sequences using chaotic quantization. In Proceedings of the 2007 International Symposium on Intelligent Signal Processing and Communication Systems, Xiamen, China, 28 November–1 December 2007; pp. 40–43. [Google Scholar] [CrossRef]
- Song, D.; Liu, J.; Wang, F. Statistical analysis of chaotic stochastic properties based on the logistic map and Fibonacci sequence. In Proceedings of the 2013 2nd International Conference on Measurement, Information and Control, Harbin, China, 16–18 August 2013; Volume 1, pp. 611–614. [Google Scholar] [CrossRef]
- Chen, S.; Ma, S.; Qin, Z.; Zhu, B.; Xiao, Z.; Liu, M. A Low Complexity and Long Period Digital Random Sequence Generator Based on Residue Number System and Permutation Polynomial. IEEE Trans. Comput. 2022, 71, 3008–3017. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, C.; Yang, D.D.; Li, Q.; Li, X. Fast True Random Number Generator Based on Chaotic Oscillation in Self-Feedback Weakly Coupled Superlattices. IEEE Access 2020, 8, 182693–182703. [Google Scholar] [CrossRef]
- Li, S.; Liu, Y.; Ren, F.; Yang, Z. Design of a High Throughput Pseudorandom Number Generator Based on Discrete Hyper-Chaotic System. IEEE Trans. Circuits Syst. II Express Briefs 2022, 70, 806–810. [Google Scholar] [CrossRef]
- Stavrinides, S.G.; Karagiorgos, N.F.; Papathanasiou, K.; Nikolaidis, S.; Anagnostopoulos, A.N. A Digital Nonautonomous Chaotic Oscillator Suitable for Information Transmission. IEEE Trans. Circuits Systems II Express Briefs 2013, 60, 887–891. [Google Scholar] [CrossRef]
- Hua, Z.; Zhou, Y. Dynamic Parameter-Control Chaotic System. IEEE Trans. Cybern. 2015, 46, 3330–3341. [Google Scholar] [CrossRef] [PubMed]
- Abdulraheem, A.N.; Nema, B.M. Secure IoT Model Based on PRESENT Lightweight Modified and Chaotic Key Generator. In Proceedings of the 2020 1st Information Technology to Enhance e-Learning and Other Application (IT-ELA), Baghdad, Iraq, 12–13 July 2020; pp. 12–18. [Google Scholar] [CrossRef]
- Souza, C.E.C.; Chaves, D.P.B.; Pimentel, C. One-Dimensional Pseudo-Chaotic Sequences Based on the Discrete Arnold’s Cat Map Over . IEEE Trans. Circuits Systems II Express Briefs 2020, 68, 491–495. [Google Scholar] [CrossRef]
- Hua, Z.; Chen, Y.; Bao, H.; Zhou, Y. Two-Dimensional Parametric Polynomial Chaotic System. IEEE Trans. Syst. Man Cybern. Syst. 2021, 52, 4402–4414. [Google Scholar] [CrossRef]
- Zhao, W.; Ma, C. Modification of Intertwining Logistic Map and a Novel Pseudo Random Number Generator. Symmetry 2024, 16, 169. [Google Scholar] [CrossRef]
- Li, N.; Pan, W.; Xiang, S.; Zhao, Q.; Zhang, L. Simulation of Multi-bit Extraction for Fast Random Bit Generation Using a Chaotic Laser. IEEE Photonics Technol. Lett. 2014, 26, 1886–1889. [Google Scholar] [CrossRef]
- Minati, L.; Frasca, M.; Yoshimura, N.; Ricci, L.; Oświecimka, P.; Koike, Y.; Masu, K.; Ito, H. Current-Starved Cross-Coupled CMOS Inverter Rings as Versatile Generators of Chaotic and Neural-Like Dynamics Over Multiple Frequency Decades. IEEE Access 2019, 7, 54638–54657. [Google Scholar] [CrossRef]
- Wang, F.; Wang, R.; Iu, H.H.C.; Liu, C.; Fernando, T. A Novel Multi-Shape Chaotic Attractor and Its FPGA Implementation. IEEE Trans. Circuits Syst. II Express Briefs 2019, 66, 2062–2066. [Google Scholar] [CrossRef]
- Magfirawaty, M.; Lestari, A.A.; Nurwa, A.R.A.; MT, S.; Ramli, K. A Novel Discrete-Time Chaos-Function-Based Random-Number Generator: Design and Variability Analysis. Symmetry 2022, 14, 2122. [Google Scholar] [CrossRef]
- Tang, J.; Zhang, Z.; Chen, P.; Huang, Z.; Huang, T. A Simple Chaotic Model with Complex Chaotic Behaviors and Its Hardware Implementation. IEEE Trans. Circuits Syst. Regul. Pap. 2023, 70, 3676–3688. [Google Scholar] [CrossRef]
- Abbassi, N.; Mtibaa, A.; Gafsi, M.; Hajjaji, M.A. An enhanced ECA/Chaotic-based PRNG: Hardware design and Implementation. In Proceedings of the 2022 IEEE 21st international Ccnference on Sciences and Techniques of Automatic Control and Computer Engineering (STA), Sousse, Tunisia, 19–21 December 2022; pp. 249–254. [Google Scholar] [CrossRef]
- Zhang, Y.; Hua, Z.; Bao, H.; Huang, H.; Zhou, Y. An n-Dimensional Chaotic System Generation Method Using Parametric Pascal Matrix. IEEE Trans. Ind. Inform. 2022, 18, 8434–8444. [Google Scholar] [CrossRef]
- Hua, Z.; Zhang, Y.; Bao, H.; Huang, H.; Zhou, Y. n-Dimensional Polynomial Chaotic System with Applications. IEEE Trans. Circuits Syst. Regul. Pap. 2021, 69, 784–797. [Google Scholar] [CrossRef]
- Harrison, R.C.; Rhea, B.K.; Ramsey, A.N.; Dean, R.N.; Perkins, J.E. A True Random Number Generator based on a Chaotic Jerk System. In Proceedings of the 2019 SoutheastCon, Huntsville, AL, USA, 11–14 April 2019; pp. 1–5. [Google Scholar] [CrossRef]
- Loginov, S.S.; Zuev, M.Y. Chaotic Systems Based Pseudo-Random Signal Generators Realized Over a Galois Finite Field. In Proceedings of the 2019 Systems of Signal Synchronization, Generating and Processing in Telecommunications (SYNCHROINFO), Yaroslavl, Russia, 1–3 July 2019; pp. 1–4. [Google Scholar] [CrossRef]
- De Micco, L.; Antonelli, M.; Rosso, O.A. From Continuous-Time Chaotic Systems to Pseudo Random Number Generators: Analysis and Generalized Methodology. Entropy 2021, 23, 671. [Google Scholar] [CrossRef]
- Liao, T.L.; Wan, P.Y.; Yan, J.J. Design and Synchronization of Chaos-Based True Random Number Generators and Its FPGA Implementation. IEEE Access 2022, 10, 8279–8286. [Google Scholar] [CrossRef]
- Araki, S.; Wu, J.H.; Yan, J.J. A Novel Design of Random Number Generators Using Chaos-Based Extremum Coding. IEEE Access 2024, 12, 24039–24047. [Google Scholar] [CrossRef]
- Lin, H.; Wang, C.; Sun, Y. A Universal Variable Extension Method for Designing Multiscroll/Wing Chaotic Systems. IEEE Trans. Ind. Electron. 2023, 71, 7806–7818. [Google Scholar] [CrossRef]
- Hamidouche, B.; Guesmi, K.; Essounbouli, N. Mastering chaos: A review. Annu. Rev. Control 2024, 58, 100966. [Google Scholar] [CrossRef]
- Dmitriev, A.S.; Efremova, E.V.; Kuzmin, L.V. Chaotic pulse trains generated by a dynamical system driven by a periodic signal. Tech. Phys. Lett. 2005, 11, 961–963. [Google Scholar] [CrossRef]
- Dmitriev, A.S.; Efremova, E.V.; Kuzmin, L.V.; Atanov, N.V. A train of chaotic pulses generated by a dynamic system driven by an external (periodic) force. J. Commun. Technol. Electron. 2006, 51, 557–567. [Google Scholar] [CrossRef]
- Dmitriev, A.S.; Efremova, E.V.; Kuzmin, L.V.; Atanov, N.V. Forming pulses in nonautonomous chaotic oscillator. Int. J. Bifurc. Chaos 2007, 17, 3443–3448. [Google Scholar] [CrossRef]
- Atanov, N.V.; Dmitriev, A.S.; Efremova, E.V.; Kuz’min, L.V. A nonautonomous generator of chaotic radio pulses. J. Commun. Technol. Electron. 2006, 51, 1369–1378. [Google Scholar] [CrossRef]
- Kuzmin, L.V.; Efremova, E.V.; Itskov, V.V. Modulation, Shaping and Replicability of UWB Chaotic Radiopulses for Wireless Sensor Applications. Sensors 2023, 23, 6864. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuzmin, L.; Efremova, E.; Vladyka, P.; Itskov, V. Analog Replicator of Long Chaotic Radio Pulses for Coherent Processing. Technologies 2025, 13, 16. https://doi.org/10.3390/technologies13010016
Kuzmin L, Efremova E, Vladyka P, Itskov V. Analog Replicator of Long Chaotic Radio Pulses for Coherent Processing. Technologies. 2025; 13(1):16. https://doi.org/10.3390/technologies13010016
Chicago/Turabian StyleKuzmin, Lev, Elena Efremova, Pavel Vladyka, and Vadim Itskov. 2025. "Analog Replicator of Long Chaotic Radio Pulses for Coherent Processing" Technologies 13, no. 1: 16. https://doi.org/10.3390/technologies13010016
APA StyleKuzmin, L., Efremova, E., Vladyka, P., & Itskov, V. (2025). Analog Replicator of Long Chaotic Radio Pulses for Coherent Processing. Technologies, 13(1), 16. https://doi.org/10.3390/technologies13010016