State-Dependent Phillips Curve
Abstract
:1. Introduction
2. Model
2.1. PC
2.2. State-Dependent PC
- Backward-looking model
- Forward-looking model
3. Data and Specification
Specification
4. Empirical Results
5. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
1 | This favorable economic outlook also resulted from a period of extraordinary monetary stimulus. Yellen (2015) discussed the role of monetary policy in a low inflation environment, and Conti (2017) used a Bayesian VAR model to study the conduct of the FED’s monetary policy and its implications for the dynamics of US core inflation and wage growth. |
2 | CBO did not make explicit adjustments to the short-term natural rate for structural factors before the recent downturn. The short-term natural rate incorporates structural factors that have temporarily boosted the natural rate since 2008. The short-term natural rate is used to gauge the amount of current and projected slack in labor markets. This is a key input into the CBO’s inflation projections. |
References
- Amisano, G., & Fagan, G. (2013). Money growth and inflation: A regime switching approach. Journal of International Money and Finance, 33, 118–145. [Google Scholar] [CrossRef]
- Ball, L. (2014). The case for a long-run inflation target of four percent. (IMF Working Paper 14/92). International Monetary Fund. [Google Scholar]
- Ball, L., & Mazumder, S. (2019). A Phillips curve with anchored expectations and short-term unemployment. Journal of Money, Credit and Banking, 51(1), 111–137. [Google Scholar] [CrossRef]
- Benigno, P., & Ricci, L. A. (2008). The inflation-unemployment trade-off at low inflation. (NBER Working Papers 13986). National Bureau of Economic Research, Inc. [Google Scholar]
- Blanchard, O. (2018). Should we reject the natural rate hypothesis? Journal of Economic Perspective, 32(1), 97–120. [Google Scholar] [CrossRef]
- Blanchard, O., Cerutti, E., & Summers, L. (2015). Inflation and activity—Two explorations and their monetary policy implications. (NBER Working Papers 21726). National Bureau of Economic Research, Inc. [Google Scholar]
- Bobeica, E., & Jrocinski, M. (2019). Missing disinflation and missing inflation: A VAR perspective. International Journal of Central Banking, 15(1), 199–232. [Google Scholar]
- Chang, Y., Choi, Y., & Park, J. Y. (2017). A new approach to model regime switching. Journal of Econometrics, 196(1), 127–143. [Google Scholar] [CrossRef]
- Coibion, O., & Gorodnichenko, Y. (2015). Is the Philips curve alive and well after all? Inflation expectations and the missing disinflation. American Economic Journal: Macroeconomics, 7(1), 197–232. [Google Scholar]
- Conti, A. M. (2017). Has the FED Fallen behind the Curve? Evidence from VAR models. Economics Letters, 159, 164–168. [Google Scholar] [CrossRef]
- Conti, A. M. (2021). Resurrecting the Philips curve in low-inflation times. Economic Modelling, 96, 172–195. [Google Scholar] [CrossRef]
- Conti, A. M., Neri, S., & Nobili, A. (2015). Why is inflation so low in the euro area? Temi didiscussione. (Economic working papers; No. 1019). Bank of Italy, Economic Research and International Relation Area. [Google Scholar]
- Forbes, K., Gagnon, J., & Collins, C. G. (2021). Low inflation bends the Philips curve around the world. (NBER Working Paper 29323). National Bureau of Economic Research, Inc. [Google Scholar]
- Friedman, M. (1968). The role of monetary policy. American Economic Review, 58, 1–17. [Google Scholar]
- Gali, J., & Gertler, M. (1999). Inflation dynamics: A structural econometric analysis. Journal of Monetary Economics, 44(2), 195–222. [Google Scholar] [CrossRef]
- Gilchrist, S., Schoenle, R., Sim, J., & Zakrajsek, E. (2017). Inflation dynamics during the financial crisis. American Economic Review, 107(3), 785–823. [Google Scholar] [CrossRef]
- Gordon, R. J. (1990). The Phillips curve now and then. (NBER Working Papers 3393). National Bureau of Economic Research, Inc. [Google Scholar]
- Hindrayanto, I., Samarina, A., & Stanga, I. (2019). Is the Philips curve still alive? evidence from the euro area. Economic Letters, 174, 149–152. [Google Scholar] [CrossRef]
- Hooper, P., Mishkin, F., & Sufi, A. (2020). Prospects for inflation in a high pressure economy: Is the Phillips curve dead or is it just hibernating? Research in Economics, 74(1), 26–62. [Google Scholar] [CrossRef]
- Jørgenssen, P. L., & Lansing, K. J. (2021). Return of the original Philips curve. FRBSF Economic Letter 2021-21. Federal Reserve Bank of San Franscisco. [Google Scholar]
- Krugman, P. (2022). Working out: What to expect when you’re expecting inflation, new york times opinion. Available online: https://www.nytimes.com/2022/02/18/opinion/inflation-us-consumer-surveys.html (accessed on 18 February 2022).
- Laseen, S., & Sanjani, M. T. (2016). Did the global financial crisis break the U.S. Philips curve? (IMF Working Papers 16/126). International Monetary Fund. [Google Scholar]
- Matheson, T., & Stavrev, E. (2013). The great recession and the inflation puzzle. Economic Letters, 120(3), 468–472. [Google Scholar] [CrossRef]
- Murphy, R. G. (2014). Explaining inflation in the aftermath of the Great Recession. Journal of Macroeconomics, 40(C), 228–244. [Google Scholar] [CrossRef]
- Nalewaik, J. (2016). Non-linear Philips curves with inflation regime-switching. (Finance and Economics Discussion Series 2016-078). Federal Reserve Board. [Google Scholar]
- Phillips, A. W. (1958). The relation between unemployment and the rate of change of money wage rates in the United Kingdom. Economica, 25(100), 283–299. [Google Scholar]
- Reis, R. (2006). Inattentive producers. Review of Economic Studies, 73(3), 793–821. [Google Scholar] [CrossRef]
- Riggi, M., & Venditti, F. (2015). Failing to forecast low inflation and Phillips curve instability: A Euro-area perspective. International Finance, 18(1), 47–68. [Google Scholar] [CrossRef]
- Roberts, J. M. (1995). New Keynesian economics and the Philips curve. Journal of Money, Credit and Banking, 27(4), 975–984. [Google Scholar] [CrossRef]
- Yellen, J. L. (2015). Inflation dynamics and monetary policy: A speech at the Philip Gamble Memorial Lecture. (University of Massachusetts, Amherst, Speech as the board of governors of the Federal Reserve System). University of Massachusetts. [Google Scholar]
- Yellen, J. L. (2019). What’s (not) up with inflation? (remarks at conference hosted by the Hutchins center on fiscal and monetary policy at the Brookings Institution). Brookings Institution. [Google Scholar]
No. | Section | Variables | Description |
---|---|---|---|
1 | Inflation | CPI | Headline |
2 | Core | ||
3 | PCE | Headline | |
4 | Core | ||
5 | Employment | Unemployment rate | Level |
6 | Natural Rate of Unemployment | Long-term | |
7 | Short-term | ||
8 | Inflation Expectation | SPF | Mean of 1–6 Quarters Ahead |
9 | LS | Mean and Median (CPI Headline only) | |
10 | Exogenous Var. | Import Price Index | Import Price Inflation |
Model 1 | Model 2 | Model 3 | ||||
---|---|---|---|---|---|---|
Parameters | Estimates | St. Error | Estimates | St. Error | Estimates | St. Error |
µ | 0.003 ** | 0.001 | 0.005 *** | 0.001 | 0.005 *** | 0.001 |
βl | −0.111 *** | 0.036 | −0.053 | 0.035 | −0.079 ** | 0.035 |
βu | −0.588 *** | 0.214 | −0.677 *** | 0.115 | −0.253 * | 0.143 |
δl | 0.247 *** | 0.049 | 0.678 *** | 0.043 | - | - |
δu | 0.826 *** | 0.212 | 1.023 *** | 0.046 | - | - |
γu | 0.654 *** | 0.056 | - | - | 0.823 *** | 0.041 |
γl | 0.208 | 0.196 | - | - | 0.909 *** | 0.046 |
λl | 0.022 | 0.018 | 0.062 ** | 0.027 | −0.007 | 0.020 |
λu | 0.290 ** | 0.123 | 0.241 *** | 0.031 | 0.001 | 0.050 |
σl | 0.007 *** | 0.000 | 0.006 *** | 0.000 | 0.007 *** | 0.000 |
σl | 0.023 *** | 0.003 | 0.019 *** | 0.002 | 0.025 *** | 0.003 |
α | 0.978 *** | 0.018 | 0.989 *** | 0.010 | 0.992 *** | 0.007 |
τ | 4.852 ** | 2.452 | 2.774 | 6.684 | 6.041 *** | 1.569 |
ρ | 0.561 * | 0.316 | 0.641 *** | 0.181 | −0.156 | 0.341 |
Likelihood | 830.995 | 818.317 | 813.224 | |||
Model 4 | Model 5 | Model 6 | ||||
Parameters | Estimates | St. Error | Estimates | St. Error | Estimates | St. Error |
µ | 0.003 *** | 0.001 | 0.005 *** | 0.001 | 0.006 *** | 0.001 |
βl | −0.073 ** | 0.031 | −0.112 *** | 0.032 | −0.086 ** | 0.034 |
βu | −0.503 *** | 0.095 | −1.021 *** | 0.156 | −0.186 * | 0.113 |
δl | 0.384 *** | 0.044 | 0.676 *** | 0.060 | - | - |
δu | 0.386 *** | 0.085 | 1.101 *** | 0.048 | - | - |
γu | 0.420 *** | 0.061 | - | - | 0.812 *** | 0.037 |
γl | 0.638 *** | 0.067 | - | - | 0.897 *** | 0.048 |
λl | - | - | - | - | - | - |
λu | - | - | - | - | - | - |
σl | 0.006 *** | 0.000 | 0.006 *** | 0.000 | 0.007 *** | 0.000 |
σl | 0.020 *** | 0.002 | 0.026 *** | 0.002 | 0.025 *** | 0.003 |
α | 0.996 *** | 0.004 | 0.995 *** | 0.004 | 1.000 *** | 0.000 |
τ | 3.529 *** | 0.697 | 5.351 *** | 1.317 | 0.143 | 0.963 |
ρ | −0.020 | 0.245 | 0.728 *** | 0.135 | −0.387 | 0.242 |
Likelihood | 830.930 | 795.537 | 808.467 |
Model 1 | Model 2 | Model 3 | ||||
---|---|---|---|---|---|---|
Parameters | Estimates | St. Error | Estimates | St. Error | Estimates | St. Error |
µ | 0.003 *** | 0.001 | 0.003 | 0.104 | 0.003 ** | 0.001 |
βl | −0.109 *** | 0.040 | −0.140 | 75.181 | −0.050 | 0.046 |
βu | −0.406 ** | 0.187 | −0.140 | 8.206 | −0.221 | 0.222 |
δl | 0.615 *** | 0.146 | 0.901 | 2.235 | - | - |
Δu | 0.553 ** | 0.275 | 0.897 | 4.336 | - | - |
γu | 0.286 ** | 0.145 | - | - | 0.920 *** | 0.040 |
γl | 0.416 | 0.278 | - | - | 0.891 *** | 0.075 |
λl | −0.012 | 0.018 | 0.101 | 5.978 | −0.012 | 0.017 |
λu | 0.026 | 0.060 | −0.013 | 0.681 | 0.020 | 0.069 |
σl | 0.006 *** | 0.001 | 0.026 | 0.320 | 0.007 *** | 0.000 |
σl | 0.023 *** | 0.003 | 0.006 | 0.038 | 0.029 *** | 0.004 |
A | 0.984 *** | 0.013 | 0.980 | 0.907 | 0.976 *** | 0.019 |
τ | 4.235 | 3.672 | −3.729 | 95.626 | 4.548 *** | 1.380 |
ρ | 0.074 | 0.457 | −0.185 | 11.815 | 0.312 | 0.296 |
Likelihood | 830.710 | 822.861 | 812.693 | |||
Model 4 | Model 5 | Model 6 | ||||
Parameters | Estimates | St. Error | Estimates | St. Error | Estimates | St. Error |
µ | 0.003 | 0.003 | 0.003 *** | 0.001 | 0.005 *** | 0.001 |
βl | −0.068 | 0.094 | −0.114 *** | 0.040 | −0.091 ** | 0.036 |
βu | −0.552 *** | 0.110 | −0.565 *** | 0.219 | −0.249 | 0.218 |
δl | 0.523 ** | 0.230 | 0.899 *** | 0.036 | - | - |
δu | 0.614 | 0.693 | 1.000 *** | 0.061 | - | - |
γu | 0.395 | 0.310 | - | - | 0.820 *** | 0.033 |
γl | 0.375 | 0.697 | - | - | 0.909 *** | 0.053 |
λl | - | - | - | - | - | - |
λu | - | - | - | - | - | - |
σl | 0.007 *** | 0.000 | 0.006 *** | 0.000 | 0.007 *** | 0.000 |
σl | 0.025 *** | 0.004 | 0.025 *** | 0.003 | 0.025 *** | 0.003 |
α | 0.980 *** | 0.020 | 0.979 *** | 0.015 | 0.993 *** | 0.006 |
τ | 5.130 *** | 1.725 | 3.661 ** | 1.472 | 6.295 *** | 0.611 |
ρ | 0.647 | 1.825 | 0.201 | 0.189 | −0.185 | 0.159 |
Likelihood | 830.163 | 823.691 | 813.264 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, H.H.; Lee, N.K. State-Dependent Phillips Curve. Economies 2025, 13, 14. https://doi.org/10.3390/economies13010014
Kim HH, Lee NK. State-Dependent Phillips Curve. Economies. 2025; 13(1):14. https://doi.org/10.3390/economies13010014
Chicago/Turabian StyleKim, Hyun Hak, and Na Kyeong Lee. 2025. "State-Dependent Phillips Curve" Economies 13, no. 1: 14. https://doi.org/10.3390/economies13010014
APA StyleKim, H. H., & Lee, N. K. (2025). State-Dependent Phillips Curve. Economies, 13(1), 14. https://doi.org/10.3390/economies13010014