On Resolvability- and Domination-Related Parameters of Complete Multipartite Graphs
Abstract
:1. Introduction
2. Preliminaries
3. Resolvability-Related Parameters
3.1. Metric Dimension
3.2. Fault-Tolerant Metric Dimension
3.3. Edge Metric Dimension
3.4. Mixed Metric Dimension
4. Domination-Related Parameters
4.1. Domination Number
4.2. Locating-Dominating Number
5. An Interaction between Resolvability and Domination
Metric-Locating-Dominating Number
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Slater, P.J. Leaves of trees. Congress. Numer. 1975, 14, 549–559. [Google Scholar]
- Harary, F.; Melter, R.A. On the metric dimension of a graph. Ars Combin. 1976, 2, 191–195. [Google Scholar]
- Buckley, F.; Harary, F. Distances in Graphs; Addison-Wesley Publishing Company: Boston, MA, USA, 1990. [Google Scholar]
- Chartrand, G.; Zhang, P. The theory and applications of resolvability in graphs: A survey. Congress. Numer. 2003, 160, 47–68. [Google Scholar]
- Khuller, S.; Raghavachari, B.; Rosenfeld, A. Landmarks in graphs. Discrete Appl. Math. 1996, 70, 217–229. [Google Scholar] [CrossRef] [Green Version]
- Chartrand, G.; Eroh, L.; Johnson, M.A.; Oellermann, O.R. Resolvability in graphs and metric dimension of a graph. Discrete Appl. Math. 2000, 105, 99–113. [Google Scholar] [CrossRef] [Green Version]
- Beerloiva, Z.; Eberhard, F.; Erlebach, T.; Hall, A.; Hoffmann, M.; Mihalák, M.; Ram, L.S. Network discovery and verification. IEEE J. Sel. Area Commun. 2006, 24, 2168–2181. [Google Scholar] [CrossRef]
- Raza, H.; Hayat, S.; Pan, X.-F. Binary locating-dominating sets in rotationally-symmetric convex polytopes. Symmetry 2018, 10, 727. [Google Scholar] [CrossRef] [Green Version]
- Liu, K.; Abu-Ghazaleh, N. Virtual coordinate backtracking for void traversal in geometric routing. Lect. Notes Comput. Sci. 2006, 4104, 46–59. [Google Scholar]
- Harary, F. Status and contrastatus. Sociometry 1959, 22, 23–43. [Google Scholar] [CrossRef]
- Abas, M.; Vetrik, T. Metric domination of directed Cayley graphs of metacyclic groups. Theor. Comput. Sci. 2020, 809, 61–72. [Google Scholar] [CrossRef]
- Bailey, R.F.; Cameron, P.J. Basie size, metric dimension and other invariants of groups and graphs. Bull. Lond. Math. Soc. 2011, 43, 209–242. [Google Scholar] [CrossRef]
- Bailey, R.F.; Meagher, K. On the metric dimension of Grassmann graphs. Discrete Math. Theor. Comput. Sci. 2011, 13, 97–104. [Google Scholar] [CrossRef]
- Buczkowski, P.S.; Chartrand, G.; Poisson, C.; Zhang, P. On k-dimensional graphs and their bases. Period. Math. Hung. 2003, 46, 9–15. [Google Scholar] [CrossRef]
- Cáceres, J.; Hernando, C.; Mora, M.; Pelayoe, I.M.; Puertas, M.L.; Seara, C.; Wood, D.R. On the metric dimension of cartesian products of graphs. SIAM J. Discrete Math. 2007, 21, 423–441. [Google Scholar] [CrossRef] [Green Version]
- Cáceres, J.; Hernando, C.; Mora, M.; Puertas, M.L.; Pelayo, I.M. On the metric dimension of infinite graphs. Electron. Notes Disc. Math. 2009, 35, 15–20. [Google Scholar] [CrossRef] [Green Version]
- Fehr, M.; Gosselin, S.; Oellermann, O. The metric dimension of Cayley digraphs. Discrete Math. 2006, 306, 31–41. [Google Scholar] [CrossRef] [Green Version]
- Imran, M.; Siddiqui, H.M.A. Computing the metric dimension of convex polytopes generated by wheel related graphs. Acta Math. Hung. 2016, 149, 10–30. [Google Scholar] [CrossRef]
- Saputro, S.W.; Simanjuntak, R.; Uttunggadewa, S.; Assiyatun, H.; Baskoro, E.T.; Salman, A.N.M.; Bača, M. The metric dimension of the lexicographic product of graphs. Discrete Math. 2013, 313, 1045–1051. [Google Scholar] [CrossRef]
- Siddiqui, H.M.A.; Imran, M. Computing the metric dimension of wheel related graphs. Appl. Math. Comput. 2014, 242, 624–632. [Google Scholar]
- Yero, I.G.; Kuziak, D.; Rodríguez-Velázquez, J.A. On the metric dimension of corona product graphs. Comput. Math. Appl. 2011, 61, 2793–2798. [Google Scholar] [CrossRef] [Green Version]
- Kelenc, A.; Tratnik, N.; Yero, I.G. Uniquely identifying the edges of a graph: The edge metric dimension. Discrete Appl. Math. 2018, 251, 204–220. [Google Scholar] [CrossRef] [Green Version]
- Kelenc, A.; Kuziak, D.; Taranenko, A.; Yero, I.G. Mixed metric dimension of graphs. Appl. Math. Comput. 2017, 314, 429–438. [Google Scholar]
- Filipovic, V.; Kartelj, A.; Kratica, J. Edge metric dimension of some generalized Petersen graphs. Results Math. 2019, 74, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Knor, M.; Majstorovic, S.; Toshi, A.T.M.; Škrekovski, R.; Yero, I.G. Graphs with the edge metric dimension smaller than the metric dimension. Appl. Math. Comput. 2021, 401, 126076. [Google Scholar] [CrossRef]
- Zhang, Y.; Gao, S. On the edge metric dimension of convex polytopes and its related graphs. J. Comb. Optim. 2020, 39, 334–350. [Google Scholar] [CrossRef]
- Zhu, E.; Taranenko, A.; Shao, Z.; Xu, J. On graphs with the maximum edge metric dimension. Discrete Appl. Math. 2019, 257, 317–324. [Google Scholar] [CrossRef]
- Danas, M.M. The mixed metric dimension of flower snarks and wheels. Open Math. 2021, 19, 629–640. [Google Scholar] [CrossRef]
- Sedlar, J.; Škrekovski, R. Extremal mixed metric dimension with respect to the cyclomatic number. Appl. Math. Comput. 2021, 404, 126238. [Google Scholar] [CrossRef]
- Sedlar, J.; Škrekovski, R. Mixed metric dimension of graphs with edge disjoint cycles. Discrete Appl. Math. 2021, 300, 1–8. [Google Scholar] [CrossRef]
- Hernando, C.; Mora, M.; Slater, P.J.; Wood, D.R. Fault-tolerant metric dimension of graphs. In Joint Proceedings of the International Instructional Workshop on Convexity in Discrete Structures, Thiruvananthapuram, India, 2006 and the International Workshop on Metric and Convex Graph Theory, Barcelona, Spain, 2006; Lecture Notes Series No. 5; Ramanujan Mathematical Society: Mysore, India, 2008; pp. 81–85. [Google Scholar]
- Hayat, S.; Khan, A.; Malik, M.Y.H.; Imran, M.; Siddiqui, M.K. Fault-tolerant metric dimension of interconnection networks. IEEE Access 2020, 8, 145435–145445. [Google Scholar] [CrossRef]
- Raza, H.; Hayat, S.; Pan, X.-F. On the fault-tolerant metric dimension of certain interconnection networks. J. Appl. Math. Comput. 2019, 60, 517–535. [Google Scholar] [CrossRef]
- Raza, H.; Hayat, S.; Pan, X.-F. On the fault-tolerant metric dimension of convex polytopes. Appl. Math. Comput. 2018, 339, 172–185. [Google Scholar] [CrossRef]
- Siddiqui, H.M.A.; Hayat, S.; Khan, A.; Imran, M.; Razzaq, A.; Liu, J.-B. Resolvability and fault-tolerant resolvability structures of convex polytopes. Theor. Comput. Sci. 2014, 769, 114–128. [Google Scholar] [CrossRef]
- Haynes, T.W.; Hedetniemi, S.; Slater, P. Fundamentals of Domination in Graphs; CRC Press: New York, NY, USA, 1998. [Google Scholar]
- Haynes, T.W.; Henning, M.A.; Howard, J. Locating and total dominating sets in trees. Discrete Appl. Math. 2006, 154, 1293–1300. [Google Scholar] [CrossRef] [Green Version]
- Charon, I.; Hudry, O.; Lobstein, A. Extremal cardinalities for identifying and locating-dominating codes in graphs. Discrete Math. 2007, 307, 356–366. [Google Scholar] [CrossRef] [Green Version]
- Honkala, I.; Hudry, O.; Lobstein, A. On the ensemble of optimal dominating and locating-dominating codes in a graph. Inform. Process. Lett. 2015, 115, 699–702. [Google Scholar] [CrossRef]
- Honkala, I.; Laihonen, T. On locating-dominating sets in infinite grids. Eur. J. Combin. 2006, 27, 218–227. [Google Scholar] [CrossRef] [Green Version]
- Slater, P.J. Fault-tolerant locating-dominating sets. Discrete Math. 2002, 249, 179–189. [Google Scholar] [CrossRef] [Green Version]
- Seo, S.J.; Slater, P.J. Open neighborhood locating-dominating sets. Australas. J. Combin. 2010, 46, 109–119. [Google Scholar]
- Seo, S.J.; Slater, P.J. Open neighborhood locating-dominating in trees. Discrete Appl. Math. 2011, 159, 484–489. [Google Scholar] [CrossRef] [Green Version]
- Simić, A.; Bogdanović, M.; Milošević, J. The binary locating-dominating number of some convex polytopes. Ars Math. Contemp. 2017, 13, 367–377. [Google Scholar] [CrossRef]
- Hernando, C.; Mora, M.; Pelayo, I.M. LD-graphs and global location-domination in bipartite graphs. Electron. Notes Discrete Math. 2014, 46, 225–232. [Google Scholar] [CrossRef]
- Slater, P.J. Domination and location in acyclic graphs. Networks 1987, 17, 5–64. [Google Scholar] [CrossRef]
- Slater, P.J. Locating dominating sets and locating-dominating sets. In Graph Theory, Combinatorics, and Algorithms; Alavi, Y., Schwenk, A., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 1995; Volume 2, pp. 1073–1079. [Google Scholar]
- Ebrahimi, B.J.; Jahanbakht, N.; Mahmoodian, E.S. Vertex domination of generalized Petersen graphs. Discrete Math. 2009, 309, 4355–4361. [Google Scholar] [CrossRef] [Green Version]
- Tong, C.; Lin, X.; Yang, Y.; Luo, M. 2-rainbow domination of generalized Petersen graphs P(n, 2). Discrete Appl. Math. 2009, 157, 1932–1937. [Google Scholar] [CrossRef] [Green Version]
- Xu, G. 2-rainbow domination in generalized Petersen graphs P(n, 3). Discrete Appl. Math. 2009, 157, 2570–2573. [Google Scholar] [CrossRef] [Green Version]
- Xueliang, F.; Yuansheng, Y.; Baoqi, J. On the domination number of generalized Petersen graphs P(n, 2). Discrete Math. 2009, 309, 2445–2451. [Google Scholar]
- Yan, H.; Kang, L.; Xu, G. The exact domination number of the generalized Petersen graphs. Discrete Math. 2009, 309, 2596–2607. [Google Scholar] [CrossRef] [Green Version]
- Raza, H.; Hayat, S.; Imran, M.; Pan, X.-F. Fault-tolerant resolvability and extremal structures of graphs. Mathematics 2019, 7, 78. [Google Scholar] [CrossRef] [Green Version]
- Diudea, M.V.; Gutman, I.; Jäntschi, L. Molecular Topology; Nova Science Publishers: New York, NY, USA, 2001. [Google Scholar]
- Joiţa, D.-M.; Jäntschi, L. Extending the characteristic polynomial for characterization of C20 fullerene congeners. Mathematics 2017, 5, 84. [Google Scholar] [CrossRef] [Green Version]
- Jäntschi, L. The eigenproblem translated for alignment of molecules. Symmetry 2019, 11, 1027. [Google Scholar] [CrossRef] [Green Version]
- Jäntschi, L. Structure-property relationships for solubility of monosaccharides. Appl. Water Sci. 2019, 9, 38–49. [Google Scholar] [CrossRef] [Green Version]
- Saputro, S.W.; Baskoro, E.T.; Salman, A.N.M.; Suprijanto, D. The metric dimension of a complete n-partite graph and its Cartesian product with a path. J. Comb. Math. Comb. Comput. 2009, 71, 283–293. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hayat, S.; Khan, A.; Zhong, Y. On Resolvability- and Domination-Related Parameters of Complete Multipartite Graphs. Mathematics 2022, 10, 1815. https://doi.org/10.3390/math10111815
Hayat S, Khan A, Zhong Y. On Resolvability- and Domination-Related Parameters of Complete Multipartite Graphs. Mathematics. 2022; 10(11):1815. https://doi.org/10.3390/math10111815
Chicago/Turabian StyleHayat, Sakander, Asad Khan, and Yubin Zhong. 2022. "On Resolvability- and Domination-Related Parameters of Complete Multipartite Graphs" Mathematics 10, no. 11: 1815. https://doi.org/10.3390/math10111815
APA StyleHayat, S., Khan, A., & Zhong, Y. (2022). On Resolvability- and Domination-Related Parameters of Complete Multipartite Graphs. Mathematics, 10(11), 1815. https://doi.org/10.3390/math10111815