Next Article in Journal
On the Commutators of Marcinkiewicz Integral with a Function in Generalized Campanato Spaces on Generalized Morrey Spaces
Previous Article in Journal
On Resolvability- and Domination-Related Parameters of Complete Multipartite Graphs
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Third Order Melnikov Functions of a Cubic Center under Cubic Perturbations

1
College of Mathematics and Information Science, Zhengzhou University of Light Industry, Zhengzhou 450002, China
2
Department of Mathematics, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
3
College of Science, Zhongyuan University of Technology, Zhengzhou 450007, China
*
Author to whom correspondence should be addressed.
Mathematics 2022, 10(11), 1816; https://doi.org/10.3390/math10111816
Submission received: 22 April 2022 / Revised: 11 May 2022 / Accepted: 16 May 2022 / Published: 25 May 2022
(This article belongs to the Section Difference and Differential Equations)

Abstract

:
In this paper, cubic perturbations of the integral system ( 1 + x ) 2 d H where H = ( x 2 + y 2 ) / 2 are considered. Some useful formulae are deduced that can be used to compute the first three Melnikov functions associated with the perturbed system. By employing the properties of the ETC system and the expressions of the Melnikov functions, the existence of exactly six limit cycles is given. Note that there are many cases for the existence of third-order Melnikov functions, and some existence conditions are very complicated—the corresponding Melnikov functions are not presented.
MSC:
34A99; 34C37; 37G15

1. Introduction

In the study of planar systems of differential equations, one of the most challenging problems is the second part of Hilbert’s 16th problem. Consider a planar system of differential equations in the following form
x ˙ = P ( x , y ) , y ˙ = Q ( x , y ) ,
where P and Q are polynomials of degree n. Then, the second part of Hilbert’s 16th problem asks for the upper bound for the number of limit cycles in planar polynomial systems of degree n and their relative positions (see [1,2], for example). Due to its difficulty, a weakened version, now known as the weakened 16th Hilbert problem is posed by Arnold [3] that asks for the upper bound for the number of limit cycles of the perturbed system.
x ˙ = H y + ϵ P ( x , y ) , y ˙ = H y + ϵ Q ( x , y ) ,
where | ϵ | 1 and H ( x , y ) is a Hamiltonian function. The problem has been researched for n = 2 by several research groups independently [4,5,6], and to answer this weakened version, various methods have been developed, among them a popular method is based on the Melnikov functions. By computing the higher-order Melnikov functions based on the algorithm of [7,8], researchers have studied the number of limit cycles bifurcated from the above perturbed system (see [9,10,11,12,13,14,15,16,17,18,19,20]). The results in [12] showed that quasi-homogeneous polynomial Hamiltonian systems have a bound on the number of limit cycle bifurcations from the period annulus at any order of Melnikov functions. Asheghi and Nabavi [16] discussed the following perturbed system
x ˙ = y ( 1 x 2 ) + ϵ i + j = 0 2 a i j x i y j , y ˙ = x ( 1 x 2 ) ϵ i + j = 0 2 b i j x i y j .
They studied the limit cycles by using Melnikov functions up to order three and proved that there are six or seven limit cycles of system (3).
Yang and Yu [17] considered the following system with n = 2
x ˙ = y ( 1 + x ) 2 ϵ i + j = 0 n a i j x i y j , y ˙ = x ( 1 + x ) 2 + ϵ i + j = 0 n b i j x i y j ,
using the Melnikov function of any order and proved that the upper bound for the number of limit cycles is three.
Following the work of [17], Liu [18] studied the number of limit cycles bifurcated from the origin of the following perturbed system
x ˙ = y ( 1 + x ) 3 + ϵ i + j = 0 3 a i j x i y j , y ˙ = x ( 1 + x ) 3 ϵ i + j = 0 3 b i j x i y j .
The main results showed that the first four Melnikov functions associated with the perturbed system can yield five limit cycles.
For system (4), it is easy to see when ϵ = 0 ; there exists a family of periodic orbits Γ h : H ( x , y ) = 1 2 ( x 2 + y 2 ) = h for 0 < h < 1 / 2 surrounding the origin. Then, the higher order Melnikov functions can be defined in the following way: fixing a transversal segment to the flow in (4) and using the energy level h to parameterize it, the corresponding displacement function is
d ( h , ϵ ) = ϵ M 1 ( h ) + ϵ 2 M 2 ( h ) + ϵ 3 M 3 ( h ) + , h 0 , 1 2 ,
where M k ( h ) is called the kth-order Melnikov function of system (4). For example, the first-order Melnikov function of system (4) takes the form
M 1 ( h ) = H = h Q ( x , y ) ( 1 + x ) 2 d x + P ( x , y ) ( 1 + x ) 2 d y .
If M 1 ( h ) 0 , every simple zero h 0 0 , 1 2 of M 1 ( h ) corresponds to a limit cycle of the perturbed system (4) near Γ h 0 . If M 1 ( h ) 0 , then the simple zero of M 2 ( h ) will become very important in investigating the number of limit cycles of the perturbed system. Similarly, we may use M 3 ( h ) , M 4 ( h ) ,⋯ to study the number of limit cycles [9,10,13,15,17].
In this paper, we also consider system (4), but with n = 3 . Thus, the system becomes a planar cubic system. We will study the upper bound of limit cycles of the system by using the higher-order Melnikov functions. Although, our system seems similar to the system in [17,18], it needs more-difficult 1-form decompositions than theirs.
The organization of the paper is as follows: in Section 2, some Lemmas and formulae are presented as preliminaries; in Section 3, the first three Melnikov functions are computed, and the corresponding bifurcated limit cycles are given; in Section 4, a brief discussion is presented.

2. Preliminaries

Let
ω = Q ( x , y ) ( 1 + x ) 2 d x + P ( x , y ) ( 1 + x ) 2 d y ,
then the Pfaffian form of system (4) is d H = ϵ ω .
The following Lemmas and Remarks shall be used to prove the main Theorems. The algorithm of calculating M k ( h ) is shown by Francoise [7] and Iliev [8].
Lemma 1 ([8,17]).  
Assume Γ h is the period annulus defined by H ( x , y ) = h , the polynomial function H(x,y) and the 1-form ω satisfy H = h ω = 0 if and only if there are two analytic functions q ( x , y ) and S ( x , y ) in a neighborhood of Γ h such that ω = q d H + d S .
Lemma 2 ([7,17]). 
Let ω = q ¯ 0 d H + d Q ¯ 0 + N 0 , then M 1 ( h ) = H = h ω = H = h N 0 ;
(1)
If M 1 ( h ) 0 , then N 0 = q ˜ 0 d H + d Q ˜ 0 . Let q 0 = q ¯ 0 + q ˜ 0 , Q 0 = Q ¯ 0 + Q ˜ 0 ; we have ω = q 0 d H + d Q 0 , and q 0 ω can be decomposed into q 0 ω = q ¯ 1 d H + d Q ¯ 1 + N 1 ; then M 2 ( h ) = H = h q 0 ω = H = h N 1 ;
(2)
If M 2 ( h ) 0 , then N 1 = q ˜ 1 d H + d Q ˜ 1 . Let q 1 = q ¯ 1 + q ˜ 1 , Q 1 = Q ¯ 1 + Q ˜ 1 ; we have q 0 ω = q 1 d H + d Q 1 , and q 1 ω can be decomposed into q 1 ω = q ¯ 2 d H + d Q ¯ 2 + N 2 ; then M 3 ( h ) = H = h q 1 ω = H = h N 2 ;
By this way, if M 1 ( h ) = M 2 ( h ) = = M i 1 ( h ) 0 , then q j ω = q j + 1 d H + d Q j + 1 , j i 2 and we assume q 1 = 1 . We have M i ( h ) = H = h q i 2 ω = H = h N i 1 , where q i 2 ω = q ¯ i 1 d H + d Q ¯ i 1 + N i 1 .
Remark 1.
The authors in [17] have noted that q i ω = q i + 1 d H + d Q i + 1 , d Q i is not used in the subsequent calculative process when i > 0 . Thus, the specific form of d Q i for i 1 will not be shown in the following sections.
In the next lemma, an algorithm to decompose q i ω is given to simplify the expression of M k ( h ) .
Define
ω i j k = x i y j ( 1 + x ) k d x , δ i j k = x i y j ( 1 + x ) k d y , Ω i j k = x i y j ln ( 1 + x ) ( 1 + x ) k d x , Δ i j k = x i y j ln ( 1 + x ) ( 1 + x ) k d y , Ω i j 2 k = x i y j ln 2 ( 1 + x ) ( 1 + x ) k d x , Δ i j 2 k = x i y j ln 2 ( 1 + x ) ( 1 + x ) k d y , J k ( h ) = H = h δ 00 k , J ¯ k ( h ) = H = h Δ 00 k , k 0 ,
where J k ( h ) and J ¯ k ( h ) are called the generators of M i ( h ) .
Therefore, ω also can be rewritten as
ω = i + j = 0 3 ( a i j δ i j 2 + b i j ω i j 2 ) .
Lemma 3.
(i)
For k = 2 , there exist 1-forms ω i j and δ i j as follows:
δ 01 2 = dH 1 + x 2 x dx 1 + x 2 , δ 10 2 = δ 00 1 δ 00 2 , δ 02 2 = 2 H δ 00 2 dy + 2 δ 00 1 δ 00 2 , δ 11 2 = x dH 1 + x 2 x 2 dx 1 + x 2 , δ 20 2 = δ 00 2 2 δ 00 1 + dy , ω 00 2 = dx 1 + x 2 , ω 10 2 = x dx 1 + x 2 , ω 20 2 = x 2 dx 1 + x 2 , ω 01 2 = y dx 1 + x 2 dy 1 + x + δ 00 1 , ω 02 2 = 2 dH 1 + x 2 d H 1 + x x 2 dx 1 + x 2 , ω 11 2 = y dH 1 + x 2 2 H δ 00 2 + δ 00 2 2 δ 00 1 + dy , ω 11 1 = d y ln 1 + x + ω 01 0 + Δ 00 0 , ω 03 2 = d y 3 1 + x + 3 y dH 1 + x 3 ω 11 1 , ω 12 2 = d 2 H 1 1 + x + ln 1 + x 2 1 1 + x + ln 1 + x dH x 3 dx 1 + x 2 , δ 03 2 = y 2 dH 1 + x 2 ω 12 2 , ω 21 2 = ω 11 1 ω 11 2 , δ 12 2 = x y dH 1 + x 2 ω 11 1 + ω 11 2 , δ 30 2 = 2 H ( δ 00 1 δ 00 2 ) δ 12 2 , ω 30 2 = x 3 dx 1 + x 2 , δ 21 2 = x 2 dH 1 + x 2 x 3 dx 1 + x 2 .
(ii)
If j is even,
ω 04 k = ( 2 H x 2 ) 2 ( 1 + x ) k d x = 4 H 2 4 H x 2 + x 4 ( 1 + x ) k d x = 4 H 2 d 1 ( k 1 ) ( 1 + x ) k 1 4 H d x 2 ( 1 + x ) k d x + x 4 ( 1 + x ) k d x
= d 4 H 2 ( k 1 ) ( 1 + x ) k 1 + 8 H ( k 1 ) ( 1 + x ) k 1 d H d 4 H x 2 ( 1 + x ) k d x + 4 x 2 ( 1 + x ) k d H + x 4 ( 1 + x ) k d x = 8 H ( k 1 ) ( 1 + x ) k 1 + 4 x 2 ( 1 + x ) k d x d H + d Q 04 k ( x , H ) , ω 06 k = 24 H 2 ( k 1 ) ( 1 + x ) k 1 + 24 H x 2 ( 1 + x ) k d x 6 x 4 ( 1 + x ) k d x d H + d Q 06 k ( x , H ) , ω 02 k = 2 ( k 1 ) ( 1 + x ) k 1 d H + d Q 02 k ( x , H ) , ω 08 k = 64 H 3 ( k 1 ) ( 1 + x ) k 1 + 96 H 2 x 2 ( 1 + x ) k d x 48 H x 4 ( 1 + x ) k d x + 8 x 6 ( 1 + x ) k d x d H + d Q 08 k ( x , H ) ,
δ 04 k = ( 2 H x 2 ) 2 ( 1 + x ) k d y = 2 H 1 2 δ 00 k + 8 H 4 δ 00 k 1 + 6 4 H δ 00 k 2 4 δ 00 k 3 + δ 00 k 4 , δ 06 k = 8 H 3 δ 00 k 12 H 2 δ 00 k 2 δ 00 k 1 + δ 00 k 2 + 6 H δ 00 k 4 δ 00 k 1 + 6 δ 00 k 2 4 δ 00 k 3 + δ 00 k 4 δ 00 k + 6 δ 00 k 1 15 δ 00 k 2 + 20 δ 00 k 3 15 δ 00 k 4 + 6 δ 00 k 5 δ 00 k 6 , δ 02 k = 2 H δ 00 k δ 00 k δ 00 k 2 + 2 δ 00 k 1 , Ω 02 k = ( 2 H x 2 ) ln ( 1 + x ) ( 1 + x ) k d x = 2 H d ln ( 1 + x ) ( 1 + x ) k d x x 2 ln ( 1 + x ) ( 1 + x ) k d x = 2 ln ( 1 + x ) ( 1 + x ) k d x d H + d Q ¯ 02 k , Ω 04 k = 8 H ln ( 1 + x ) ( 1 + x ) k d x + 4 x 2 ln ( 1 + x ) ( 1 + x ) k d x d H + d Q ¯ 04 k , Δ 02 k = 2 H Δ 00 k Δ 00 k Δ 00 k 2 + 2 Δ 00 k 1 , Δ 04 k = 2 H 1 2 Δ 00 k + 8 H 4 Δ 00 k 1 + 6 4 H Δ 00 k 2 4 Δ 00 k 3 + Δ 00 k 4 ,
If j is odd,
ω 0 j k = d y j ( k 1 ) ( 1 + x ) k 1 + j k 1 δ 0 , j 1 k 1 = d S 0 j k ( x , y ) + j k 1 δ 0 , j 1 k 1 , δ 0 j k = y j 1 ( 1 + x ) k d H ω 0 , j 1 k 1 + ω 0 , j 1 k , Ω 0 j k = d y j ln ( 1 + x ) ( 1 + x ) k d x + j k 1 Δ 0 , j 1 k 1 + j ( k 1 ) 2 δ 0 , j 1 k 1 = d S ¯ 0 j k ( x , y ) + j k 1 Δ 0 , j 1 k 1 + j ( k 1 ) 2 δ 0 , j 1 k 1 , Δ 0 j k = y j 1 ln ( 1 + x ) ( 1 + x ) k d H Ω 0 , j 1 k 1 + Ω 0 , j 1 k .
Proof. 
(i) Here, we use partial integration and the Laurent expansion method to decompose ω i j 2 and δ i j 2 , and some decompositions have been proved in [17].
ω 11 1 = x y 1 + x d x = y d ( x ln ( 1 + x ) ) = d ( y ( x ln ( 1 + x ) ) ) ( x ln ( 1 + x ) ) d y = d ( y ln ( 1 + x ) ) + ω 01 0 + Δ 00 0 , ω 03 2 = y 3 d 1 1 + x = d y 3 1 + x + 3 y 2 1 + x d y = d y 3 1 + x + 3 y 2 ( 1 + x ) d y 2 = d y 3 1 + x + 3 y 1 + x d H 3 ω 11 1 , ω 12 2 = x ( 2 H x 2 ) ( 1 + x ) 2 d x = 2 H d 1 1 + x + ln ( 1 + x ) x 3 ( 1 + x ) 2 d x = d 2 H 1 1 + x + ln 1 + x 2 1 1 + x + ln 1 + x dH x 3 dx 1 + x 2 , δ 03 2 = y 2 2 ( 1 + x ) 2 d y 2 = y 2 ( 1 + x ) 2 d H ω 12 2 , δ 30 2 = x ( 2 H y 2 ) ( 1 + x ) 2 d y = 2 H ( δ 00 1 δ 00 2 ) δ 12 2 .
The Formula (10) is obtained. The proof of (ii) is omitted. □
Lemma 4.
The generators J k ( h ) shown in (8) can be obtained through Maple software
J 1 ( h ) = 2 π 1 1 1 2 h , J 2 ( h ) = 4 h π 1 2 h 3 / 2 , J 3 ( h ) = 6 h π 1 2 h 5 / 2 , J 4 ( h ) = 4 h π h + 2 1 2 h 7 / 2 , J 5 ( h ) = 5 h π 3 h + 2 1 2 h 9 / 2 , J 6 ( h ) = 6 h π h 2 + 6 h + 2 1 2 h 11 / 2 , J 7 ( h ) = 7 h π 5 h 2 + 10 h + 2 1 2 h 13 / 2 , J 8 ( h ) = 2 h π 5 h 3 + 60 h 2 + 60 h + 8 1 2 h 15 / 2 , J 01 ( h ) = H = h ω 01 0 = 2 π h .
Define
F k ( r ) = 0 2 π cos k θ ln ( 1 + r cos θ ) 1 + r cos θ d θ , G k ( r ) = 0 2 π cos k θ ln ( 1 + r cos θ ) d θ ,
then
F 0 ( r ) = 2 π 1 r 2 ln 2 ( 1 r 2 ) 1 + 1 r 2 , F 2 ( r ) = 2 π 1 1 r 2 r 2 2 π r 2 ln 1 + 1 r 2 2 + 2 π r 2 1 r 2 ln 2 ( 1 r 2 ) 1 + 1 r 2 , G 0 ( r ) = 2 π ln 1 + 1 r 2 2 , G 1 ( r ) = 2 π 1 1 r 2 r .
The proof of the expressions F 0 ( r ) , F 2 ( r ) , G 0 ( r ) and G 1 ( r ) can be seen in [10].
Lemma 5.
The following expressions can be deduced by using the above formulae
H = h Δ 002 0 = 2 r 2 ( F 0 ( r ) F 2 ( r ) ) , J ¯ 0 ( r ) = r G 1 ( r ) , J ¯ 1 ( r ) = r F 1 ( r ) = F 0 ( r ) G 0 ( r ) , J ¯ 2 ( r ) = r F 0 ( r ) + J 2 ( r ) , J ¯ 3 ( r ) = 1 2 J 3 ( r ) + r 2 ( F 0 ( r ) + J ¯ 2 ( r ) ) , J ¯ 10 ( r ) = r 2 G 2 ( r ) ,
where
G 2 ( r ) = π ln 1 + 1 r 2 2 + 1 r 2 1 r 2 + 1 2 , r = 2 h .
Proof. 
Since
Ω 01 1 = y ln ( 1 + x ) 1 + x d x = y d 1 2 ln 2 ( 1 + x ) = d 1 2 y ln 2 ( 1 + x ) 1 2 ln 2 ( 1 + x ) d y = d 1 2 y ln 2 ( 1 + x ) 1 2 Δ 002 0 ,
therefore
H = h Ω 01 1 = 1 2 H = h Δ 002 0 .
Let r = 2 h , x = r cos θ and y = r sin θ , then
H = h Ω 01 1 = r 2 0 2 π sin 2 θ ln ( 1 + r cos θ ) 1 + r cos θ d θ = r 2 0 2 π ( 1 cos 2 θ ) ln ( 1 + r cos θ ) 1 + r cos θ d θ = r 2 ( F 0 ( r ) F 2 ( r ) ) ,
which implies H = h Δ 002 0 = 2 r 2 ( F 0 ( r ) F 2 ( r ) ) . We also have
J ¯ 0 ( r ) = H = h ln ( 1 + x ) d y = r 0 2 π cos θ ln ( 1 + r cos θ ) d θ = r G 1 ( r ) . J ¯ 1 ( r ) = H = h ln ( 1 + x ) 1 + x d y = r 0 2 π cos θ ln ( 1 + r cos θ ) 1 + r cos θ d θ = r F 1 ( r ) = r 0 2 π ln ( 1 + r cos θ ) 1 r 1 r ( 1 + r cos θ ) d θ = F 0 ( r ) G 0 ( r ) .
By
F 0 ( r ) = 0 2 π cos θ ln 1 + r cos θ 1 1 + r cos θ 2 d θ
we have
J ¯ 2 ( r ) = H = h ln ( 1 + x ) ( 1 + x ) 2 d y = r 0 2 π cos θ ln ( 1 + r cos θ ) ( 1 + r cos θ ) 2 d θ = r F 0 ( r ) 0 2 π cos θ ( 1 + r cos θ ) 2 d θ = r F 0 ( r ) + J 2 ( r ) .
Because
F 02 ( r ) : = 0 2 π ln ( 1 + r cos θ ) ( 1 + r cos θ ) 2 d θ = 0 2 π ln ( 1 + r cos θ ) 1 1 + r cos θ r cos θ ( 1 + r cos θ ) 2 d θ = F 0 ( r ) + J ¯ 2 ( r ) ,
on the other hand, we have
F 02 ( r ) = 0 2 π cos θ 1 2 ln 1 + r cos θ 1 + r cos θ 3 d θ ,
therefore,
J ¯ 3 ( r ) = r 0 2 π cos θ ln ( 1 + r cos θ ) ( 1 + r cos θ ) 3 d θ = r 1 2 0 2 π cos θ ( 1 + r cos θ ) 3 1 2 F 02 ( r ) = 1 2 J 3 ( r ) + r 2 ( F 0 ( r ) + J ¯ 2 ( r ) ) . H = h Δ 10 0 = H = h x ln ( 1 + x ) d y = r 2 0 2 π cos 2 θ ln ( 1 + r cos θ ) d θ = r 2 G 2 ( r ) , G 2 ( r ) = 0 2 π cos 3 θ 1 + r cos θ d θ = 1 r 3 H = h x 2 1 + x d y = 2 r 3 r r x 3 ( 1 + x ) r 2 x 2 d x = π r 4 + r 2 + 2 1 r 2 2 r 3 r 2 1 , G 2 ( r ) = π ln 1 + 1 r 2 2 + 1 r 2 1 r 2 + 1 2 for G 2 ( 0 ) = 0 .
The Chebyshev criterion will be used in the following (see [16,21,22] for example).
Let f 0 , f 1 , …, f n 1 be analytic functions on an open interval L of R. An ordered set ( f 0 , f 1 , . . . , f n 1 ) is an extended complete Chebyshev system (in short, ECT system) on L if, for all i = 1 , 2 , . . . , n 1 , any nontrivial linear
λ 0 f 0 ( x ) + λ 1 f 1 ( x ) + . . . + λ i f i ( x )
has at most i 1 isolated zeros on L counted with multiplicities.
Lemma 6 ([21]). 
( f 0 , f 1 , . . . , f n 1 ) is an ECT system on L if, and only if, for each i = 1 , 2 , . . . , n ,
W i 1 ( x ) = W [ f 0 ( x ) , f 1 ( x ) , , f i 1 ( x ) ] 0
for all x L .
Remark 2.
If ( f 0 , f 1 , . . . , f n 1 ) is an ECT system on L, then for each i = 1 , 2 , . . . , n 1 there exists a linear combination (30) with exactly i 1 simple zeros on L (see, for instance, Remark 3.7 in [22]).

3. The Calculation of Mk(h)

3.1. The Melnikov Function of First-Order M1(h)

Lemma 7.
The 1-form ω of (9) can be expressed
ω = q ¯ 0 d H + d Q ¯ 0 + N 0 ,
where
q ¯ 0 = q ¯ 0 ( x , y ) = a 03 y 2 + b 11 b 21 y 1 + x 2 + a 12 a 30 + 3 b 03 y 1 + x + a 01 a 11 + a 21 1 + x 2 + a 11 2 a 21 + 2 a 03 + 2 b 02 2 b 12 1 + x + a 21 + 2 a 03 b 12 ln 1 + x ,
d Q ¯ 0 = d Q ¯ 0 ( x , y , H ) = 2 a 03 + b 02 b 12 1 + x + a 03 b 12 ln 1 + x dH + b 03 y 3 b 12 a 03 b 02 y 2 + b 01 y 1 + x 2 + b 12 a 03 y 2 + a 12 a 30 + 3 b 03 b 21 y 1 + x dx a 21 b 30 x 3 + a 11 b 20 x 2 + a 01 b 10 x b 00 d x 1 + x 2 + a 12 a 30 + 3 b 03 b 21 ln ( 1 + x ) + a 20 a 02 a 30 + a 12 b 01 1 + x + b 11 b 21 3 b 03 y 2 1 + x dy , N 0 = A 0 ω 01 0 + H A 21 + A 20 δ 00 2 + H A 11 + A 10 δ 00 1 + A 0 Δ 00 0 , with A 0 = a 30 a 12 + b 21 3 b 03 , A 21 = 2 a 02 2 a 12 2 b 11 + 2 b 21 , A 20 = a 00 a 10 + a 20 a 02 a 30 + a 12 + b 11 b 21 , A 11 = 2 a 30 , A 10 = 2 a 02 + a 10 2 a 12 2 a 20 + 2 a 30 + b 01 2 b 11 + 2 b 21 .
Theorem 1.
M 1 ( h ) has at most three zeros, i.e., system (4) has at most three limit cycles by the first-order Melnikov function, and the upper bound for the number of limit cycles is reached.
Proof. 
Let z = 1 2 h , z ( 0 , 1 ) ; by Lemmas 2, 4 and 5,
M 1 ( h ) = H = h N 0 = A 0 J ¯ 1 ( h ) + h A 21 + A 20 J 2 ( h ) + h A 11 + A 10 J 1 ( h ) + A 0 J 0 ( h ) = M 1 1 z 2 2 = π 1 z z 3 n 4 z 4 + n 3 z 3 + n 2 z 2 + n 0 z + 1 , n 0 = 2 a 0 a 10 + a 20 a 30 , n 2 = 2 a 2 + a 10 a 12 2 a 20 + 3 a 30 + b 1 b 11 + b 21 , n 3 = 2 a 2 + 3 a 12 a 30 + 3 b 3 + 2 b 11 3 b 21 , n 4 = a 12 a 30 3 b 3 + b 21 .
It is easy to verify that ( z + 1 , z 2 , z 3 , z 4 ) is an ECT system for z > 0 by Lemma 6 and since ( n 0 , n 2 , n 3 , n 4 ) ( a 10 , a 30 , b 11 , b 21 ) = 8 0 . Therefore, M 1 ( h ) has exactly three zeros when taking appropriate coefficients by Remark 2. □

3.2. The Melnikov Function of Second-Order M2(h)

M 1 ( h ) 0 implies that n 0 = n 2 = n 3 = n 4 = 0 ; solving them, we have
a 00 = a 30 + a 20 b 01 , a 10 = 2 a 30 + 2 a 20 b 01 , a 12 = a 30 + b 21 3 b 03 , b 11 = 2 a 30 + 3 b 03 + a 02 .
Let (33) hold; we compute M 2 ( h ) . First, it has
N 0 = a 30 2 H δ 00 1 2 H δ 00 2 + 2 Δ 00 0 2 δ 00 1 + δ 00 2 + 2 ω 01 = a 30 2 1 + x 2 ln 1 + x + x 3 + x y 2 2 x 1 dy 1 + x 2 + 2 y dx = a 30 x y 2 d y ( 1 + x ) 2 + 2 ln ( 1 + x ) + x 2 x 1 dy 1 + x + 2 y dx = a 30 x y dH 1 + x 2 + d 2 ln ( 1 + x ) + x 2 x 1 1 + x y ,
which implies that
q ˜ 0 = a 30 y x 1 + x 2 , d Q ˜ 0 = d 2 ln ( 1 + x ) + x 2 x 1 1 + x y
by Lemma 2. Then
q 0 = q ¯ 0 + q ˜ 0 = f 0 ( x ) + g 0 ( x , y ) , f 0 ( x ) = a 01 a 11 + a 21 1 + x 2 + a 11 2 a 21 + 2 a 03 + 2 b 02 2 b 12 1 + x + a 21 + 2 ln 1 + x a 03 b 12 , g 0 ( x , y ) = a 03 y 2 + 2 a 30 + 3 b 03 + a 02 b 21 y 1 + x 2 + b 21 2 a 30 y 1 + x + a 30 y x 1 + x 2 , d Q 0 = d Q ¯ 0 + d Q ˜ 0 = Ω 1 ( x ) + Ω 2 ( x , y ) + h ( x ) d H , Ω 1 ( x ) = a 21 b 30 x 3 + a 11 b 20 x 2 + a 01 b 10 x b 00 dx 1 + x 2 , Ω 2 ( x , y ) = b 03 y 3 1 + x 2 a 03 b 12 x b 02 y 2 1 + x 2 + x 2 a 30 + 2 x a 30 + b 01 y 1 + x 2 dx + x 2 a 30 + a 20 a 30 x 3 b 03 y 2 + a 20 a 30 b 01 1 + x dy , h ( x ) = 2 ( a 03 + b 02 b 12 ) 1 + x 2 a 03 b 12 ln 1 + x , and ω = q 0 d H + d Q 0 .
Lemma 8.
The 1-form q 0 ω can be decomposed into
q 0 ω = q ¯ 1 d H + d Q ¯ 1 + N 1 ,
where
q ¯ 1 = q 0 h ( x ) + q 0 2 + q 10 , q 10 = 2 a 03 b 12 2 ln 2 ( 1 + x ) + 2 β 03 2 2 α 02 1 + 4 α 04 3 + 4 a 03 b 12 a 03 + b 02 b 12 1 + x × ln ( 1 + x ) + 2 α 02 4 + 3 β 01 3 3 1 + x 3 + α 02 3 + β 01 2 1 + x 2 + 2 α 02 2 + β 01 1 1 + x + 4 α 04 4 3 x 2 + 2 H 3 x 1 3 1 + x 3 β 03 3 2 x 2 y 2 + 3 x + 1 1 + x 3 + y 3 α 03 2 + β 02 1 1 + x + 2 α 04 3 2 H + 3 + 4 x 1 + x 2 + β 03 2 y 2 + 2 x + 2 1 + x 2 + 2 a 03 b 12 3 y b 03 + 2 a 03 + 2 b 02 2 b 12 1 + x , N 1 = 4 5 α 05 4 3 + β 04 3 H 2 + 2 β 02 3 10 α 05 4 3 2 β 04 3 + α 03 4 H β 02 3 + 5 3 α 05 4 + β 04 3 α 03 4 + 1 3 α 01 4 + β 00 3 δ 00 3 + 2 β 02 2 + 40 α 05 4 3 + 8 β 04 3 + 3 α 03 3 H + 2 β 02 3 β 02 2 20 α 05 4 3 4 β 04 3 + 2 α 03 4 3 2 α 03 3 + 1 2 α 01 3 + β 00 2 δ 00 2 + 2 a 03 b 12 b 01 a 30 4 5 α 05 4 3 + β 04 3 H β 02 3 + 2 β 02 2 + 10 α 05 4 + 6 β 04 3 + α 01 2 α 03 4 + 3 α 03 3 + β 00 1 δ 00 1 2 a 03 b 12 a 30 + 3 b 03 + 5 3 α 05 4 + β 04 3 + β 10 0 α 01 0 + β 02 1 + 3 α 03 2 ω 01 0 + 2 a 03 b 12 a 20 3 b 03 3 a 30 α 01 1 β 02 1 3 α 03 2 Δ 00 0 .
Proof. 
Following (36), we have
q 0 ω = q 0 ( q 0 d H + d Q 0 ) = q 0 2 d H + q 0 d Q 0 = q 0 2 d H + ( f 0 ( x ) + g 0 ( x , y ) ) ( Ω 1 ( x ) + Ω 2 ( x , y ) + h ( x ) d H ) = ( q 0 2 + q 0 h ( x ) ) d H + f 0 ( x ) Ω 1 ( x ) + g 0 ( x , y ) Ω 1 ( x ) + q 0 ( x , y ) Ω 2 ( x , y ) = ( q 0 2 + q 0 h ( x ) ) d H + f 0 ( x ) Ω 1 ( x ) + k = 0 4 j = 1 k + 1 α 0 j k ω 0 j k + k = 0 3 j = 0 k + 1 β 0 j k δ 0 j k + j = 1 3 α ¯ 0 j 2 Ω 0 j 2 + α ¯ 02 1 Ω 02 1 + α ¯ 01 0 Ω 01 0 + β 10 0 δ 10 0 + β ¯ 02 1 Δ 02 1 + β ¯ 00 1 Δ 00 1 + β ¯ 00 0 Δ 00 0 + β ¯ 10 0 Δ 10 0 ,
and the expressions of α i j k and β i j k are omitted.
From Lemma 3, we can calculate the decomposed expressions of ω 0 j k and δ 0 j k for k 2 . Together with
ω 01 1 = d ( y ln ( 1 + x ) ) Δ 00 0 , ω 02 1 = d ( 2 H ln ( 1 + x ) ) 2 ln 1 + x dH x 2 1 + x d x , Ω 03 2 = d 1 + ln ( 1 + x ) 1 + x y 3 + 3 y 2 1 + ln ( 1 + x ) 1 + x d y = d 1 + ln ( 1 + x ) 1 + x y 3 + 3 ( δ 02 1 + Δ 02 1 ) , Ω 02 2 = 2 ( 1 + ln ( 1 + x ) ) 1 + x dH + d Q ¯ 02 2 ( x , H ) , Ω 02 1 = ln 1 + x 2 dH + d Q ¯ 02 1 ( x , H ) , Ω 01 1 = d 1 2 y ln 2 ( 1 + x ) 1 2 Δ 002 0 , Ω 01 2 = d 1 + ln ( 1 + x ) 1 + x y + 1 + ln ( 1 + x ) 1 + x d y = δ 00 1 + Δ 00 1 + d S ¯ 01 2 ( x , y ) , Ω 01 0 = d y ( 1 + x ) ( ln ( 1 + x ) 1 ) ( 1 + x ) ( ln ( 1 + x ) 1 ) d y = Δ 00 0 Δ 10 0 ω 01 0 + d S ¯ 01 0 ( x , y ) , Δ 02 1 = y 2 ln ( 1 + x ) 1 + x d y = y ln ( 1 + x ) 2 ( 1 + x ) d y 2 = y ln ( 1 + x ) 1 + x d H x y ln ( 1 + x ) 1 + x d x = y ln ( 1 + x ) 1 + x d H y d ( 1 + x ln 1 + x 1 1 2 ln 2 1 + x ) = y ln ( 1 + x ) 1 + x d H + d S ¯ 02 1 ( x , y ) + Δ 00 0 + Δ 10 0 + ω 01 0 1 2 Δ 002 0 , δ 02 1 = y 2 ( 1 + x ) d y 2 = y 1 + x d H ω 11 1 = y 1 + x d H + d y ln 1 + x ω 01 0 Δ 00 0 .
By (39) and (40) and the expressions of ω 0 j k and δ 0 j k , (37) is given. □
Theorem 2.
Let M 1 ( h ) 0 ; M 2 ( h ) has at most four zeros, then system (4) has at most four limit cycles by the second-order Melnikov function, and the maximum number can be attained.
Proof. 
Let z = 1 2 h , z ( 0 , 1 ) . Together with Lemmas 2, 4 and 5,
M 2 1 z 2 2 = π ( z 1 ) z 5 ( l 6 z 6 + l 5 z 5 + l 4 z 4 + l 3 z 2 ( z + 1 ) + l 1 ( z + 1 ) ) .
The function ( z + 1 , z 2 ( z + 1 ) , z 4 , z 5 , z 6 ) is an ECT system for z > 0 by Lemma 6. Furthermore, when we take b 03 = a 21 = b 30 = b 10 = a 03 = a 01 = b 02 = b 00 = b 20 = a 20 = 0 , then ( l 1 , l 3 , l 4 , l 5 , l 6 ) ( a 02 , a 30 , a 11 , b 12 , b 01 ) = 4 a 11 b 21 ( 5 a 30 3 b 21 a 11 2 + b 12 4 a 02 + 21 a 30 2 b 01 7 b 21 a 11 + 3 b 12 2 2 b 01 + 3 a 30 + a 02 b 21 ) 0 ; it follows from Remark 2 that M 2 ( h ) has exactly four zeros by choosing appropriate coefficients h ( 0 , 1 2 ) . □

3.3. The Third-Order Melnikov Function

Let M 2 ( h ) 0 , i.e., l 1 = l 3 = l 4 = l 5 = l 6 = 0 of Theorem 2. By using the Maple software, there are 28 cases. Some cases are short; however, some cases are very long, and we cannot continue to compute the higher-order Melnikov functions. Here, we only show five cases.
C a s e ( 1 ) a 02 = 3 b 21 , a 20 = 2 b 21 , a 30 = b 01 = b 21 , b 02 = a 03 1 2 a 11 + a 21 , b 03 = b 21 , b 12 = a 03 ; C a s e ( 2 ) a 01 = a 21 + 4 3 a 03 2 b 02 , a 02 = 3 b 03 , a 11 = 2 a 21 + 4 3 a 03 2 b 02 , a 20 = 6 b 03 , a 30 = b 21 = 0 , b 01 = 6 b 03 , b 12 = 5 3 a 03 ; C a s e ( 3 ) a 01 = a 21 + 2 3 b 12 2 b 02 , a 03 = 2 3 b 12 , a 11 = 2 a 21 + 2 3 b 12 2 b 02 , a 20 = b 01 , a 02 = a 30 = b 03 = b 21 = 0 ; C a s e ( 4 ) a 01 = a 21 2 b 02 , a 02 = 3 b 21 , a 03 = b 12 , a 11 = 2 ( a 21 b 02 ) , a 20 = a 30 = b 21 , b 03 = b 21 ; C a s e ( 5 ) a 02 = a 20 , a 03 = b 12 = 0 , b 21 = a 30 = b 03 , b 00 = a 20 b 01 + b 03 2 a 01 a 11 + 2 b 02 a 20 + 3 b 03 , b 10 = 2 a 1 a 20 + 2 a 01 b 03 2 a 11 b 01 a 11 b 03 + 4 a 20 b 02 2 a 20 b 20 2 b 01 b 2 + 2 b 01 b 20 2 ( a 20 + 3 b 03 ) 5 b 02 b 03 3 b 03 b 20 2 ( a 20 + 3 b 03 ) , b 30 = a 11 b 03 a 20 b 02 a 20 b 20 2 b 02 b 03 4 b 03 b 20 2 ( a 20 + 3 b 03 ) .
Assume that M 1 ( h ) = M 2 ( h ) 0 , then
q 1 ω = q ¯ 2 d H + d Q ¯ 2 + N 2 .
Lemma 9.
In Case (1), there exists (43), where
q 1 = q ¯ 1 + q ˜ 1 = f 1 ( x ) + g 1 ( x , y ) , f 1 ( x ) = a 01 a 11 + a 21 2 1 + x 4 + 2 a 03 a 01 a 11 + a 21 + b 0 b 10 + b 20 b 30 3 ( 1 + x ) 3 + 2 a 01 a 11 + a 21 4 a 03 a 11 + 2 a 21 3 ( 1 + x ) 3 2 a 03 2 + 3 a 01 a 11 a 21 3 b 10 + 6 b 20 9 b 30 a 03 6 a 01 a 11 + a 21 a 21 3 ( 1 + x ) 2 + 2 a 03 a 21 + 4 a 03 a 11 + 3 b 20 9 b 30 3 ( 1 + x ) + a 21 2 + 2 a 03 a 21 b 30 M ,
g 1 ( x , y ) = y ( 1 + x ) 4 a 03 2 y 3 + 2 3 a 03 b 21 5 x + 2 y 2 + 2 a 01 a 11 + a 21 a 03 + b 21 2 y 2 a 01 a 11 + a 21 b 21 y 10 a 03 2 a 03 a 11 + 2 a 03 a 21 + 6 b 21 2 y 3 b 21 4 a 01 + 2 a 03 5 a 11 + 6 a 21 3 1 + x 3 + y 2 b 21 a 03 + a 21 x + 2 a 03 a 21 + b 21 2 y b 21 2 a 03 a 11 + 2 a 21 1 + x 2 , q ¯ 2 = q 1 q 0 + q 1 h ( x ) + q 20 , N 2 = 4 b 21 a 03 a 21 b 30 + ξ 01 0 η 02 1 3 ξ 03 2 5 3 ξ 05 4 η 04 3 ω 01 0 + 4 a 21 b 30 a 03 b 21 ξ 01 1 η 02 1 3 ξ 03 2 Δ 00 0 + η 10 0 7 5 ξ 07 6 η 06 5 δ 10 0 + 1 5 ξ 01 6 + 1 5 2 H 1 3 7 ξ 07 6 + 5 η 06 5 + 2 H 1 2 ξ 05 6 + η 04 5 + 1 5 5 η 02 5 + 3 ξ 03 6 2 H 1 δ 00 5 + 1 4 ξ 01 5 + η 00 4 + 1 20 2 H 1 2 20 η 04 4 + 120 η 06 5 + 25 ξ 05 5 + 168 ξ 07 6 + 1 4 4 η 02 4 + 16 η 04 5 + 3 ξ 03 5 + 16 ξ 05 6 2 H 1 + 6 5 ξ 03 6 + 2 η 02 5 δ 00 4 + 3 ξ 03 3 ξ 03 4 5 ξ 05 5 + ξ 01 2 + ξ 05 6 + η 04 5 4 η 04 4 + 2 η 02 2 η 02 3 + η 00 1 + 3 5 7 ξ 07 6 + 5 η 06 5 2 H 5 2 3 5 ξ 05 4 + 3 η 04 3 2 H 3 δ 00 1 + 1 2 ξ 01 3 3 4 ξ 03 5 η 02 4 + η 00 2 + 2 ξ 03 4 4 ξ 05 6 4 η 04 5 + 2 η 02 3 + 1 6 6 η 02 2 + 24 η 04 3 + 9 ξ 03 3 + 40 ξ 05 4 2 H 1 1 2 4 η 04 4 + 5 ξ 05 5 2 H 3 4 5 7 ξ 07 6 + 5 η 06 5 6 H 5 δ 00 2 + 1 3 ξ 01 4 3 5 ξ 03 6 η 02 5 + η 00 3 + 3 2 ξ 03 5 + 2 η 02 4 + η 02 3 + 4 η 04 4 + ξ 03 4 + 5 ξ 05 5 2 H 1 + 1 3 2 H 1 2 5 ξ 05 4 + 3 η 04 3 2 2 H 3 ξ 05 6 + η 04 5 3 5 2 H 1 2 H 5 7 ξ 07 6 + 5 η 06 5 δ 00 3 .
Proof. 
Under Case (1), there exist M 1 ( h ) = M 2 ( h ) 0 , Together with Lemma 2, N 1 can be written as N 1 = q ˜ 1 d H + d Q ˜ 1 by H = h N 1 = 0 . By Case (1), we have
N 1 = 1 3 b 21 2 2 H 1 4 H a 03 + 3 a 01 2 a 03 3 a 11 + 3 a 21 δ 00 3 + 8 H a 03 + 9 a 01 4 a 03 9 a 11 + 9 a 21 δ 00 2 2 a 03 8 H δ 00 1 + 3 Δ 00 0 3 δ 00 1 + 8 ω 01 0 = 4 a 03 b 21 y 4 3 1 + x 3 b 21 4 a 03 x 2 x + 2 2 3 a 01 + a 03 3 a 11 + 3 a 21 x 3 1 + x 2 b 21 3 a 01 6 a 03 + 3 a 11 3 a 21 3 1 + x 2 2 b 21 2 x a 03 a 01 + 2 a 03 + a 11 a 21 y 2 1 + x 3 dy 2 3 a 03 b 21 3 ln ( 1 + x ) dy + 8 y dx
= q 1 ˜ d H + d Q ˜ 1 , where q ˜ 1 = 2 b 21 y 3 a 03 x 2 2 y 2 a 03 + 9 x a 03 3 a 01 + 6 a 03 + 3 a 11 3 a 21 3 1 + x 3 , d Q ˜ 1 = d 2 b 21 a 03 y 3 1 + 2 x 3 1 + x 2 + b 21 2 a 03 + a 01 a 11 + a 21 1 + x a 01 a 11 + a 21 1 + x 2 2 3 b 21 a 03 2 x + 3 M y .
By Lemma 2, q 1 = q ¯ 1 + q ˜ 1 : = f 1 ( x ) + g 1 ( x , y ) . Then, we have q 1 ω = q 1 q 0 d H + q 1 d Q 0 , where
q 1 d Q 0 = q 1 ( Ω 1 ( x ) + Ω 1 ( x , y ) + h ( x ) d H ) = q 1 h ( x ) d H + f 1 ( x ) Ω 1 ( x ) + g 1 ( x , y ) Ω 1 ( x ) + q 1 Ω 2 ( x , y ) = q 1 h ( x ) d H + f 1 ( x ) Ω 1 ( x ) + k = j 1 6 j = 1 7 ξ 0 j k ω 0 j k + k = j 1 5 j = 2 6 η 0 j k δ 0 j k + k = 0 4 ( η 00 k δ 00 k + η 01 k δ 01 k ) + η 10 0 δ 10 0 + Ξ 01 0 Ω 01 0 + Ξ 02 2 Ω 02 2 + Ξ 32 2 Ω 03 2 + η ¯ 02 1 Δ 02 1 + η ¯ 10 0 Δ 10 0 .
Theorem 3.
Let M 1 ( h ) = M 2 ( h ) 0 and Case (1) hold. M 3 ( h ) has exactly six simple zeros; moreover, system (4) has exactly six limit cycles by the third-order Melnikov function.
Proof. 
Let z = 1 2 h , z ( 0 , 1 ) . By Lemmas 2–5, it yields
M 3 ( h ) = H = h N 2 = b 21 π 24 z 9 ( z 1 ) ( k 10 z 10 + k 9 z 9 + k 8 z 8 + k 7 z 6 ( z + 1 ) + k 5 z 4 ( z + 1 ) + k 3 z 2 ( z + 1 ) + k 1 ( z + 1 ) ) ,
It is easy to verify that ( z + 1 , z 2 ( z + 1 ) , z 4 ( z + 1 ) , z 6 ( z + 1 ) , z 8 , z 9 , z 10 ) is an ECT system according to Lemma 6. Let a 11 = a 21 = 0 ; one can obtain that
( k 1 , k 3 , k 5 , k 7 , k 8 , k 9 , k 10 ) ( a 01 , a 03 , b 00 , b 10 , b 20 , b 21 , b 30 ) = 513684799488 b 21 a 01 160 a 03 3 b 30 a 01 4 4 a 03 28 a 03 + 40 b 10 + 64 b 20 247 b 30 a 01 3 + a 03 2 218 a 03 16 b 10 + 328 b 20 777 b 30 a 01 2 2 a 03 3 14 a 03 + 16 b 0 27 b 10 + 97 b 20 167 b 30 a 01 + 56 a 03 4 b 00 b 10 + b 20 b 30 0
by Remark 2, one can choose enough coefficients such that M 3 ( h ) has exactly six simple zeros. □
By taking similar steps, we consider Cases (2)–(5).
Theorem 4.
Let M 1 ( h ) = M 2 ( h ) 0 , then
(i)
in Case (2), M 3 ( h ) has at most six zeros;
(ii)
in Case (3), M 3 ( h ) has exactly four simple zeros;
(iii)
in Case (4), M 3 ( h ) has exactly five simple zeros;
(iv)
in Case (5), M 3 ( h ) has exactly six simple zeros.
Proof. 
Let z = 1 2 h . (i) In Case (2),
M 3 ( h ) = M 3 1 z 2 2 = H = h N 2 = a 03 b 03 π 18 z 7 [ 32 a 03 z 9 4 46 a 03 + 45 a 21 45 b 30 z 8 + 3 262 a 03 + 360 a 21 + 15 b 2 + 60 b 20 480 b 30 z 7 3 386 a 03 + 444 a 21 + 105 b 02 40 b 10 + 380 b 20 1164 b 30 z 6 3 2 a 03 72 a 21 15 b 00 99 b 02 + 155 b 10 367 b 20 + 651 b 30 z 4 z + 1 + 27 4 a 03 17 b 00 6 b 02 + 25 b 10 33 b 20 + 41 b 30 z 2 z + 1 + 270 b 00 b 10 + b 20 b 30 z + 1 ] .
Here, we can prove that the function ( z + 1 , z 2 ( z + 1 ) , z 4 ( z + 1 ) , z 6 , z 7 , z 8 , z 9 ) is an ECT system. However, the corresponding seven coefficients are not independent, and M 3 ( h ) has at most six zeros.
(ii) In Case (3), by Lemmas 2–5
M 3 ( h ) = M 3 1 z 2 2 = H = h N 2 = b 12 b 01 π ( z 1 ) 27 z 7 [ 108 a 21 + 54 b 12 108 b 30 z 7 + 180 a 21 36 b 02 74 b 12 108 b 20 + 396 b 30 z 6 + 36 a 21 + 45 b 02 54 b 10 + b 12 + 144 b 20 270 b 30 z 4 z + 1 9 7 b 00 + 3 b 02 11 b 10 b 12 + 15 b 20 19 b 30 z 2 z + 1 + 45 z + 1 b 0 b 10 + b 20 b 30 ] .
Since the function ( z + 1 , z 2 ( z + 1 ) , z 4 ( z + 1 ) , z 6 , z 7 ) is an ECT system and the corresponding five coefficients are free parameters, by Lemma 6 and Remark 2, M 3 ( h ) has exactly four simple zeros.
(iii) In Case (4),
M 3 ( h ) = M 3 1 z 2 2 = π ( z 1 ) 12 z 7 [ K 8 z 8 + K 7 z 7 + K 6 z 6 + K 5 z 4 z + 1 + K 3 z 2 z + 1 + K 1 z + 1 ] .
One can verify that the function ( z + 1 , z 2 ( z + 1 ) , z 4 ( z + 1 ) , z 6 , z 7 , z 8 ) is an ECT system, and when b 02 = 0 , then we have
( K 1 , K 3 , K 5 , K 6 , K 7 , K 8 ) ( a 21 , b 30 , b 00 , b 10 , b 20 , b 12 ) = 29859840 b 01 b 12 3 b 21 2 5 b 01 2 b 21 36 a 21 2 b 21 2 b 00 b 10 + b 20 b 30 b 12 8 b 00 11 b 10 21 b 12 + 20 b 20 29 b 30 a 21 21 b 12 4 b 00 b 10 b 21 2 + 3 b 01 b 12 32 b 00 36 b 10 29 b 12 + 48 b 20 60 b 30 a 21 b 12 96 b 00 12 b 10 8 b 20 b 30 b 21 + 12 b 01 2 b 12 2 a 21 + 8 b 20 17 b 30 0 .
By Lemma 6 and Remark 2, M 3 ( h ) has exactly five simple zeros.
(iv) In Case (5),
M 3 ( h ) = M 3 1 z 2 2 = π ( z 1 ) 4 ( a 20 + 3 b 03 ) z 9 [ c 10 z 10 + c 9 z 9 + c 8 z 8 + c 7 z 6 ( z + 1 ) + c 5 z 4 ( z + 1 ) + c 3 z 2 ( z + 1 ) + c 1 ( z + 1 ) ] ,
By Lemma 6, we know that ( z + 1 , z 2 ( z + 1 ) , z 4 ( z + 1 ) , z 6 ( z + 1 ) , z 8 , z 9 , z 10 ) is an ECT system. Furthermore, we have ( c 1 , c 3 , c 5 , c 7 , c 8 , c 9 , c 10 ) ( a 11 , a 01 , a 20 , b 01 , b 20 , b 02 , b 03 ) 0 ; then M 3 ( h ) has exactly six simple zeros by Remark 2. □

4. Conclusions

Based on the previous results, by deducing some new formulae in Lemmas 3 and 5, the first three Melnikov functions of system (4) with n = 3 are considered. There are many third-order Melnikov functions; since some cases are difficult to compute, we just list five cases. We obtain exactly six limit cycles. It is difficult to obtain the conditions of the existence of the fourth-order Melnikov functions; we do not continue to consider the fourth-order Melnikov function.

Author Contributions

Y.L.: methodology, computation. X.L.: conceptualization, methodology, software, writing—original draft. T.Z.: writing—review and editing. All authors have read and agreed to the published version of the manuscript.

Funding

This research was financially supported by the National Natural Science Foundation of China (Grant Nos. 11601131).

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Acknowledgments

This research was financially supported by the National Natural Science Foundation of China. We would like to thank the anonymous reviewer for his/her valuable suggestions.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Shi, J.R.; Wang, W.X.; Zhang, X. Limit cycles of polynomial Liénard systems via the averagingmethod. Nonlinear Anal. Real World Appl. 2019, 45, 650–667. [Google Scholar] [CrossRef]
  2. Yu, P.; Han, M.A.; Zhang, X. Eighteen limit cycles around two symmetric foci in a cubic planar switching polynomial system. J. Differ. Equ. 2021, 275, 939–959. [Google Scholar] [CrossRef]
  3. Arnold, V.I. Loss of stability of self-oscillation close to resonance and versal deformations of equivariant vector fields. Funct. Anal. Appl. 1977, 11, 1–10. [Google Scholar] [CrossRef]
  4. Chen, F.D.; Li, C.Z.; Llibre, J.; Zhang, Z. A unified proof on the weak Hilbert 16th problem for n=2. J. Differ. Equ. 2006, 221, 309–342. [Google Scholar] [CrossRef] [Green Version]
  5. Horozov, E.; Iliev, I.D. On the number of limit cycles in perturbations of quadratic Hamiltonian systems. Proc. Lond. Math. Soc. 1994, 69, 198–224. [Google Scholar] [CrossRef]
  6. Gavrilov, L. The infinitesimal 16th Hilbert problem in the quadratic case. Invent. Math. 2001, 143, 449–497. [Google Scholar] [CrossRef]
  7. Françoise, J.P. Successive derivatives of a first return map, application to the study of quadratic vector fields. Ergodic Theory Dynam. Syst. 1996, 16, 87–96. [Google Scholar] [CrossRef]
  8. Iliev, I.D. On second order bifurcations of limit cycles. J. Lond. Math. Soc. 1998, 58, 353–366. [Google Scholar] [CrossRef]
  9. Iliev, I.D. On the limit cycles available from polynomial perturbations of the Bogdanov-Takens Hamiltonian. Isr. J. Math. 2000, 115, 269–284. [Google Scholar] [CrossRef]
  10. Buica, A.; Gasull, A.; Yang, J. The third order Melnikov function of a quadratic center under quadratic perturbations. J. Math. Anal. Appl. 2007, 331, 443–454. [Google Scholar] [CrossRef] [Green Version]
  11. Gentes, M. Center conditions and limit cycles for the perturbation of an elliptic sector. Bull. Sci. Math. 2009, 133, 597–643. [Google Scholar] [CrossRef] [Green Version]
  12. Françoise, J.P.; He, H.; Xiao, D. The number of limit cycles bifurcating from the period annulus of quasi-homogeneous Hamiltonian systems at any order. J. Differ. Equ. 2021, 276, 318–341. [Google Scholar] [CrossRef]
  13. Gavrilova, L.; Iliev, I.D. Cubic perturbations of elliptic Hamiltonian vector fields of degree three. J. Differ. Equ. 2016, 260, 3963–3990. [Google Scholar] [CrossRef]
  14. Asheghi, R.; Nabavi, A. Higher order Melnikov functions for studying limit cycles of some perturbed elliptic Hamiltonian vector fields. Qual. Theory Dyn. Syst. 2019, 18, 289–313. [Google Scholar] [CrossRef]
  15. Tigan, G. Using Melnikov functions of any order for studying limit cycles. J. Math. Anal. Appl. 2017, 448, 409–420. [Google Scholar] [CrossRef]
  16. Asheghi, R.; Nabavi, A. The third order melnikov function of a cubic integrable system under quadratic perturbations. Chaos Solitons Fractals 2020, 139, 110291. [Google Scholar] [CrossRef]
  17. Yang, P.; Yu, J. The number of limit cycles from a cubic center by the Melnikov function of any order. J. Differ. Equ. 2020, 268, 1463–1494. [Google Scholar] [CrossRef]
  18. Liu, X. The number of limit cycles from a quartic center by the higher-order Melnikov functions. J. Appl. Anal. Comput. 2021, 11, 1405–1421. [Google Scholar]
  19. Tian, Y.; Yu, P. Bifurcation of small limit cycles in cubic integrable systems using higher-order analysis. J. Differ. Equ. 2018, 264, 5950–5976. [Google Scholar] [CrossRef] [Green Version]
  20. Hu, Y.; Niu, W.; Huang, B. Bounding the number of limit cycles for parametric Liénard systems using symbolic computation methods. Commun. Nonlinear Sci. Numer. Simulat. 2021, 96, 105716. [Google Scholar] [CrossRef]
  21. Mañosas, F.; Villadelprat, J. Bounding the number of zeros of certain Abelian integrals. J. Differ. Equ. 2011, 251, 1656–1669. [Google Scholar]
  22. Grau, M.; Villadelprat, J. Bifurcation of critical periods from Pleshkan’s isochrones. J. Lond. Math. Soc. 2010, 81, 142–160. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Liu, Y.; Zhang, T.; Liu, X. Third Order Melnikov Functions of a Cubic Center under Cubic Perturbations. Mathematics 2022, 10, 1816. https://doi.org/10.3390/math10111816

AMA Style

Liu Y, Zhang T, Liu X. Third Order Melnikov Functions of a Cubic Center under Cubic Perturbations. Mathematics. 2022; 10(11):1816. https://doi.org/10.3390/math10111816

Chicago/Turabian Style

Liu, Yanwei, Tonghua Zhang, and Xia Liu. 2022. "Third Order Melnikov Functions of a Cubic Center under Cubic Perturbations" Mathematics 10, no. 11: 1816. https://doi.org/10.3390/math10111816

APA Style

Liu, Y., Zhang, T., & Liu, X. (2022). Third Order Melnikov Functions of a Cubic Center under Cubic Perturbations. Mathematics, 10(11), 1816. https://doi.org/10.3390/math10111816

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop