Third Order Melnikov Functions of a Cubic Center under Cubic Perturbations
Abstract
:1. Introduction
2. Preliminaries
- (1)
- If , then Let we have , and can be decomposed into ; then ;
- (2)
- If , then Let we have , and can be decomposed into ; then ;By this way, if , then and we assume . We have , where
- (i)
- For , there exist 1-forms and as follows:
- (ii)
- If j is even,
3. The Calculation of Mk(h)
3.1. The Melnikov Function of First-Order M1(h)
3.2. The Melnikov Function of Second-Order M2(h)
3.3. The Third-Order Melnikov Function
- (i)
- in Case (2), has at most six zeros;
- (ii)
- in Case (3), has exactly four simple zeros;
- (iii)
- in Case (4), has exactly five simple zeros;
- (iv)
- in Case (5), has exactly six simple zeros.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shi, J.R.; Wang, W.X.; Zhang, X. Limit cycles of polynomial Liénard systems via the averagingmethod. Nonlinear Anal. Real World Appl. 2019, 45, 650–667. [Google Scholar] [CrossRef]
- Yu, P.; Han, M.A.; Zhang, X. Eighteen limit cycles around two symmetric foci in a cubic planar switching polynomial system. J. Differ. Equ. 2021, 275, 939–959. [Google Scholar] [CrossRef]
- Arnold, V.I. Loss of stability of self-oscillation close to resonance and versal deformations of equivariant vector fields. Funct. Anal. Appl. 1977, 11, 1–10. [Google Scholar] [CrossRef]
- Chen, F.D.; Li, C.Z.; Llibre, J.; Zhang, Z. A unified proof on the weak Hilbert 16th problem for n=2. J. Differ. Equ. 2006, 221, 309–342. [Google Scholar] [CrossRef] [Green Version]
- Horozov, E.; Iliev, I.D. On the number of limit cycles in perturbations of quadratic Hamiltonian systems. Proc. Lond. Math. Soc. 1994, 69, 198–224. [Google Scholar] [CrossRef]
- Gavrilov, L. The infinitesimal 16th Hilbert problem in the quadratic case. Invent. Math. 2001, 143, 449–497. [Google Scholar] [CrossRef]
- Françoise, J.P. Successive derivatives of a first return map, application to the study of quadratic vector fields. Ergodic Theory Dynam. Syst. 1996, 16, 87–96. [Google Scholar] [CrossRef]
- Iliev, I.D. On second order bifurcations of limit cycles. J. Lond. Math. Soc. 1998, 58, 353–366. [Google Scholar] [CrossRef]
- Iliev, I.D. On the limit cycles available from polynomial perturbations of the Bogdanov-Takens Hamiltonian. Isr. J. Math. 2000, 115, 269–284. [Google Scholar] [CrossRef]
- Buica, A.; Gasull, A.; Yang, J. The third order Melnikov function of a quadratic center under quadratic perturbations. J. Math. Anal. Appl. 2007, 331, 443–454. [Google Scholar] [CrossRef] [Green Version]
- Gentes, M. Center conditions and limit cycles for the perturbation of an elliptic sector. Bull. Sci. Math. 2009, 133, 597–643. [Google Scholar] [CrossRef] [Green Version]
- Françoise, J.P.; He, H.; Xiao, D. The number of limit cycles bifurcating from the period annulus of quasi-homogeneous Hamiltonian systems at any order. J. Differ. Equ. 2021, 276, 318–341. [Google Scholar] [CrossRef]
- Gavrilova, L.; Iliev, I.D. Cubic perturbations of elliptic Hamiltonian vector fields of degree three. J. Differ. Equ. 2016, 260, 3963–3990. [Google Scholar] [CrossRef]
- Asheghi, R.; Nabavi, A. Higher order Melnikov functions for studying limit cycles of some perturbed elliptic Hamiltonian vector fields. Qual. Theory Dyn. Syst. 2019, 18, 289–313. [Google Scholar] [CrossRef]
- Tigan, G. Using Melnikov functions of any order for studying limit cycles. J. Math. Anal. Appl. 2017, 448, 409–420. [Google Scholar] [CrossRef]
- Asheghi, R.; Nabavi, A. The third order melnikov function of a cubic integrable system under quadratic perturbations. Chaos Solitons Fractals 2020, 139, 110291. [Google Scholar] [CrossRef]
- Yang, P.; Yu, J. The number of limit cycles from a cubic center by the Melnikov function of any order. J. Differ. Equ. 2020, 268, 1463–1494. [Google Scholar] [CrossRef]
- Liu, X. The number of limit cycles from a quartic center by the higher-order Melnikov functions. J. Appl. Anal. Comput. 2021, 11, 1405–1421. [Google Scholar]
- Tian, Y.; Yu, P. Bifurcation of small limit cycles in cubic integrable systems using higher-order analysis. J. Differ. Equ. 2018, 264, 5950–5976. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.; Niu, W.; Huang, B. Bounding the number of limit cycles for parametric Liénard systems using symbolic computation methods. Commun. Nonlinear Sci. Numer. Simulat. 2021, 96, 105716. [Google Scholar] [CrossRef]
- Mañosas, F.; Villadelprat, J. Bounding the number of zeros of certain Abelian integrals. J. Differ. Equ. 2011, 251, 1656–1669. [Google Scholar]
- Grau, M.; Villadelprat, J. Bifurcation of critical periods from Pleshkan’s isochrones. J. Lond. Math. Soc. 2010, 81, 142–160. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Zhang, T.; Liu, X. Third Order Melnikov Functions of a Cubic Center under Cubic Perturbations. Mathematics 2022, 10, 1816. https://doi.org/10.3390/math10111816
Liu Y, Zhang T, Liu X. Third Order Melnikov Functions of a Cubic Center under Cubic Perturbations. Mathematics. 2022; 10(11):1816. https://doi.org/10.3390/math10111816
Chicago/Turabian StyleLiu, Yanwei, Tonghua Zhang, and Xia Liu. 2022. "Third Order Melnikov Functions of a Cubic Center under Cubic Perturbations" Mathematics 10, no. 11: 1816. https://doi.org/10.3390/math10111816
APA StyleLiu, Y., Zhang, T., & Liu, X. (2022). Third Order Melnikov Functions of a Cubic Center under Cubic Perturbations. Mathematics, 10(11), 1816. https://doi.org/10.3390/math10111816