A Reliable Way to Deal with Fractional-Order Equations That Describe the Unsteady Flow of a Polytropic Gas
Abstract
:1. Introduction
2. Preliminaries
3. LRPS Methodology
- and for each
- .
4. Numerical Problem
Problem
5. Results and Disscusion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Abdullah, T.Q.S.; Xiao, H.; Huang, G.; Al-Sadi, W. Stability and existence results for a system of fractional differential equations via Atangana-Baleanu derivative with ϕ-p-Laplacian operator. J. Math. Comput. Sci. 2022, 27, 184–195. [Google Scholar] [CrossRef]
- Dousseh, P.Y.; Ainamon, C.; Miwadinou, C.H.; Monwanou, A.V.; Chabi-Orou, J.B. Chaos control and synchronization of a new chaotic financial system with integer and fractional order. J. Nonlinear Sci. Appl. 2021, 14, 372–389. [Google Scholar] [CrossRef]
- Phong, T.T.; Long, L.D. Well-posed results for nonlocal fractional parabolic equation involving Caputo-Fabrizio operator. J. Math. Comput. Sci. 2022, 26, 357–367. [Google Scholar] [CrossRef]
- Oldham, K.; Spanier, J. The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order; Academic Press: New York, NY, USA, 1974. [Google Scholar]
- Miller, K.S.; Ross, B. An Introduction to Fractional Calculus and Fractional Differential Equations; Wiley: New York, NY, USA, 1993. [Google Scholar]
- Podlubny, I. Fractional Differential Equations; Academic Press: New York, NY, USA, 1999. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Baleanu, D.; Güvenç, Z.B.; Machado, J.A. (Eds.) New Trends in Nanotechnology and Fractional Calculus Applications; Springer: New York, NY, USA, 2010. [Google Scholar]
- Zhang, T.; Li, Y. Exponential Euler scheme of multi-delay Caputo-Fabrizio fractional-order differential equations. Appl. Math. Lett. 2022, 124, 107709. [Google Scholar] [CrossRef]
- Ahmad, S.; Ullah, A.; Akgul, A.; De la Sen, M. A Novel Homotopy Perturbation Method with Applications to Nonlinear Fractional Order KdV and Burger Equation with Exponential-Decay Kernel. J. Funct. Spaces 2021, 2021, 8770488. [Google Scholar] [CrossRef]
- Sun, H.; Zhang, Y.; Baleanu, D.; Chen, W.; Chen, Y. A new collection of real world applications of fractional calculus in science and engineering. Commun Nonlinear Sci. Numer. Simulat. 2018, 64, 213–231. [Google Scholar] [CrossRef]
- Basto, M.; Semiao, V.; Calheiros, F.L. Numerical study of modified Adomian’s method applied to Burgers equation. J. Comput. Appl. Math. 2007, 206, 927–949. [Google Scholar] [CrossRef] [Green Version]
- Adomian, G. Analytical solution of Navier-Stokes flow of a viscous compressible fluid. Found. Phys. Lett. 1995, 8, 389–400. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, Z.; Li, C.; Chen, Y.Q. Adomian’s method applied to Navier-Stokes equation with a fractional order. In Proceedings of the International Design Engineering Technical Conferences and Computers and Information in Engineering Conferencem, San Diego, CA, USA, 30 August–2 September 2009; pp. 1047–1054. [Google Scholar]
- Roos, H.-G.; Stynes, M.; Tobiska, L. Robust Numerical Methods for Singularly Perturbed Differential Equations; Springer: Berlin/Heidelberg, Germany, 2008; 604p. [Google Scholar]
- Siryk, S.V.; Salnikov, N.N. Construction of Weight Functions of the Petrov-Galerkin Method for Convection-Diffusion-Reaction Equations in the ThreeDimensional Case. Cybern. Syst. Anal. 2014, 50, 805–814. [Google Scholar]
- Stynes, M.; Stynes, D. Convection Diffusion Problems: An Introduction to Their Analysis and Numerical Solution. Am. Math. Soc. 2018, 196, 156p. [Google Scholar]
- Naeem, M.; Azhar, O.F.; Zidan, A.M.; Nonlaopon, K.; Shah, R. Numerical analysis of fractional-order parabolic equations via Elzaki transform. J. Funct. Spaces 2021, 2021, 3484482. [Google Scholar] [CrossRef]
- Salnikov, N.N.; Siryk, S.V.; Tereshchenko, I.A. On construction of finite-dimensional mathematical model of convection-diffusion process with usage of the Petrov-Galerkin method. J. Autom. Inf. Sci. 2010, 42, 67–83. [Google Scholar] [CrossRef]
- John, V.; Knobloch, P.; Novo, J. Finite elements for scalar convection-dominated equations and incompressible flow problems: A never ending story? Comput. Vis. Sci. 2018, 19, 47–63. [Google Scholar] [CrossRef] [Green Version]
- Iqbal, N.; Albalahi, A.M.; Abdo, M.S.; Mohammed, W.W. Analytical Analysis of Fractional-Order Newell-Whitehead-Segel Equation: A Modified Homotopy Perturbation Transform Method. J. Funct. Spaces 2022, 2022, 3298472. [Google Scholar] [CrossRef]
- Daftardar-Gejji, V.; Jafari, H. Solving a Multi-Order Fractional Differential Equation Using Adomian Decomposition. Appl. Math. Comput. 2007, 189, 541–548. [Google Scholar] [CrossRef]
- Elsayed, E.M.; Shah, R.; Nonlaopon, K. The analysis of the fractional-order Navier-Stokes equations by a novel approach. J. Funct. Spaces 2022, 2022, 8979447. [Google Scholar] [CrossRef]
- Bhrawy, A.H. A Jacobi Spectral Collocation Method for Solving Multi-Dimensional Nonlinear Fractional Sub-diffusion Equations. Numer. Algor. 2016, 73, 91–113. [Google Scholar] [CrossRef]
- Biswas, A.; Bhrawy, A.H.; Abdelkawy, M.A.; Alshaery, A.A.; Hilal, E.M. Symbolic. Computation of Some Nonlinear Fractional Differential Equations. Rom. J. Phys. 2014, 59, 433–442. [Google Scholar]
- Iqbal, N.; Botmart, T.; Mohammed, W.W.; Ali, A. Numerical investigation of fractional-order Kersten-Krasil’shchik coupled KdV-mKdV system with Atangana-Baleanu derivative. Adv. Contin. Discret. Model. 2022, 2022, 1–20. [Google Scholar] [CrossRef]
- Mohebbi, A.; Abbaszadeh, M.; Dehghan, M. The Use of a Meshless Technique. Based on Collocation and Radial Basis Functions for Solving the Time. Fractional Nonlinear Schrodinger Equation Arising in Quantum Mechanics. Eng. Anal. Bound. Elem. 2013, 37, 475–485. [Google Scholar] [CrossRef]
- Wang, L.; Ma, Y.; Meng, Z. Haar Wavelet Method for Solving Fractional. Partial Differential Equations Numerically. Appl. Math. Comput. 2014, 227, 66–76. [Google Scholar] [CrossRef]
- Baseri, A.; Babolian, E.; Abbasbandy, S. Normalized Bernstein Polynomials in. Solving Space-Time Fractional Diffusion Equation. Adv. Differ. Equ. 2017, 2017, 1–25. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Sun, Y.; Liu, L. Numerical Solution of Fractional Partial Differential. Equations with Variable Coefficients Using Generalized Fractional-Order. Legendre Functions. Appl. Math. Comput. 2014, 244, 847–858. [Google Scholar] [CrossRef]
- Jafari, H.; Nazari, M.; Baleanu, D.; Khalique, C.M. A New Approach for Solving a System of Fractional Partial Differential Equations. Comput. Math. Appl. 2013, 66, 838–843. [Google Scholar] [CrossRef]
- Maitama, S.; Abdullahi, I. A New Analytical Method for Solving Linear and. Nonlinear Fractional Partial Differential Equations. Progr. Fract. Differ. Appl. 2016, 2, 247–256. [Google Scholar] [CrossRef]
- Jassim, H.K. The Approximate Solutions of Three-Dimensional. Diffusion and Wave Equations within Local Fractional Derivative Operator. In Abstract and Applied Analysis; Hindawi: London, UK, 2016. [Google Scholar]
- Bhrawy, A.H. A New Legendre Collocation Method for Solving a Two-Dimensional Fractional Diffusion Equation. In Abstract and Applied Analysis; Hindawi: London, UK, 2014. [Google Scholar]
- Zhang, Y.; Baleanu, D.; Yang, X. On a Local Fractional Wave Equation under. Fixed Entropy Arising in Fractal Hydrodynamics. Entropy 2014, 16, 6254–6262. [Google Scholar] [CrossRef] [Green Version]
- Shah, N.A.; Alyousef, H.A.; El-Tantawy, S.A.; Chung, J.D. Analytical Investigation of Fractional-Order Korteweg-De-Vries-Type Equations under Atangana-Baleanu-Caputo Operator: Modeling Nonlinear Waves in a Plasma and Fluid. Symmetry 2022, 14, 739. [Google Scholar] [CrossRef]
- Sunthrayuth, P.; Ullah, R.; Khan, A.; Shah, R.; Kafle, J.; Mahariq, I.; Jarad, F. Numerical analysis of the fractional-order nonlinear system of Volterra integro-differential equations. J. Funct. Spaces 2021, 2021, 1537958. [Google Scholar] [CrossRef]
- Mukhtar, S.; Shah, R.; Noor, S. The Numerical Investigation of a Fractional-Order Multi-Dimensional Model of Navier-Stokes Equation via Novel Techniques. Symmetry 2022, 14, 1102. [Google Scholar] [CrossRef]
- Moradpour, H.; Abri, A. Thermodynamic behavior and stability of Polytropic gas. Int. J. Mod. Phys. D 2016, 12. [Google Scholar] [CrossRef] [Green Version]
- Veeresha, P.; Prakasha, D.G.; Baskonus, H.M. An efficient technique for a fractional-order system of equations describing the unsteady flow of a polytropic gas. Pramana 2019, 93, 1–13. [Google Scholar] [CrossRef]
- Iqbal, N.; Akgul, A.; Shah, R.; Bariq, A.; Mossa Al-Sawalha, M.; Ali, A. On solutions of fractional-order gas dynamics equation by effective techniques. J. Funct. Spaces 2022, 2022, 3341754. [Google Scholar] [CrossRef]
- Alaoui, M.K.; Fayyaz, R.; Khan, A.; Abdo, M.S. Analytical investigation of Noyes-Field model for time-fractional Belousov-Zhabotinsky reaction. Complexity 2021, 2021, 3248376. [Google Scholar] [CrossRef]
- Nonlaopon, K.; Naeem, M.; Zidan, A.M.; Alsanad, A.; Gumaei, A. Numerical investigation of the time-fractional Whitham-Broer-Kaup equation involving without singular kernel operators. Complexity 2021, 2021, 7979365. [Google Scholar] [CrossRef]
- Sunthrayuth, P.; Aljahdaly, N.H.; Ali, A.; Mahariq, I.; Tchalla, A.M. Haar Wavelet Operational Matrix Method for Fractional Relaxation-Oscillation Equations Containing-Caputo Fractional Derivative. J. Funct. Spaces 2021, 2021, 7117064. [Google Scholar] [CrossRef]
- Ahmad, E.-A. Adapting the Laplace transform to create solitary solutions for the nonlinear time-fractional dispersive PDEs via a new approach. Eur. Phys. J. Plus 2021, 136, 1–22. [Google Scholar]
- Burqan, A.; El-Ajou, A.; Saadeh, R.; Al-Smadi, M. A new efficient technique using Laplace transforms and smooth expansions to construct a series solution to the time-fractional Navier-Stokes equations. Alex. Eng. J. 2022, 61, 1069–1077. [Google Scholar] [CrossRef]
- El-Ajou, A.; Al-Smadi, M.; Oqielat, M.; Momani, S.; Hadid, S. Smooth expansion to solve high-order linear conformable fractional PDEs via residual power series method: Applications to physical and engineering equations. Ain Shams Eng. J. 2020, in press. [CrossRef]
- El-Ajou, A.; Oqielat, M.; Al-Zhour, Z.; Momani, S. A class of linear non-homogenous higher order matrix fractional differential equations: Analytical solutions and new technique. Fract. Calc. Appl. Anal. 2020, 23, 356–377. [Google Scholar] [CrossRef]
- Aljahdaly, N.H.; Akgul, A.; Mahariq, I.; Kafle, J. A comparative analysis of the fractional-order coupled Korteweg-De Vries equations with the Mittag-Leffler law. J. Math. 2022, 2022, 8876149. [Google Scholar] [CrossRef]
- El-Ajou, A.; Al-Zhour, Z.; Oqielat, M.; Momani, S.; Hayat, T. Series solutions of non- linear conformable fractional KdV-Burgers equation with some applications. Eur. Phys. J. Plus 2019, 134, 402. [Google Scholar] [CrossRef]
- Oqielat, M.; El-Ajou, A.; Al-Zhour, Z.; Alkhasawneh, R.; Alrabaiah, H. Series solu- tions for nonlinear time-fractional Schrödinger equations: Comparisons be- tween conformable and Caputo derivatives. Alexandria Eng. J. 2020, in press. [CrossRef]
- El-Ajou, A.; Oqielat, M.; Al-Zhour, Z.; Momani, S. Analytical numerical solutions of the fractional multi-pantograph system: Two attractive methods and comparisons. Results Phys. 2019, 14, 102500. [Google Scholar] [CrossRef]
- Areshi, M.; Khan, A.; Nonlaopon, K. Analytical investigation of fractional-order Newell-Whitehead-Segel equations via a novel transform. AIMS Math. 2022, 7, 6936–6958. [Google Scholar] [CrossRef]
- Arqub, O.A.; El-Ajou, A.; Momani, S. Construct and predicts solitary pattern solutions for nonlinear time-fractional dispersive partial differential equations. J. Comput. Phys. 2015, 293, 385–399. [Google Scholar] [CrossRef]
- Alquran, M.; Ali, M.; Alsukhour, M.; Jaradat, I. Promoted residual power series technique with Laplace transform to solve some time-fractional problems arising in physics. Results Phys. 2020, 19, 103667. [Google Scholar] [CrossRef]
t | |||||
---|---|---|---|---|---|
0.2 | 0.2 | 7.0 | 7.0 | 7.0 | 0 |
0.4 | 8.0 | 8.0 | 8.0 | 0 | |
0.6 | 1.1 | 1.1 | 1.1 | 0 | |
0.8 | 1.4 | 1.4 | 1.4 | 0 | |
1 | 1.5 | 1.5 | 1.5 | 0 | |
0.4 | 0.2 | 1.134 | 1.134 | 1.134 | 0 |
0.4 | 1.385 | 1.385 | 1.385 | 0 | |
0.6 | 1.693 | 1.693 | 1.693 | 0 | |
0.8 | 2.067 | 2.067 | 2.067 | 0 | |
1 | 2.52 | 2.52 | 2.52 | 0 | |
0.6 | 0.2 | 1.9921 | 1.9921 | 1.9921 | 0 |
0.4 | 2.4333 | 2.4333 | 2.4333 | 0 | |
0.6 | 2.9720 | 2.9720 | 2.9720 | 0 | |
0.8 | 3.630 | 3.630 | 3.630 | 0 | |
1 | 4.434 | 4.434 | 4.434 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Sawalha, M.M.; Agarwal, R.P.; Shah, R.; Ababneh, O.Y.; Weera, W. A Reliable Way to Deal with Fractional-Order Equations That Describe the Unsteady Flow of a Polytropic Gas. Mathematics 2022, 10, 2293. https://doi.org/10.3390/math10132293
Al-Sawalha MM, Agarwal RP, Shah R, Ababneh OY, Weera W. A Reliable Way to Deal with Fractional-Order Equations That Describe the Unsteady Flow of a Polytropic Gas. Mathematics. 2022; 10(13):2293. https://doi.org/10.3390/math10132293
Chicago/Turabian StyleAl-Sawalha, M. Mossa, Ravi P. Agarwal, Rasool Shah, Osama Y. Ababneh, and Wajaree Weera. 2022. "A Reliable Way to Deal with Fractional-Order Equations That Describe the Unsteady Flow of a Polytropic Gas" Mathematics 10, no. 13: 2293. https://doi.org/10.3390/math10132293
APA StyleAl-Sawalha, M. M., Agarwal, R. P., Shah, R., Ababneh, O. Y., & Weera, W. (2022). A Reliable Way to Deal with Fractional-Order Equations That Describe the Unsteady Flow of a Polytropic Gas. Mathematics, 10(13), 2293. https://doi.org/10.3390/math10132293