Heuristic Approaches Based on Modified Three-Parameter Model for Inverse Acoustic Characterisation of Sintered Metal Fibre Materials
Abstract
:1. Introduction
2. Acoustic Modelling of the Sintered Fibrous Metals
2.1. Three-Parameter Analytical Model
- 1.
- This theoretical model links three pore parameters of porous media to six non-acoustical parameters in the JCAL model, which lay the groundwork for the study of using customisable morphological parameters of real fibrous metals replacement to the transport parameters that are difficult to measure;
- 2.
- The JCAL model, which introduces corrections to the bulk modulus thermal behaviour at low frequencies that is not captured by the JCA model, its robustness has been validated by many studies.
- 3.
- Halving the number of variables can significantly reduce the complexity of the inverse characterisation problem, thus reducing uncertainty and consumption of time in computation during the inversion procedure.
2.2. Average Pore Size Approximation
3. Measurement Configuration
4. Inverse Characterisation
4.1. Observation Model
4.2. Heuristic Approaches
5. Results and Discussion
5.1. Theoretical Model Verification
5.2. Numerical Investigation
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lu, T.; He, D.; Chen, C.; Zhao, C.; Fang, D.; Wang, X. The multi-functionality of ultra-light porous metals and their applications. Adv. Mech. 2006, 36, 517–535. [Google Scholar]
- Huiping, T.; Jianzhong, W.; Qingbo, A.; Hao, Z. Effect of pore structure on performance of porous metal fiber materials. Rare Met. Mater. Eng. 2015, 44, 1821–1826. [Google Scholar] [CrossRef]
- Sun, W.; Pan, B.; Song, X.; Xiao, H.; Zhou, J.; Sui, D. A novel sound absorber design of nanofibrous composite porous material. Mater. Des. 2022, 214, 110418. [Google Scholar] [CrossRef]
- Sun, F.; Chen, H.; Wu, J.; Feng, K. Sound absorbing characteristics of fibrous metal materials at high temperatures. Appl. Acoust. 2010, 71, 221–235. [Google Scholar] [CrossRef]
- Delany, M.; Bazley, E. Acoustical properties of fibrous absorbent materials. Appl. Acoust. 1970, 3, 105–116. [Google Scholar] [CrossRef]
- Miki, Y. Acoustical properties of porous materials-Modifications of Delany-Bazley models. J. Acoust. Soc. Jpn. (E) 1990, 11, 19–24. [Google Scholar] [CrossRef]
- Johnson, D.L.; Koplik, J.; Dashen, R. Theory of dynamic permeability and tortuosity in fluid-saturated porous media. J. Fluid Mech. 1987, 176, 379–402. [Google Scholar] [CrossRef]
- Champoux, Y.; Allard, J.F. Dynamic tortuosity and bulk modulus in air-saturated porous media. J. Appl. Phys. 1991, 70, 1975–1979. [Google Scholar] [CrossRef]
- Allard, J.F.; Champoux, Y. New empirical equations for sound propagation in rigid frame fibrous materials. J. Acoust. Soc. Am. 1992, 91, 3346–3353. [Google Scholar] [CrossRef]
- Lafarge, D.; Lemarinier, P.; Allard, J.F.; Tarnow, V. Dynamic compressibility of air in porous structures at audible frequencies. J. Acoust. Soc. Am. 1997, 102, 1995–2006. [Google Scholar] [CrossRef]
- Pride, S.R.; Morgan, F.D.; Gangi, A.F. Drag forces of porous-medium acoustics. Phys. Rev. B 1993, 47, 4964. [Google Scholar] [CrossRef]
- Biot, M.A. Theory of elastic waves in a fluid-saturated porous solid. 1. Low frequency range. J. Acoust. Soc. Am. 1956, 28, 168–178. [Google Scholar] [CrossRef]
- Biot, M.A. Theory of propagation of elastic waves in a fluid-saturated porous solid. II. Higher frequency range. J. Acoust. Soc. Am. 1956, 28, 179–191. [Google Scholar] [CrossRef]
- Yuan, T.; Song, X.; Xu, J.; Pan, B.; Sui, D.; Xiao, H.; Zhou, J. Tunable acoustic composite metasurface based porous material for broadband sound absorption. Compos. Struct. 2022, 116014. [Google Scholar] [CrossRef]
- Zarastvand, M.; Asadijafari, M.; Talebitooti, R. Improvement of the low-frequency sound insulation of the poroelastic aerospace constructions considering Pasternak elastic foundation. Aerosp. Sci. Technol. 2021, 112, 106620. [Google Scholar] [CrossRef]
- Rahmatnezhad, K.; Zarastvand, M.; Talebitooti, R. Mechanism study and power transmission feature of acoustically stimulated and thermally loaded composite shell structures with double curvature. Compos. Struct. 2021, 276, 114557. [Google Scholar] [CrossRef]
- Zarastvand, M.; Ghassabi, M.; Talebitooti, R. Prediction of acoustic wave transmission features of the multilayered plate constructions: A review. J. Sandw. Struct. Mater. 2022, 24, 218–293. [Google Scholar] [CrossRef]
- Khayat, M.; Baghlani, A.; Najafgholipour, M. The propagation of uncertainty in the geometrically nonlinear responses of smart sandwich porous cylindrical shells reinforced with graphene platelets. Compos. Struct. 2021, 258, 113209. [Google Scholar] [CrossRef]
- Khayat, M.; Baghlani, A.; Najafgholipour, M.A. The effect of uncertainty sources on the dynamic instability of CNT-reinforced porous cylindrical shells integrated with piezoelectric layers under electro-mechanical loadings. Compos. Struct. 2021, 273, 114336. [Google Scholar] [CrossRef]
- Khayat, M.; Baghlani, A.; Dehghan, S.M.; Najafgholipour, M.A. Geometrically nonlinear dynamic analysis of functionally graded porous partially fluid-filled cylindrical shells subjected to exponential loads. J. Vib. Control. 2022, 28, 758–772. [Google Scholar] [CrossRef]
- Horoshenkov, K.V. A review of acoustical methods for porous material characterisation. Int. J. Acoust. Vib 2017, 22, 92–103. [Google Scholar] [CrossRef]
- Allard, J.; Atalla, N. Propagation of Sound in Porous Media: Modelling Sound Absorbing Materials 2e; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- Leclaire, P.; Kelders, L.; Lauriks, W.; Melon, M.; Brown, N.; Castagnede, B. Determination of the viscous and thermal characteristic lengths of plastic foams by ultrasonic measurements in helium and air. J. Appl. Phys. 1996, 80, 2009–2012. [Google Scholar] [CrossRef]
- Leclaire, P.; Kelders, L.; Lauriks, W.; Glorieux, C.; Thoen, J. Determination of the viscous characteristic length in air-filled porous materials by ultrasonic attenuation measurements. J. Acoust. Soc. Am. 1996, 99, 1944–1948. [Google Scholar] [CrossRef]
- Leclaire, P.; Umnova, O.; Horoshenkov, K.; Maillet, L. Porosity measurement by comparison of air volumes. Rev. Sci. Instruments 2003, 74, 1366–1370. [Google Scholar] [CrossRef]
- Moussatov, A.; Ayrault, C.; Castagnède, B. Porous material characterization–ultrasonic method for estimation of tortuosity and characteristic length using a barometric chamber. Ultrasonics 2001, 39, 195–202. [Google Scholar] [CrossRef]
- Panneton, R.; Olny, X. Acoustical determination of the parameters governing viscous dissipation in porous media. J. Acoust. Soc. Am. 2006, 119, 2027–2040. [Google Scholar] [CrossRef] [PubMed]
- Olny, X.; Panneton, R. Acoustical determination of the parameters governing thermal dissipation in porous media. J. Acoust. Soc. Am. 2008, 123, 814–824. [Google Scholar] [CrossRef] [PubMed]
- Bonfiglio, P.; Pompoli, F. Inversion problems for determining physical parameters of porous materials: Overview and comparison between different methods. Acta Acust. United Acust. 2013, 99, 341–351. [Google Scholar] [CrossRef]
- Groby, J.P.; Ogam, E.; De Ryck, L.; Sebaa, N.; Lauriks, W. Analytical method for the ultrasonic characterization of homogeneous rigid porous materials from transmitted and reflected coefficients. J. Acoust. Soc. Am. 2010, 127, 764–772. [Google Scholar] [CrossRef]
- Atalla, Y.; Panneton, R. Inverse Acoustical Characterization of Open Cell Porous Media Using Impedance Tube Measurements. Can. Acoust. Acoust. Can. 2005, 33. [Google Scholar]
- Dauchez, N.; Yvars, P.A. Inverse Method for Porous Material Characterization Using the Constraint Satisfaction Problem Approach; Acoustics: Bengaluru, India, 2012. [Google Scholar]
- Dossi, M.; Brennan, M.; Moesen, M.; Vandenbroeck, J.; Huo, L. An Inverse Method to Determine Acoustic Parameters of Polyurethane Foams. Inter-Noise -Noise-Con Congr. Conf. Proc. 2019, 259, 1170–1181. [Google Scholar]
- Chazot, J.D.; Zhang, E.; Antoni, J. Acoustical and mechanical characterization of poroelastic materials using a Bayesian approach. J. Acoust. Soc. Am. 2012, 131, 4584–4595. [Google Scholar] [CrossRef]
- Niskanen, M.; Groby, J.P.; Duclos, A.; Dazel, O.; Le Roux, J.C.; Poulain, N.; Huttunen, T.; Lähivaara, T. Deterministic and Statistical Characterization of Rigid Frame Porous Materials from Impedance Tube Measurements. J. Acoust. Soc. Am. 2017, 142, 2407–2418. [Google Scholar] [CrossRef]
- Cuenca, J.; Göransson, P.; De Ryck, L.; Lähivaara, T. Deterministic and Statistical Methods for the Characterisation of Poroelastic Media from Multi-Observation Sound Absorption Measurements. Mech. Syst. Signal Process. 2022, 163, 108186. [Google Scholar] [CrossRef]
- Horoshenkov, K.V.; Hurrell, A.; Groby, J.P. A Three-Parameter Analytical Model for the Acoustical Properties of Porous Media. J. Acoust. Soc. Am. 2019, 145, 2512–2517. [Google Scholar] [CrossRef]
- Xie, H.-L.; Deng, B.; Du, G.-H.; Fu, Y.-N. Latest advances of X-ray imaging and biomedical applications beamline at SSRF. Nucl. Sci. Tech. 2015, 26, 20102-020102. [Google Scholar]
- Tarnow, V. Airflow resistivity of models of fibrous acoustic materials. J. Acoust. Soc. Am. 1996, 100, 3706–3713. [Google Scholar] [CrossRef]
- Tarnow, V. Calculation of the dynamic air flow resistivity of fiber materials. J. Acoust. Soc. Am. 1997, 102, 1680–1688. [Google Scholar] [CrossRef]
- ISO 10534-2:1998; Acoustics–Determination of Sound Absorption Coefficient And Impedance in Impedance Tubes—Part 2: Transfer-Function Method. International Organization for Standardization: Geneva, Switzerland, 1998.
- Nelder, J.A.; Mead, R. A simplex method for function minimization. Comput. J. 1965, 7, 308–313. [Google Scholar] [CrossRef]
- Holland, J.H. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence; MIT Press: Cambridge, MA, USA, 1992. [Google Scholar]
- Baluja, S.; Caruana, R. Removing the genetics from the standard genetic algorithm. In Machine Learning Proceedings 1995; Elsevier: Amsterdam, The Netherlands, 1995; pp. 38–46. [Google Scholar]
d ( ) | ||
---|---|---|
Sample Number | (%) | d (m) | Thickness (mm) |
---|---|---|---|
1 | 95 | 22 | 17.77 |
2 | 90 | 22 | 19.26 |
3 | 85 | 22 | 19.52 |
4 | 90 | 40 | 29.54 |
5 | 90 | 40 | 19.86 |
6 | 90 | 40 | 9.89 |
Sample Number | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|
Optimal | 0.4502 | 0.4697 | 0.4961 | 0.4486 | 0.4431 | 0.5112 |
Sample Number | ( · · −4) | ( ) | ( ) | ( 2) | ||
---|---|---|---|---|---|---|
1 | 0.95 | 41,954.06 | 1.48 | 77.13 | 113.86 | 13041.30 |
2 | 0.90 | 96,559.47 | 1.53 | 53.37 | 81.56 | 27060.14 |
3 | 0.85 | 173,335.58 | 1.60 | 42.27 | 67.83 | 41938.14 |
4 | 0.90 | 26,613.63 | 1.47 | 99.33 | 146.24 | 8339.47 |
5 | 0.90 | 25,989.77 | 1.46 | 99.92 | 145.72 | 8379.13 |
6 | 0.90 | 35,521.69 | 1.65 | 92.41 | 152.71 | 7871.56 |
Generated Sample | d ( ) | Thickness (mm) | ||
---|---|---|---|---|
A | 0.9074 | 95.5792 | 0.1635 | 46.1019 |
B | 0.6535 | 57.4824 | 0.4076 | 34.5052 |
C | 0.6977 | 15.0724 | 0.2074 | 35.1952 |
Generated Sample | Input Parameters | Number | ± Error (%) | d ( ) ± Error (%) | ± Error (%) | Fitness Value |
---|---|---|---|---|---|---|
A | #1 | 0.9156 (+0.91) | 90.9148 (−4.88) | 0.1654 (+1.14) | 0.0074 | |
#2 | 0.9123 (+0.55) | 92.8670 (−2.84) | 0.1653 (+1.11) | 0.0045 | ||
#3 | 0.9241 (+1.84) | 86.2075 (−9.81) | 0.1692 (+3.50) | 0.0151 | ||
Mean | 0.9173 (+1.09) | 89.9964 (−5.84) | 0.1666 (+1.90) | |||
#1 | 0.9074 (+0.001) | 95.6981 (+0.12) | 0.1640 (+0.28) | |||
#2 | 0.9113 (+0.43) | 94.3968 (−1.24) | 0.1761 (+7.69) | 0.0035 | ||
#3 | 0.9166 (+1.02) | 92.5786 (−3.14) | 0.1912 (+16.93) | 0.0083 | ||
Mean | 0.9118 (+0.48) | 94.2245 (−1.42) | 0.1771 (+8.32) | |||
B | #1 | 0.6344 (−2.93) | 60.2355 (+4.79) | 0.4067 (−0.22) | 0.0149 | |
#2 | 0.6960 (+6.50) | 54.7718 (−4.72) | 0.4350 (+6.73) | 0.0233 | ||
#3 | 0.6492 (−0.66) | 63.8648 (+11.10) | 0.4476 (+9.83) | 0.0260 | ||
Mean | 0.6599 (+0.97) | 59.6240 (−3.73) | 0.4298 (+5.44) | |||
#1 | 0.6545 (+0.14) | 55.8480 (−2.84) | 0.3934 (−3.48) | 0.0120 | ||
#2 | 0.6508 (−0.41) | 55.5301 (−3.40) | 0.3875 (−4.93) | 0.0130 | ||
#3 | 0.6483 (−0.80) | 56.9729 (−0.89) | 0.3963 (−2.77) | 0.0065 | ||
Mean | 0.6512 (−0.35) | 56.1170 (−2.38) | 0.3924 (−3.73) | |||
C | #1 | 0.8859 (+26.97) | 13.4143 (−11.00) | 0.5449 (+162.71) | 0.0117 | |
#2 | 0.8081 (+15.83) | 15.8471 (+5.14) | 0.4688 (+126.00) | 0.0089 | ||
#3 | 0.7293 (+4.53) | 15.2246 (+1.01) | 0.2976 (+43.48) | 0.0020 | ||
Mean | 0.8078 (+15.78) | 14.8287 (−1.62) | 0.4371 (+110.75) | |||
#1 | 0.7048 (+1.02) | 19.0428 (+26.34) | 0.3826 (+84.43) | 0.0162 | ||
#2 | 0.7031 (+0.77) | 16.1080 (+6.87) | 0.2747 (+32.41) | 0.0084 | ||
#3 | 0.7012 (+0.50) | 13.9150 (−7.68) | 0.1122 (−45.92) | 0.0064 | ||
Mean | 0.7030 (+0.76) | 16.3553 (+8.51) | 0.2565 (+23.67) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, T.; Pan, B.; Song, X.; Sui, D.; Xiao, H.; Zhou, J. Heuristic Approaches Based on Modified Three-Parameter Model for Inverse Acoustic Characterisation of Sintered Metal Fibre Materials. Mathematics 2022, 10, 3264. https://doi.org/10.3390/math10183264
Zhao T, Pan B, Song X, Sui D, Xiao H, Zhou J. Heuristic Approaches Based on Modified Three-Parameter Model for Inverse Acoustic Characterisation of Sintered Metal Fibre Materials. Mathematics. 2022; 10(18):3264. https://doi.org/10.3390/math10183264
Chicago/Turabian StyleZhao, Tianfei, Baorui Pan, Xiang Song, Dan Sui, Heye Xiao, and Jie Zhou. 2022. "Heuristic Approaches Based on Modified Three-Parameter Model for Inverse Acoustic Characterisation of Sintered Metal Fibre Materials" Mathematics 10, no. 18: 3264. https://doi.org/10.3390/math10183264
APA StyleZhao, T., Pan, B., Song, X., Sui, D., Xiao, H., & Zhou, J. (2022). Heuristic Approaches Based on Modified Three-Parameter Model for Inverse Acoustic Characterisation of Sintered Metal Fibre Materials. Mathematics, 10(18), 3264. https://doi.org/10.3390/math10183264