Numerical Analysis of Alternating Direction Implicit Orthogonal Spline Collocation Scheme for the Hyperbolic Integrodifferential Equation with a Weakly Singular Kernel
Abstract
:1. Introduction
2. Notations and Auxiliary Results
3. Discretization
4. Error Analysis of the ADIOSC Approach
4.1. Stability of the ADIOSC Approach
4.2. Convergence of the ADIOSC Approach
5. Numerical Results
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xu, D. Decay properties for the numerical solutions of a partial differential equation with memory. J. Sci. Comput. 2015, 62, 146–178. [Google Scholar] [CrossRef]
- Gurtin, M.E.; Pipkin, A.C. A general theory of heat conduction with finite wave speeds. Arch. Ration. Mech. Anal. 1968, 31, 113–126. [Google Scholar] [CrossRef]
- Christensen, R. Theory of Viscoelasticity: An Introduction; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Renardy, M. Mathematical analysis of viscoelastic flows. Ann. Rev. Fluid Mech. 1989, 21, 21–34. [Google Scholar] [CrossRef]
- Cavalcanti, M.; Cavalcanti, V.D.; Ma, T. Exponential decay of the viscoelastic Euler-Bernoulli equation with a nonlocal dissipation in general domains. Differ. Inte. Equ. 2004, 17, 495–510. [Google Scholar]
- Dafermos, C.M. Asymptotic stability in viscoelasticity. Arch. Ration. Mech. Anal. 1970, 37, 297–308. [Google Scholar] [CrossRef]
- Lebon, G.; Perez-Garcia, C.; Casas-Vazquez, J. On the thermodynamic foundations of viscoelasticity. J. Chem. Phys. 1988, 88, 5068–5075. [Google Scholar] [CrossRef]
- Leugering, G. Boundary controllability of a viscoelastic string. Volter. Inte. Differ. Equa. Banach Appl. Longman Sci. Tech. Harlow Essex. 1989, 258–270. [Google Scholar]
- AL-Nahhas, M.A.; Ahmed, H.; El-Owaidy, H.M. Null boundary controllability of nonlinear integrodifferential systems with Rosenblatt process. J. Math. Comput. Sci. 2022, 26, 113–127. [Google Scholar] [CrossRef]
- Cimen, E.; Yatar, S. Numerical solution of Volterra integro-differential equation with delay. J. Math. Comput. Sci. 2020, 20, 255–263. [Google Scholar] [CrossRef]
- Hlaváček, I. On the existence and uniqueness of solution of the Cauchy problem for linear integro-differential equations with operator coefficients. Appl. Mat. 1971, 16, 64–80. [Google Scholar] [CrossRef]
- Heard, M.L. A class of hyperbolic Volterra integrodifferential equations. Nonlinear Anal. 1984, 8, 79–93. [Google Scholar] [CrossRef]
- Xu, D. On the Observability of Time Discrete Integro-differential Systems. Appl. Math. Optim. 2021, 83, 565–637. [Google Scholar] [CrossRef]
- Fernandes, R.I.; Fairweather, G. Analysis of alternating direction collocation methods for parabolic and hyperbolic problems in two space variables. Numer. Methods Partial Differ. Equ. 1993, 9, 191–211. [Google Scholar] [CrossRef]
- Bialecki, B.; Fernandes, R.I. An orthogonal spline collocation alternating direction implicit method for second-order hyperbolic problems. IMA J. Numer. Anal. 2003, 23, 693–718. [Google Scholar] [CrossRef]
- Yanik, E.G.; Fairweather, G. Finite element methods for parabolic and hyperbolic partial integro-differential equations. Nonlinear Anal. 1988, 12, 785–809. [Google Scholar] [CrossRef]
- Inoan, D.; Marian, D. Semi-Hyers–Ulam–Rassias Stability via Laplace Transform, for an Integro-Differential Equation of the Second Order. Mathematics 2022, 10, 1893. [Google Scholar] [CrossRef]
- Inoan, D.; Marian, D. Semi-Hyers–Ulam–Rassias Stability of a Volterra Integro-Differential Equation of Order I with a Convolution Type Kernel via Laplace Transform. Symmetry 2021, 13, 2181. [Google Scholar] [CrossRef]
- Pani, A.K.; Fairweather, G.; Fernandes, R.I. Alternating direction implicit orthogonal spline collocation methods for an evolution equation with a positive-type memory term. SIAM J. Numer. Anal. 2008, 46, 344–364. [Google Scholar] [CrossRef]
- Bialecki, B.; Fairweather, G. Orthogonal spline collocation methods for partial differential equations. J. Comput. Appl. Math. 2001, 128, 55–82. [Google Scholar] [CrossRef]
- Bialecki, B.; Fernandes, R.I. Alternating direction implicit orthogonal spline collocation on some non-rectangular regions with inconsistent partitions. Numer. Algor. 2017, 74, 1083–1100. [Google Scholar] [CrossRef]
- Bialecki, B.; Fernandes, R.I. An Orthogonal Spline Collocation Alternating Direction Implicit Crank–Nicolson Method for Linear Parabolic Problems on Rectangles. SIAM J. Numer. Anal. 1999, 36, 1414–1434. [Google Scholar] [CrossRef]
- Gao, W.; Veeresha, P.; Cattani, C.; Baishya, C.; Baskonus, H.M. Modified Predictor–Corrector Method for the Numerical Solution of a Fractional-Order SIR Model with 2019-nCoV. Fractal Fract. 2022, 6, 92. [Google Scholar] [CrossRef]
- Nisar, K.S.; Logeswari, K.; Vijayaraj, V.; Baskonus, H.M.; Ravichandran, C. Fractional order modeling the gemini virus in capsicum annuum with optimal control. Fractal Fract. 2022, 6, 61. [Google Scholar] [CrossRef]
- Qiu, W.; Xu, D.; Guo, J.; Zhou, J. A time two-grid algorithm based on finite difference method for the two-dimensional nonlinear time-fractional mobile/immobile transport model. Numer. Algorithms 2020, 85, 39–58. [Google Scholar] [CrossRef]
- Xu, D.; Qiu, W.; Guo, J. A compact finite difference scheme for the fourth-order time-fractional integro-differential equation with a weakly singular kernel. Numer. Methods Partial. Differ. Equ. 2020, 36, 439–458. [Google Scholar] [CrossRef]
- Mesgarani, H.; Esmaeelzade Aghdam, Y.; Tavakoli, H. Numerical simulation to solve two-dimensional temporal-space fractional Bloch–Torrey equation taken of the spin magnetic moment diffusion. Int. J. Appl. Comput. Math. 2021, 7, 1–14. [Google Scholar] [CrossRef]
- Nikan, O.; Avazzadeh, Z. Numerical simulation of fractional evolution model arising in viscoelastic mechanics. Appl. Numer. Math. 2021, 169, 303–320. [Google Scholar] [CrossRef]
- Nikan, O.; Avazzadeh, Z.; Machado, J.T. Numerical approach for modeling fractional heat conduction in porous medium with the generalized Cattaneo model. Appl. Math. Model. 2021, 100, 107–124. [Google Scholar] [CrossRef]
- Aghdam, Y.E.; Mesgrani, H.; Javidi, M.; Nikan, O. A computational approach for the space-time fractional advection–diffusion equation arising in contaminant transport through porous media. Eng. Comput. 2021, 37, 3615–3627. [Google Scholar] [CrossRef]
- Larsson, S.; Thomée, V.; Wahlbin, L. Numerical solution of parabolic integro-differential equations by the discontinuous Galerkin method. Math. Comp. 1998, 67, 45–71. [Google Scholar] [CrossRef]
- Chen, H.; Xu, D.; Peng, Y. A second order BDF alternating direction implicit difference scheme for the two-dimensional fractional evolution equation. Appl. Math. Model. 2017, 41, 54–67. [Google Scholar] [CrossRef]
- Qiao, L.; Xu, D. A fast ADI orthogonal spline collocation method with graded meshes for the two-dimensional fractional integro-differential equation. Adv. Comput. Math. 2021, 47, 1–22. [Google Scholar] [CrossRef]
- Huang, Q.; Qi, R.j.; Qiu, W. The efficient alternating direction implicit Galerkin method for the nonlocal diffusion-wave equation in three dimensions. J. Appl. Math. Comput. 2021, 1–21. [Google Scholar] [CrossRef]
- Qiao, L.; Qiu, W.; Xu, D. A second-order ADI difference scheme based on non-uniform meshes for the three-dimensional nonlocal evolution problem. Comput. Math. Appl. 2021, 102, 137–145. [Google Scholar] [CrossRef]
- Qiao, L.; Xu, D.; Qiu, W. The formally second-order BDF ADI difference/compact difference scheme for the nonlocal evolution problem in three-dimensional space. Appl. Numer. Math. 2022, 172, 359–381. [Google Scholar] [CrossRef]
- Qiao, L.; Guo, J.; Qiu, W. Fast BDF2 ADI methods for the multi-dimensional tempered fractional integrodifferential equation of parabolic type. Comput. Math. Appl. 2022, 123, 89–104. [Google Scholar] [CrossRef]
- Qiu, W.; Xu, D.; Chen, H.; Guo, J. An alternating direction implicit Galerkin finite element method for the distributed-order time-fractional mobile–immobile equation in two dimensions. Comput. Math. Appl. 2020, 80, 3156–3172. [Google Scholar] [CrossRef]
- Lubich, C. Convolution quadrature and discretized operational calculus. I. Numer. Math. 1988, 52, 129–145. [Google Scholar] [CrossRef]
- Cuesta, E.; Palencia, C. A fractional trapezoidal rule for integro-differential equations of fractional order in Banach spaces. Appl. Numer. Math. 2003, 45, 139–159. [Google Scholar] [CrossRef]
- Lubich, C.; Sloan, I.; Thomée, V. Nonsmooth data error estimates for approximations of an evolution equation with a positive-type memory term. Math. Comput. 1996, 65, 1–17. [Google Scholar] [CrossRef]
- Danumjaya, P.; Pani, A.K. Orthogonal cubic spline collocation method for the extended Fisher–Kolmogorov equation. J. Comput. Appl. Math. 2005, 174, 101–117. [Google Scholar] [CrossRef]
- Qiu, W.; Xu, D.; Guo, J. Numerical solution of the fourth-order partial integro-differential equation with multi-term kernels by the Sinc-collocation method based on the double exponential transformation. Appl. Math. Comput. 2021, 392, 125693. [Google Scholar] [CrossRef]
- Qiu, W.; Xu, D.; Guo, J. The Crank-Nicolson-type Sinc-Galerkin method for the fourth-order partial integro-differential equation with a weakly singular kernel. Appl. Numer. Math. 2021, 159, 239–258. [Google Scholar] [CrossRef]
- Qiu, W.; Xu, D.; Guo, J. A formally second-order backward differentiation formula Sinc-collocation method for the Volterra integro-differential equation with a weakly singular kernel based on the double exponential transformation. Numer. Methods Partial. Differ. Equ. 2022, 38, 830–847. [Google Scholar] [CrossRef]
- Qiu, W.; Xu, D.; Zhou, J.; Guo, J. An efficient Sinc-collocation method via the DE transformation for eighth-order boundary value problems. J. Comput. Appl. Math. 2022, 408, 114136. [Google Scholar] [CrossRef]
CPU(s) | CPU(s) | CPU(s) | |||||||
---|---|---|---|---|---|---|---|---|---|
2 | − | − | − | ||||||
4 | |||||||||
8 | 1.1716 | ||||||||
16 | 3.5713 |
N | |||||||||
---|---|---|---|---|---|---|---|---|---|
CPU(s) | CPU(s) | CPU(s) | |||||||
16 | − | − | − | ||||||
32 | |||||||||
64 | |||||||||
128 | |||||||||
256 |
CPU(s) | CPU(s) | CPU(s) | |||||||
---|---|---|---|---|---|---|---|---|---|
2 | − | − | − | ||||||
4 | |||||||||
8 | |||||||||
16 |
N | |||||||||
---|---|---|---|---|---|---|---|---|---|
CPU(s) | CPU(s) | CPU(s) | |||||||
6 | − | − | − | ||||||
12 | |||||||||
24 | |||||||||
48 | |||||||||
96 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Q.; Nikan, O.; Avazzadeh, Z. Numerical Analysis of Alternating Direction Implicit Orthogonal Spline Collocation Scheme for the Hyperbolic Integrodifferential Equation with a Weakly Singular Kernel. Mathematics 2022, 10, 3390. https://doi.org/10.3390/math10183390
Huang Q, Nikan O, Avazzadeh Z. Numerical Analysis of Alternating Direction Implicit Orthogonal Spline Collocation Scheme for the Hyperbolic Integrodifferential Equation with a Weakly Singular Kernel. Mathematics. 2022; 10(18):3390. https://doi.org/10.3390/math10183390
Chicago/Turabian StyleHuang, Qiong, Omid Nikan, and Zakieh Avazzadeh. 2022. "Numerical Analysis of Alternating Direction Implicit Orthogonal Spline Collocation Scheme for the Hyperbolic Integrodifferential Equation with a Weakly Singular Kernel" Mathematics 10, no. 18: 3390. https://doi.org/10.3390/math10183390
APA StyleHuang, Q., Nikan, O., & Avazzadeh, Z. (2022). Numerical Analysis of Alternating Direction Implicit Orthogonal Spline Collocation Scheme for the Hyperbolic Integrodifferential Equation with a Weakly Singular Kernel. Mathematics, 10(18), 3390. https://doi.org/10.3390/math10183390