General Master Theorems of Integrals with Applications
Abstract
:1. Introduction
2. Preliminaries
3. Fundamental Theorems
4. Applications and Examples
4.1. Remarks on Theorems
4.2. Generating Improper Integrals
- 1.
- Setting
- Using Theorem (1) and setting , we obtain
- where , .
- where , .
- 2.
- Setting
- Using Theorem (1), we obtain
- Using Theorem (2), we obtain
- where , m is even,
- Setting , we obtain
- 3.
- Setting
- Using Theorem (1), we obtain
- where , m is odd,
- Using Theorem (2), we obtain
- 4.
- Setting
- Using Theorem 1, we obtain
- 5.
- Setting
- Using Theorem 1, we obtain
- Thus,
- Setting we obtain
4.3. Solving Improper Integrals
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Conditions | |||
---|---|---|---|
1. | be odd, , and | ||
2. | is odd, , and | ||
3. | , | ||
4. | be odd, and | ||
5. | be odd, and | ||
6. | |||
7. | and is odd | ||
8. | is odd, and | ||
9. |
References
- Arfken, G.B.; Weber, H.J. Mathematical Methods for Physicists, 5th ed.; Academic Press: Boston, MA, USA, 2000. [Google Scholar]
- Nahin, P.J. Inside Interesting Integrals; Springer: New York, NY, USA, 2015. [Google Scholar]
- Boros, G.; Moll, V. Irresistible Integrals: Symbolics, Analysis and Experiments in the Evaluation of Integrals; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Cauchy, A.L. Mémoire sur les Intégrales Définies Prises Entre des Limites Imaginaires; Reprint of the 1825 Original. Oeuvres Complètes d’Augustin Cauchy; Series II; Gauthier-Villars: Paris, France, 1974; Volume 15, pp. 41–89. [Google Scholar]
- Cauchy, A.L. Sur Diverses Relations qui Existent entre les Résidus des Fonctions et les Intégrales Définies. Exerc. Math. 1826, 1, 95–113. [Google Scholar]
- Harold, P.B. Cauchy’s Residue Sore Thumb. Am. Math. Mon. 2018, 125, 16–28. [Google Scholar]
- Kostin, A.B.; Sherstyukov, V.B. Integral representations of quantities associated with Gamma function. Ufim. Mat. Zhurnal 2021, 13, 51–64. [Google Scholar] [CrossRef]
- Stein, E.M.; Shakarchi, R. Complex Analysis; Princeton University Press: Princeton, NJ, USA, 2003. [Google Scholar]
- Thomas, G.B.; Finney, R.L. Calculus and Analytic Geometry; Addison Wesley: Boston, MA, USA, 1996. [Google Scholar]
- Andrews, L. Special Functions of Mathematics for Engineers; SPIE Optical Engineering Press: Bellingham, WA, USA, 1998. [Google Scholar]
- Roy, R. Sources in the Development of Mathematics; Cambridge University Press: New York, NY, USA, 2011. [Google Scholar]
- Euler, L. Investigatio valoris integralis ∫(x m-1 dx)/(1–2x k cosθ+ x 2k) a termino x=0 ad x=∞ extensi. Opusc. Anal. 1785, 2, 55–75. [Google Scholar]
- Zwillinger, D. Table of Integrals, Series, and Products; Academic Press: Cambridge, MA, USA, 2014. [Google Scholar]
- Abu-Gdairi, R.; Al-smadi, M.H. An Efficient Computational Method for 4th-order Boundary Value Problems of Fredholm IDEs. Appl. Math. Sci. 2013, 7, 4774–4791. [Google Scholar] [CrossRef]
- Abu-Gdairi, R.; Al-smadi, M.H.; Gumah, G. An Expansion Iterative Technique for Handling Fractional Differential Equations Using Fractional Power Series Scheme. J. Math. Stat. 2015, 11, 29–38. [Google Scholar] [CrossRef]
- Paudyal, D.R. Approximating the Sum of Infinite Series of Non Negative Terms with reference to Integral Test. Nepali Math. Sci. Rep. 2020, 37, 63–70. [Google Scholar] [CrossRef]
- Kisselev, A.V. Exact expansions of Hankel transforms and related integrals. Ramanujan J. 2021, 55, 349–367. [Google Scholar] [CrossRef]
- Chagas, J.Q.; Tenreiro Machado, J.A.; Lopes, A.M. Revisiting the Formula for the Ramanujan Constant of a Series. Mathematics 2022, 10, 1539. [Google Scholar] [CrossRef]
- Yakubovich, S. Discrete Kontorovich–Lebedev transforms. Ramanujan J. 2021, 55, 517–538. [Google Scholar] [CrossRef]
- Ahmed, S.A.; Qazza, A.; Saadeh, R. Exact Solutions of Nonlinear Partial Differential Equations via the New Double Integral Transform Combined with Iterative Method. Axioms 2022, 11, 247. [Google Scholar] [CrossRef]
- Li, C.; Chu, W. Evaluation of Infinite Series by Integrals. Mathematics 2022, 10, 2444. [Google Scholar] [CrossRef]
- Burqan, A.; Saadeh, R.; Qazza, A. A Novel Numerical Approach in Solving Fractional Neutral Pantograph Equations via the ARA Integral Transform. Symmetry 2022, 14, 50. [Google Scholar] [CrossRef]
- Qazza, A.; Burqan, A.; Saadeh, R. A New Attractive Method in Solving Families of Fractional Differential Equations by a New Transform. Mathematics 2021, 9, 3039. [Google Scholar] [CrossRef]
- Kisselev, A.V. Ramanujan’s Master Theorem and two formulas for the zero-order Hankel transform. Ramanujan J. 2022, 57, 1209–1221. [Google Scholar] [CrossRef]
- Berndt, B. Ramanujan's Notebooks, Part I; Springer: New York, NY, USA, 1985. [Google Scholar]
- Amdeberhan, T.; Espinosa, O.; Gonzalez, I.; Harrison, M.; Moll, V.H.; Straub, A. Ramanujan’s Master Theorem. Ramanujan J. 2012, 29, 103–120. [Google Scholar] [CrossRef]
- Saadeh, R.; Qazza, A.; Burqan, A. On the Double ARA-Sumudu Transform and Its Applications. Mathematics 2022, 10, 2581. [Google Scholar] [CrossRef]
- Freihat, A.; Abu-Gdairi, R.; Khalil, H.; Abuteen, E.; Al-Smadi, M.; Khan, R.A. Fitted Reproducing Kernel Method for Solving a Class of third-Order Periodic Boundary Value Problems. Am. J. Appl. Sci. 2016, 13, 501–510. [Google Scholar] [CrossRef]
- Burqan, A.; Saadeh, R.; Qazza, A.; Momani, S. ARA-residual power series method for solving partial fractional differential equations. Alex. Eng. J. 2023, 62, 47–62. [Google Scholar] [CrossRef]
- Glaisher, J.W.L. A new formula in definite integrals. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1874, 48, 53–55. [Google Scholar] [CrossRef]
- Abu Ghuwaleh, M.; Saadeh, R.; Burqan, A. New Theorems in Solving Families of Improper Integrals. Axioms 2022, 11, 301. [Google Scholar] [CrossRef]
- Grigoletto, E.C.; Oliveira, E.C.; Camargo, R.F. Integral representations of Mittag-Leffler function on the positive real axis. TEMA 2019, 20, 217–228. [Google Scholar] [CrossRef]
- Boas, M.L. Mathematical Methods in the Physical Sciences; John Wiley & Sons: Hoboken, NJ, USA, 2006. [Google Scholar]
- Duffy, D.G. Green's Functions with Applications; Chapman and Hall/CRC: Boca Raton, FL, USA, 2015. [Google Scholar]
- Graff, K.F. Wave Motion in Elastic Solids; Courier Corporation: Chelmsford, MA, USA, 2012. [Google Scholar]
Conditions | Theorem/ Corollary | Remarks | |||
---|---|---|---|---|---|
1 | , and | Theorem 1 | This is identical to Cauchy’s theorem obtained in [4] (P.62, formula 8) and in [13] (3.037 Theorem 1). | ||
2 | , and | Theorem 2 | Cauchy made a mistake in this result (see [4]) (P.62, formula 8). He corrected his result in his next memoir (see [5,6]). | ||
3 | Corollary 1 | Cauchy also made a mistake in this result (see [4] (P.62, formula 10)). This result appears in [13] (3.037 Theorem 4). | |||
4 | Theorem 5 | ||||
5 | Theorem 5 | ||||
6 | Theorem 6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abu-Ghuwaleh, M.; Saadeh, R.; Qazza, A. General Master Theorems of Integrals with Applications. Mathematics 2022, 10, 3547. https://doi.org/10.3390/math10193547
Abu-Ghuwaleh M, Saadeh R, Qazza A. General Master Theorems of Integrals with Applications. Mathematics. 2022; 10(19):3547. https://doi.org/10.3390/math10193547
Chicago/Turabian StyleAbu-Ghuwaleh, Mohammad, Rania Saadeh, and Ahmad Qazza. 2022. "General Master Theorems of Integrals with Applications" Mathematics 10, no. 19: 3547. https://doi.org/10.3390/math10193547
APA StyleAbu-Ghuwaleh, M., Saadeh, R., & Qazza, A. (2022). General Master Theorems of Integrals with Applications. Mathematics, 10(19), 3547. https://doi.org/10.3390/math10193547