Improvement of an Adaptive Robot Control by Particle Swarm Optimization-Based Model Identification
Abstract
:1. Introduction
1.1. On the Adaptive Control Techniques
1.2. Improvement of the Dynamic Model by the Use of Evolutionary Methods
1.3. Preliminary Conclusions for the van der Pol Oscillator
2. The Adaptation Strategy in the FPI-Based Control
- The “Kinematic Design” where the “Desired Signal” is generated, based on a PID-type design using the difference between the nominal coordinate and the real one as an error , the integrated error as , and the derivative of the error . In our approach, the controller is used with defining a single constant parameter unlike the common PID gains, which are independent parameters, such as , and , and normally they require continuous tuning. In our case, as it is given in (3), the special gains correspond to , , and :
- The “Adaptive Deformation Signal” generated by deformation of the desired second derivative . Various mathematical deformations can be applied. Since the studied system is a multi-degree-of-freedom system, the adaptive deformation in this paper applied the “Abstract Rotation-based Fixed Point Transformation” published in [70], which realizes Algorithm 1.
- In the “Approximate System Model”, the control force is computed based on the adaptively deformed signal. This force will be applied to the controlled system (“Actual System”) so that the realized second derivative coordinate is obtained.
Algorithm 1 The abstract rotation-based fixed point transformation algorithm |
Require: |
Ensure: |
▹ Rodrigues formula |
3. Model Dynamics
4. Implementation of the PSO Strategy
5. Simulation Results
5.1. Identifying Parameters by PSO
5.2. Operation of the Non-Adaptive CTC vs. Adaptive CTC for the Identified Parameters
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Corke, P.; Armstrong-Helouvry, B. A Search for Consensus Among Model Parameters Reported for the PUMA 560 Robot. In Proceedings of the 1994 IEEE International Conference on Robotics and Automation, San Diego, CA, USA, 8–13 May 1994; pp. 1608–1613. [Google Scholar]
- Andoga, R.; Főző, L. Near Magnetic Field of a Small Turbojet Engine. Acta Phys. Pol. 2017, 131, 1117–1119. [Google Scholar] [CrossRef]
- Andoga, R.; Főző, L.; Schrötter, M.; Češkovič, M.; Szabo, S.; Bréda, R.; Schreiner, M. Intelligent Thermal Imaging-Based Diagnostics of Turbojet Engines. Appl. Sci. 2019, 9, 2253. [Google Scholar] [CrossRef] [Green Version]
- Spodniak, M.; Főző, L.; Andoga, R.; Semrád, K.; Beneda, K. Methodology for the Water Injection System Design Based on Numerical Models. Acta Polytech. Hung. 2021, 18, 47–62. [Google Scholar] [CrossRef]
- Andoga, R.; Főző, L.; Judičák, J.; Bréda, R.; Szabo, S.; Rozenberg, R.; Džunda, M. Intelligent Situational Control of Small Turbojet Engines. Int. J. Aerosp. Eng. 2018, 2018, 1–16. [Google Scholar] [CrossRef]
- Andoga, R.; Főző, L.; Kovács, R.; Beneda, K.; Moravec, T.; Schreiner, M. Robust Control of Small Turbojet Engines. Machines 2019, 7, 3. [Google Scholar] [CrossRef] [Green Version]
- Slotine, J.J.E.; Li, W. Applied Nonlinear Control; Prentice Hall International, Inc.: Englewood Cliffs, NJ, USA, 1991. [Google Scholar]
- Lyapunov, A. A General Task about the Stability of Motion. Ph.D. Thesis, University of Kazan, Tatarstan, Russia, 1892. (In Russian). [Google Scholar]
- Lyapunov, A. Stability of Motion; Academic Press: New York, NY, USA; London, UK, 1966. [Google Scholar]
- Lin, H.; Zhao, B.; Liu, D.; Alippi, C. Data-based fault tolerant control for affine nonlinear systems through particle swarm optimized neural networks. IEEE/CAA J. Autom. Sin. 2020, 7, 954–964. [Google Scholar] [CrossRef]
- Wang, D.; Liu, S.; He, Y.; Shen, J. Barrier Lyapunov function-based adaptive back-stepping control for electronic throttle control system. Mathematics 2021, 9, 326. [Google Scholar] [CrossRef]
- Chen, H.; Haus, B.; Mercorelli, P. Extension of SEIR compartmental models for constructive Lyapunov control of COVID-19 and analysis in terms of practical stability. Mathematics 2021, 9, 2076. [Google Scholar] [CrossRef]
- Nguyen, C.; Antrazi, S.; Zhou, Z.L.; Campbell, C.E., Jr. Adaptive Control of a Stewart Platform-based Manipulator. J. Robot. Syst. 1993, 10, 657–687. [Google Scholar] [CrossRef]
- Banach, S. Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales (About the Operations in the Abstract Sets and Their Application to Integral Equations). Fund. Math. 1922, 3, 133–181. [Google Scholar] [CrossRef]
- Tar, J.; Bitó, J.; Nádai, L.; Machado, J.T. Robust Fixed Point Transformations in Adaptive Control Using Local Basin of Attraction. Acta Polytech. Hung. 2009, 6, 21–37. [Google Scholar]
- Tar, J.; Bitó, J.; Rudas, I. Replacement of Lyapunov’s Direct Method in Model Reference Adaptive Control with Robust Fixed Point Transformations. In Proceedings of the 2010 IEEE 14th International Conference on Intelligent Engineering Systems, Las Palmas of Gran Canaria, Spain, 5–7 October 2010; pp. 231–235. [Google Scholar]
- Varga, A.; Kovács, L.; Eigner, G.; Kocur, D.; Tar, J.K. Fixed Point Iteration-based Adaptive Control for a Delayed Differential Equation Model of Diabetes Mellitus. In Proceedings of the 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC), Bari, Italy, 6–9 October 2019; pp. 1408–1413. [Google Scholar] [CrossRef]
- Issa, H.; Tar, J.K. Preliminary Design of a Receding Horizon Controller Supported by Adaptive Feedback. Electronics 2022, 11, 1243. [Google Scholar] [CrossRef]
- Faitli, T. Investigation of Control Methods for a Speed-Controlled Electric Motor. Bachelor’s Thesis, Óbuda University, Donát Bánki Faculty of Mechanical and Safety Engineering, Institute of Mechatronics and Autotechnics, Budapest, Hungary, 2018. [Google Scholar]
- Armstrong, B.; Khatib, O.; Burdick, J. The Explicit Dynamic Model and Internal Parameters of the PUMA 560 Arm. In Proceedings of the 1986 IEEE International Conference on Robotics and Automation, San Francisco, CA, USA, 7–10 April 1986; pp. 510–518. [Google Scholar]
- Varga, A.; Eigner, G.; Rudas, I.; Tar, J. Experimental and Simulation-Based Performance Analysis of a Computed Torque Control (CTC) Method Running on a Double Rotor Aeromechanical Testbed. Electronics 2021, 10, 1745. [Google Scholar] [CrossRef]
- Bodó, Z.; Lantos, B. Integrating Backstepping Control of Outdoor Quadrotor UAVs. Period. Polytech.–Electr. Eng. Comput. Sci. 2019, 63, 122–132. [Google Scholar] [CrossRef]
- Dumetz, E.; Dieulot, J.Y.; Barre, P.J.; Colas, F.; Delplace, T. Control of an Industrial Robot using Acceleration Feedback. J. Intell. Robot. Syst. 2006, 46, 111–128. [Google Scholar] [CrossRef]
- Wang, Q.; Cai, H.X.; Huang, Y.M.; Ge, L.; Tang, T.; Su, Y.R.; Liu, X.; Li, J.Y.; He, D.; Du, S.P.; et al. Acceleration feedback control (AFC) enhanced by disturbance observation and compensation (DOC) for high precision tracking in telescope systems. Res. Astron. Astrophys. 2016, 16, 124. [Google Scholar] [CrossRef]
- Hamandi, M.; Tognon, M.; Franchi, A. Direct acceleration feedback control of quadrotor aerial vehicles. In Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 31 May–31 August 2020; pp. 5335–5341. [Google Scholar]
- Tar, J.; Bitó, J.; Várkonyi-Kóczy, A.; Dineva, A. Symbiosys of RFPT-based Adaptivity and the Modified Adaptive Inverse Dynamics Controller. In Advances in Soft Computing, Intelligent Robotics and Control; Fodor, J., Fullér, R., Eds.; Springer: Heidelberg, Germany; London, UK; New York, NY, USA, 2014; pp. 95–106. [Google Scholar]
- Tar, J.; Rudas, I.; Dineva, A.; Várkonyi-Kóczy, A. Stabilization of a Modified Slotine-Li Adaptive Robot Controller by Robust Fixed Point Transformations. In Proceedings of the International Conference on Intelligent Control, Modelling and Systems Engineering, 2014, Cambridge, MA, USA, 29–31 January 2014; pp. 35–40. [Google Scholar]
- Lagrange, J.; Binet, J.; Garnier, J. Mécanique Analytique (Analytical Mechanics); Binet, J.P.M., Garnier, J.G., Eds.; Ve Courcier: Paris, France, 1811. [Google Scholar]
- Gambár, K.; Márkus, F. A possible dynamical phase transition between the dissipative and the non-dissipative solutions of a thermal process. Phys. Lett. A 2007, 361, 283–286. [Google Scholar] [CrossRef]
- Gambár, K.; Lendvay, M.; Lovassy, R.; Bugyjás, J. Application of Potentials in the Description of Transport Processes. Acta Polytech. Hung. 2016, 13, 173–184. [Google Scholar]
- Bellman, R. Dynamic Programming and a new formalism in the calculus of variations. Proc. Natl. Acad. Sci. USA 1954, 40, 231–235. [Google Scholar] [CrossRef] [Green Version]
- Kalman, R. Contribution to the Theory of Optimal Control. Bol. Soc. Mat. Mex. 1960, 5, 102–119. [Google Scholar]
- Nelder, J.; Mead, R. A simplex method for function minimization. Comput. J. 1965, 7, 308–313. [Google Scholar] [CrossRef]
- Dantzig, G. Origins of the Simplex Method (Technical Report Sol 87-5); Systems Optimization Laboratory, Department of Operations Research, Stanford University: Stanford, CA, USA, 1987. [Google Scholar]
- Galántai, A. A convergence analysis of the Nelder-Mead simplex method. Acta Polytech. Hung. 2021, 18, 93–105. [Google Scholar] [CrossRef]
- Kirkpatrick, S.; Gelatt, C.D., Jr.; Vecchi, M.P. Optimization by simulated annealing. Science 1983, 220, 671–680. [Google Scholar] [CrossRef]
- Moscato, P. On Evolution, Search, Optimization, Genetic Algorithms and Martial Arts: Towards Memetic Algorithms. Caltech Concurrent Computation Program, Report 826; Caltech: Pasadena, CA, USA, 1989. [Google Scholar]
- Szénási, S.; Felde, I. Configuring Genetic Algorithm to Solve the Inverse Heat Conduction Problem. Acta Polytech. Hung. 2017, 14, 133–152. [Google Scholar]
- Földesi, P.; Botzheim, J.; Kóczy, L. Eugenic bacterial memetic algorithm for fuzzy road transport traveling salesman problem. Int. J. Innov. Comput. 2009, 7, 2775–2798. [Google Scholar]
- Botzheim, J.; Toda, Y.; Kubota, N. Bacterial memetic algorithm for simultaneous optimization of path planning and flow shop scheduling problems. Artif. Life Robot. 2012, 17, 107–112. [Google Scholar] [CrossRef]
- Botzheim, J.; Toda, Y.; Kubota, N. Bacterial memetic algorithm for offline path planning of mobile robots. Memetic Comput. 2012, 4, 73–86. [Google Scholar] [CrossRef]
- Zamani, H.; Nadimi-Shahraki, M.H.; Gandomi, A.H. Starling murmuration optimizer: A novel bio-inspired algorithm for global and engineering optimization. Comput. Methods Appl. Mech. Eng. 2022, 392, 114616. [Google Scholar] [CrossRef]
- Mirjalili, S. Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm. Knowl. Based Syst. 2015, 89, 228–249. [Google Scholar] [CrossRef]
- Nadimi-Shahraki, M.H.; Fatahi, A.; Zamani, H.; Mirjalili, S.; Abualigah, L. An improved moth-flame optimization algorithm with adaptation mechanism to solve numerical and mechanical engineering problems. Entropy 2021, 23, 1637. [Google Scholar] [CrossRef]
- Zamani, H.; Nadimi-Shahraki, M.H.; Gandomi, A.H. QANA: Quantum-based avian navigation optimizer algorithm. Eng. Appl. Artif. Intell. 2021, 104, 104314. [Google Scholar] [CrossRef]
- Bajec, I.; Heppner, F. Organized flight in birds. Anim. Behav. 2009, 78, 777–789. [Google Scholar] [CrossRef]
- Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95-International Conference on Neural Networks, Perth, WA, USA, 27 November–1 December 1995; Volume 4, pp. 1942–1948. [Google Scholar]
- Felde, I.; Szénási, S. Estimation of temporospatial boundary conditions using a particle swarm optimisation technique. Int. J. Microstruct. Mater. Prop. 2016, 11, 288–300. [Google Scholar] [CrossRef]
- Le, L.T.; Nguyen, H.; Zhou, J.; Dou, J.; Moayedi, H. Estimating the heating load of buildings for smart city planning using a novel artificial intelligence technique PSO-XGBoost. Appl. Sci. 2019, 9, 2714. [Google Scholar] [CrossRef]
- Le, L.T.; Nguyen, H.; Dou, J.; Zhou, J. A comparative study of PSO-ANN, GA-ANN, ICA-ANN, and ABC-ANN in estimating the heating load of buildings’ energy efficiency for smart city planning. Appl. Sci. 2019, 9, 2630. [Google Scholar] [CrossRef] [Green Version]
- Ahmadi, M.; Soofiabadi, M.; Nikpour, M.; Naderi, H.; Abdullah, L.; Arandian, B. Developing a deep neural network with fuzzy wavelets and integrating an inline PSO to predict energy consumption patterns in urban buildings. Mathematics 2022, 10, 1270. [Google Scholar] [CrossRef]
- Nabi, S.; Ahmad, M.; Ibrahim, M.; Hamam, H. AdPSO: Adaptive PSO-based task scheduling approach for cloud computing. Sensors 2022, 22, 920. [Google Scholar] [CrossRef]
- Sung, W.T.; Tsai, M.H. Data fusion of multi-sensor for IOT precise measurement based on improved PSO algorithms. Comput. Math. Appl. 2012, 64, 1450–1461. [Google Scholar] [CrossRef] [Green Version]
- Liu, G.; Zhu, Y.; Xu, S.; Chen, Y.C.; Tang, H. PSO-based power-driven X-routing algorithm in semiconductor design for predictive intelligence of IoT applications. Appl. Soft Comput. 2022, 114, 108114. [Google Scholar] [CrossRef]
- Liu, J.; Fang, H.; Xu, J. Online Adaptive PID control for a multi-joint lower extremity exoskeleton system using improved particle swarm optimization. Machines 2021, 10, 21. [Google Scholar] [CrossRef]
- Xu, L.; Song, B.; Cao, M. An improved particle swarm optimization algorithm with adaptive weighted delay velocity. Syst. Sci. Control. Eng. 2021, 9, 188–197. [Google Scholar] [CrossRef]
- Vijay, M.; Jena, D. PSO based neuro fuzzy sliding mode control for a robot manipulator. J. Electr. Syst. Inf. Technol. 2017, 4, 243–256. [Google Scholar] [CrossRef] [Green Version]
- Chu, Z.; Ma, Y.; Cui, J. Adaptive reactionless control strategy via the PSO-ELM algorithm for free-floating space robots during manipulation of unknown objects. Nonlinear Dyn. 2018, 91, 1321–1335. [Google Scholar] [CrossRef]
- Sharma, K.D.; Chatterjee, A.; Rakshit, A. A PSO–Lyapunov hybrid stable adaptive fuzzy tracking control approach for vision-based robot navigation. IEEE Trans. Instrum. Meas. 2012, 61, 1908–1914. [Google Scholar] [CrossRef]
- Rastrigin, L. Systems of Extremal Control; Mir: Moscow, Russia, 1974. [Google Scholar]
- Rudolph, G. Globale Optimierung mit Parallelen Evolutionsstrategien (Diplomarbeit) Global Optimization with Parallel Evolution Strategies. Master’s Thesis, Department of Computer Science, University of Dortmund, Dortmund, Germany, 1990. [Google Scholar]
- Weierstraß, K. Über continuirliche Functionen eines reellen Arguments, die für keinen Werth des letzeren einen bestimmten Differentialquotienten besitzen, (On single variable continuous functions that nowhere are differentiable). In Königlich Preussichen Akademie der Wissenschaften, Mathematische Werke von Karl Weierstrass; Mayer & Mueller: Berlin, Germany, 1895; Volume 2, pp. 71–74. [Google Scholar]
- Tarantola, A. Inverse Problem Theory and Methods for Model Parameter Estimation; Society for Industrial and Applied Mathematics (SIAM): Philadelphia, PA, USA, 2005. [Google Scholar]
- Dunik, J.; Simandl, M.; Straka, O. Unscented Kalman filter: Aspects and adaptive setting of scaling parameter. IEEE Trans. Autom. Control 2012, 57, 2411–2416. [Google Scholar] [CrossRef]
- Menegaz, H.M.; Ishihara, J.A.Y.; Borges, G.A.; Vargas, A.N. A systematization of the unscented Kalman filter theory. IEEE Trans. Autom. Control 2015, 60, 2583–2598. [Google Scholar] [CrossRef] [Green Version]
- Kuti, J.; Galambos, P. Decreasing the Computational Demand of Unscented Kalman Filter based Methods. In Proceedings of the 2021 IEEE 15th International Symposium on Applied Computational Intelligence and Informatics (SACI), Timișoara, Romania, 19–21 May 2021; pp. 181–186. [Google Scholar]
- Varga, B.; Tar, J.; Horváth, R. Tuning of Dynamic Model Parameters for Adaptive Control Using Particle Swarm Optimization. In Proceedings of the IEEE 10th Jubilee International Conference on Computational Cybernetics and Cyber-Medical Systems ICCC 2022, Reykjavík, Iceland, 6–9 July 2022; Szakál, A., Ed.; IEEE Hungary Section: Budapest, Hungary, 2022; pp. 197–202. [Google Scholar]
- Issa, H.; Tar, J.K. On the Limitations of PSO in Cooperation with FPI-based Adaptive Control for Nonlinear Systems. In Proceedings of the Accepted for publication in: 2022 IEEE 26th International Conference on Intelligent Engineering Systems (INES), Crete, Greece, 12–15 August 2022; pp. 0001–0006. [Google Scholar]
- van der Pol, B. Forced oscillations in a circuit with non-linear resistance (reception with reactive triode). Lond. Edinb. Dublin Philos. Mag. J. Sci. 1927, 7, 65–80. [Google Scholar] [CrossRef]
- Csanádi, B.; Galambos, P.; Tar, J.; Györök, G.; Serester, A. A Novel, Abstract Rotation-based Fixed Point Transformation in Adaptive Control. In Proceedings of the 2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Miyazaki, Japan, 7–10 October 2018; pp. 2577–2582. [Google Scholar]
- Dineva, A. Non-Conventional Data Representation and Control. Ph.D. Thesis, Óbuda University, Budapest, Hungary, 2016. [Google Scholar]
- Lovas, I. Fixed Point Iteration-based Adaptive Controller Tuning Using a Genetic Algorithm. Acta Polytech. Hung. 2022, 19, 59–77. [Google Scholar] [CrossRef]
Parameter | Exact Model | Approximate Model |
---|---|---|
1st link’s inertia moment | 50.0 | 55.0 |
2nd link mass | 10.0 | 8.0 |
3rd link mass | 20.0 | 18.0 |
2nd link length | 2.0 | 2.0 |
3rd link length | 1.0 | 1.0 |
gravitational accel. | 9.81 | 9.81 |
Measurements for Tracking Error | Approximate Model | Improved Model | ||
---|---|---|---|---|
Non-Adaptive | Adaptive | Non-Adaptive | Adaptive | |
0.0314 | 0.0047 | 0.0115 | 0.0039 | |
1.0047 | 0.3216 | 0.4472 | 0.2864 | |
124.6491 | 12.327 | 41.648 | 4.8346 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Issa, H.; Tar, J.K. Improvement of an Adaptive Robot Control by Particle Swarm Optimization-Based Model Identification. Mathematics 2022, 10, 3609. https://doi.org/10.3390/math10193609
Issa H, Tar JK. Improvement of an Adaptive Robot Control by Particle Swarm Optimization-Based Model Identification. Mathematics. 2022; 10(19):3609. https://doi.org/10.3390/math10193609
Chicago/Turabian StyleIssa, Hazem, and József K. Tar. 2022. "Improvement of an Adaptive Robot Control by Particle Swarm Optimization-Based Model Identification" Mathematics 10, no. 19: 3609. https://doi.org/10.3390/math10193609
APA StyleIssa, H., & Tar, J. K. (2022). Improvement of an Adaptive Robot Control by Particle Swarm Optimization-Based Model Identification. Mathematics, 10(19), 3609. https://doi.org/10.3390/math10193609