Improved Hille-Type Oscillation Criteria for Second-Order Quasilinear Dynamic Equations
Abstract
:1. Introduction
2. Hille-Type Oscillation Criteria for the Delay Case
3. Hille-Type Oscillation Criteria for the Advanced Case
4. Examples
5. Conclusions
- (1)
- (2)
- The results in this paper are including the cases where and and, for both cases, advanced and delayed dynamic equations without the need to impose condition (3).
- (3)
- In particular, the results of this research are a significant improvement compared to the results of the papers [3,16,17] when and ; see the following details:By dint of
- (i)
- (ii)
- (iii)
- (iv)
- (v)
- (4)
- It would be interesting to establish a Hille-type criterion to Equation (1) assuming that .
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Frassu, S.; Viglialoro, G. Boundedness in a chemotaxis system with consumed chemoattractant and produced chemorepellent. Nonlinear Anal. 2021, 213, 112505. [Google Scholar] [CrossRef]
- Li, T.; Viglialoro, G. Boundedness for a nonlocal reaction chemotaxis model even in the attraction-dominated regime. Differ. Equ. 2021, 34, 315–336. [Google Scholar]
- Bohner, M.; Hassan, T.S.; Li, T. Fite-Hille-Wintner-type oscillation criteria for second-order half-linear dynamic equations with deviating arguments. Indag. Math. 2018, 29, 548–560. [Google Scholar] [CrossRef]
- Bohner, M.; Li, T. Oscillation of second-order p-Laplace dynamic equations with a nonpositive neutral coefficient. Appl. Math. Lett. 2014, 37, 72–76. [Google Scholar] [CrossRef]
- Bohner, M.; Li, T. Kamenev-type criteria for nonlinear damped dynamic equations. Sci. China Math. 2015, 58, 1445–1452. [Google Scholar] [CrossRef]
- Li, T.; Pintus, N.; Viglialoro, G. Properties of solutions to porous medium problems with different sources and boundary conditions. Z. Angew. Math. Phys. 2019, 70, 86. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Agarwal, R.P.; Bohner, M.; Li, T. Oscillation of second-order nonlinear neutral dynamic equations with noncanonical operators. Bull. Malays. Math. Sci. Soc. 2015, 38, 761–778. [Google Scholar] [CrossRef]
- Agarwal, R.P.; Bazighifan, O.; Ragusa, M.A. Nonlinear neutral delay differential equations of fourth-order: Oscillation of solutions. Entropy 2021, 23, 129. [Google Scholar] [CrossRef] [PubMed]
- Benslimane, O.; Aberqi, A.; Bennouna, J. Existence and uniqueness of weak solution of p(x)-Laplacian in Sobolev spaces with variable exponents in complete manifolds. Filomat 2021, 35, 1453–1463. [Google Scholar] [CrossRef]
- Jia, X.Y.; Lou, Z.L. The existence of nontrivial solutions to a class of quasilinear equations. J. Funct. Spaces 2021, 2021, 9986047. [Google Scholar] [CrossRef]
- Hilger, S. Analysis on measure chains—A unified approach to continuous and discrete calculus. Results Math. 1990, 18, 18–56. [Google Scholar] [CrossRef]
- Agarwal, R.P.; Bohner, M.; O’Regan, D.; Peterson, A. Dynamic equations on time scales: A survey. J. Comput. Appl. Math. 2002, 141, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Bohner, M.; Peterson, A. Dynamic Equations on Time Scales: An Introduction with Applications; Birkhäuser: Boston, MA, USA, 2001. [Google Scholar]
- Bohner, M.; Peterson, A. Advances in Dynamic Equations on Time Scales; Birkhäuser: Boston, MA, USA, 2003. [Google Scholar]
- Karpuz, B. Hille–Nehari theorems for dynamic equations with a time scale independent critical constant. Appl. Math. Comput. 2019, 346, 336–351. [Google Scholar] [CrossRef]
- Erbe, L.; Hassan, T.S.; Peterson, A.; Saker, S.H. Oscillation criteria for half-linear delay dynamic equations on time scales. Nonlinear Dyn. Syst. Theory 2009, 9, 51–68. [Google Scholar]
- Erbe, L.; Hassan, T.S.; Peterson, A.; Saker, S.H. Oscillation criteria for sublinear half-linear delay dynamic equations on time scales. Int. J. Differ. Equ. 2008, 3, 227–245. [Google Scholar]
- Agarwal, R.P.; Bohner, M.; Li, T. Oscillatory behavior of second-order half-linear damped dynamic equations. Appl. Math. Comput. 2015, 254, 408–418. [Google Scholar] [CrossRef]
- Agarwal, R.P.; Bohner, M.; Li, T.; Zhang, C. Oscillation criteria for second-order dynamic equations on time scales. Appl. Math. Lett. 2014, 31, 34–40. [Google Scholar] [CrossRef]
- Agarwal, R.P.; Zhang, C.; Li, T. New Kamenev-type oscillation criteria for second-order nonlinear advanced dynamic equations. Appl. Math. Comput. 2013, 225, 822–828. [Google Scholar] [CrossRef]
- Erbe, L.; Hassan, T.S.; Peterson, A. Oscillation criteria for nonlinear damped dynamic equations on time scales. Appl. Math. Comput. 2008, 203, 343–357. [Google Scholar] [CrossRef]
- Erbe, L.; Hassan, T.S.; Peterson, A. Oscillation criteria for nonlinear functional neutral dynamic equations on time scales. J. Differ. Equ. Appl. 2009, 15, 1097–1116. [Google Scholar] [CrossRef]
- Hassan, T.S. Oscillation criteria for half-linear dynamic equations on time scales. J. Math. Anal. Appl. 2008, 345, 176–185. [Google Scholar] [CrossRef]
- Hassan, T.S. Kamenev-type oscillation criteria for second order nonlinear dynamic equations on time scales. Appl. Math. Comput. 2011, 217, 5285–5297. [Google Scholar] [CrossRef]
- Li, T.; Saker, S.H. A note on oscillation criteria for second-order neutral dynamic equations on isolated time scales. Commun. Nonlinear Sci. Numer. Simul. 2014, 19, 4185–4188. [Google Scholar] [CrossRef]
- Saker, S.H. Oscillation criteria of second-order half-linear dynamic equations on time scales. J. Comput. Appl. Math. 2005, 177, 375–387. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Li, T. Some oscillation results for second-order nonlinear delay dynamic equations. Appl. Math. Lett. 2013, 26, 1114–1119. [Google Scholar] [CrossRef]
- Agarwal, R.P.; Bohner, M.; Li, T.; Zhang, C. Hille and Nehari type criteria for third order delay dynamic equations. J. Differ. Equ. Appl. 2013, 19, 1563–1579. [Google Scholar] [CrossRef]
- Baculikova, B. Oscillation of second-order nonlinear noncanonical differential equations with deviating argument. Appl. Math. Lett. 2019, 91, 68–75. [Google Scholar] [CrossRef]
- Bazighifan, O.; El-Nabulsi, E.M. Different techniques for studying oscillatory behavior of solution of differential equations. Rocky Mt. J. Math. 2021, 51, 77–86. [Google Scholar] [CrossRef]
- Bohner, M.; Hassan, T.S. Oscillation and boundedness of solutions to first and second order forced functional dynamic equations with mixed nonlinearities. Appl. Anal. Discret. Math. 2009, 3, 242–252. [Google Scholar] [CrossRef]
- Chatzarakis, G.E.; Moaaz, O.; Li, T.; Qaraad, B. Some Oscillation theorems for nonlinear second-order differential equations with an advanced argument. Adv. Differ. Equ. 2020, 2020, 160. [Google Scholar] [CrossRef]
- Džurina, J.; Jadlovská, I. A sharp oscillation result for second-order half-linear noncanonical delay differential equations. Electron. J. Qual. Theory 2020, 46, 1–14. [Google Scholar] [CrossRef]
- Erbe, L. Oscillation criteria for second order nonlinear delay equations. Canad. Math. Bull. 1973, 16, 49–56. [Google Scholar] [CrossRef]
- Grace, S.R.; Bohner, M.; Agarwal, R.P. On the oscillation of second-order half-linear dynamic equations. J. Differ. Equ. Appl. 2009, 15, 451–460. [Google Scholar] [CrossRef]
- Hille, E. Non-oscillation theorems. Trans. Am. Math. Soc. 1948, 64, 234–252. [Google Scholar] [CrossRef]
- Řehak, P. New results on critical oscillation constants depending on a graininess. Dyn. Syst. Appl. 2010, 19, 271–288. [Google Scholar]
- Sun, S.; Han, Z.; Zhao, P.; Zhang, C. Oscillation for a class of second-order Emden-Fowler delay dynamic equations on time scales. Adv. Differ. Equ. 2010, 2010, 642356. [Google Scholar] [CrossRef]
- Sun, Y.; Hassan, T.S. Oscillation criteria for functional dynamic equations with nonlinearities given by Riemann-Stieltjes integral. Abstr. Appl. Anal. 2014, 2014, 697526. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Gao, L.; Wang, L. Oscillation of second-order nonlinear delay dynamic equations on time scales. Comput. Math. Appl. 2011, 61, 2342–2348. [Google Scholar] [CrossRef] [Green Version]
- Fite, W.B. Concerning the zeros of the solutions of certain differential equations. Trans. Am. Math. Soc. 1918, 19, 341–352. [Google Scholar] [CrossRef]
- Hardy, G.H.; Littlewood, J.E.; Polya, G. Inequalities, 2nd ed.; Cambridge University Press: Cambridge, UK, 1988. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hassan, T.S.; Cesarano, C.; El-Nabulsi, R.A.; Anukool, W. Improved Hille-Type Oscillation Criteria for Second-Order Quasilinear Dynamic Equations. Mathematics 2022, 10, 3675. https://doi.org/10.3390/math10193675
Hassan TS, Cesarano C, El-Nabulsi RA, Anukool W. Improved Hille-Type Oscillation Criteria for Second-Order Quasilinear Dynamic Equations. Mathematics. 2022; 10(19):3675. https://doi.org/10.3390/math10193675
Chicago/Turabian StyleHassan, Taher S., Clemente Cesarano, Rami Ahmad El-Nabulsi, and Waranont Anukool. 2022. "Improved Hille-Type Oscillation Criteria for Second-Order Quasilinear Dynamic Equations" Mathematics 10, no. 19: 3675. https://doi.org/10.3390/math10193675
APA StyleHassan, T. S., Cesarano, C., El-Nabulsi, R. A., & Anukool, W. (2022). Improved Hille-Type Oscillation Criteria for Second-Order Quasilinear Dynamic Equations. Mathematics, 10(19), 3675. https://doi.org/10.3390/math10193675