Investigation of Mixed Convection in Spinning Nanofluid over Rotating Cone Using Artificial Neural Networks and BVP-4C Technique
Abstract
:1. Introduction
- The heat transmission in spinning nanofluids in a rotating system is investigated using back propagated neural networks (BNN) adopting trained ANN using Levenberg–Marquardt (LMB) through the mechanism of soft computing.
- The Adams’ numerical method is utilized to generate the reference data set for the transmission of heat in spinning nanofluid over a rotating system by varying the unsteadiness of flow, buoyancy effect, rotational ratio, and Prandtl number for the designed BNNs-based ANNLMB scheme.
- To show the effectiveness, correctness, and characteristics of the designed artificial neural network, mean squared error, error histograms, and convergence curves are presented and discussed for the validity of the proposed scheme.
2. Mathematical Formulation of Rotating Flow
2.1. Problem Statement
2.2. Methodology to Obtain Flow Governing Equations
3. Methodology
4. Interpretation of Results and Numerical Computation
Velocity and Temperature Profiles
5. Conclusions
- The outcomes of proposed ANNLMB are in complete agreement with reference data at . This fact verifies and validates the effectiveness and correctness of the proposed ANNLMB to investigate the heat transmission in a spinning nanofluid in a rotating system.
- Verification of proposed ANNLMB scheme is further validated by providing numerical and graphical illustrations in terms of MSE, AH and index of regression.
- It is observed that with the increment in the rotational ratio, the primary velocity decreases, whereas an inclination is attained for the secondary velocity profile. The presence of high unsteadiness force in fluid motion dramatically declines the primary motion profile, while a sharp increase is observed in the secondary motion profile.
- The momentum boundary layer expands with an increment in the rotational ratio and unsteadiness in motion in the primary velocity profile. Additionally, contraction is attained for secondary velocity profile.
- Augmentation in the Prandtl number and unsteadiness parameter decrease the temperature profile sharply. Further, the thermal boundary layer thickness decreases with the increment in the Prandtl number and unsteadiness parameter.
Future Interest
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
Velocities components in respective direction | Volumetric heat capacity of base fluid | ||
Kinematic viscosity of base fluid | Volumetric heat capacity of nanofluids | ||
The density of base fluids | Wall and Ambient temperature | ||
Heat capacity at constant pressure | Angle of cone | ||
Density of nanoparticles | Dynamic viscosity | ||
Gradient vector | Velocity in vector form | ||
Primary and secondary velocity | Temperature profile | ||
Composite angular velocity | Prandtl Number | ||
Rotational velocity of cone and fluid, respectively | Buoyancy parameter | ||
Rotation parameter | Reynolds number | ||
Similarity variable | ODE’s | Ordinary differential equations | |
MSE | Mean square error | BLA | Boundary layer approximation |
PDE’s | Partial differential equations |
References
- Choi, S.U.; Eastman, J.A. Enhancing Thermal Conductivity of Fluids with Nanoparticles; Argonne National Lab. (ANL): Argonne, IL, USA, 1995. [Google Scholar]
- Saidur, R.; Leong, K.; Mohammed, H. A review on applications and challenges of nanofluids. Renew. Sustain. Energy Rev. 2011, 15, 1646–1668. [Google Scholar] [CrossRef]
- Wong, K.V.; De Leon, O. Applications of nanofluids: Current and future. Adv. Mech. Eng. 2010, 2, 519659. [Google Scholar] [CrossRef] [Green Version]
- Xuan, Y.; Li, Q. Heat transfer enhancement of nanofluids. Int. J. Heat Fluid Flow 2000, 21, 58–64. [Google Scholar] [CrossRef]
- Ganvir, R.; Walke, P.; Kriplani, V. Heat transfer characteristics in nanofluid—A review. Renew. Sustain. Energy Rev. 2017, 75, 451–460. [Google Scholar] [CrossRef]
- Punith Gowda, R.J.; Naveen Kumar, R.; Jyothi, A.M.; Prasannakumara, B.C.; Sarris, I.E. Impact of binary chemical reaction and activation energy on heat and mass transfer of marangoni driven boundary layer flow of a non-Newtonian nanofluid. Processes 2021, 9, 702. [Google Scholar] [CrossRef]
- Kumar, R.V.; Alhadhrami, A.; Gowda, R.P.; Prasannakumara, B. Exploration of Arrhenius activation energy on hybrid nanofluid flow over a curved stretchable surface. ZAMM-J. Appl. Math. Mech. 2021, 101, e202100035. [Google Scholar]
- Sarada, K.; Gamaoun, F.; Abdulrahman, A.; Paramesh, S.O.; Kumar, R.; Prasanna, G.D.; Gowda, R.P. Impact of exponential form of internal heat generation on water-based ternary hybrid nanofluid flow by capitalizing non-Fourier heat flux model. Case Stud. Therm. Eng. 2022, 38, 102332. [Google Scholar]
- Gowda, R.P.; Kumar, R.N.; Prasannakumara, B.C.; Nagaraja, B.; Gireesha, B.J. Exploring magnetic dipole contribution on ferromagnetic nanofluid flow over a stretching sheet: An application of Stefan blowing. J. Mol. Liq. 2021, 335, 116215. [Google Scholar] [CrossRef]
- Umavathi, J.C.; Prakasha, D.G.; Alanazi, Y.M.; Lashin, M.M.; Al-Mubaddel, F.S.; Kumar, R.; Punith Gowda, R.J. Magnetohydrodynamic squeezing Casson nanofluid flow between parallel convectively heated disks. Int. J. Mod. Phys. B 2022, 2350031. [Google Scholar] [CrossRef]
- Kumar, R.N.; Gowda, R.P.; Prasannakumara, B.C.; Raju, C.S.K. Stefan Blowing Effect on Nanofluid Flow over a Stretching Sheet in the Presence of a Magnetic Dipole. In Micro and Nanofluid Convection with Magnetic Field Effects for Heat and Mass Transfer Applications Using Matlab; Elsevier: Amsterdam, The Netherlands, 2022; pp. 91–111. [Google Scholar]
- Kumar, R.N.; Gamaoun, F.; Abdulrahman, A.; Chohan, J.S.; Gowda, R.J.P. Heat transfer analysis in three-dimensional unsteady magnetic fluid flow of water-based ternary hybrid nanofluid conveying three various shaped nanoparticles: A comparative study. Int. J. Mod. Phys. B 2022, 36, 2250170. [Google Scholar] [CrossRef]
- Arshad, M.; Hussain, A.; Hassan, A.; Khan, I.; Badran, M.; Mehrez, S.; Elfasakhany, A.; Abdeljawad, T.; Galal, A.M. Heat Transfer Analysis of Nanostructured Material Flow over an Exponentially Stretching Surface: A Comparative Study. Nanomaterials 2022, 12, 1204. [Google Scholar] [CrossRef] [PubMed]
- Arshad, M.; Hussain, A.; Hassan, A.; Shah, S.A.G.A.; Elkotab, M.A.; Gouadria, S.; Alsehli, M.; Galal, A.M. Heat and mass transfer analysis above an unsteady infinite porous surface with chemical reaction. Case Stud. Therm. Eng. 2022, 36, 102140. [Google Scholar] [CrossRef]
- Arshad, M.; Hussain, A.; Shah, S.A.G.A.; Wróblewski, P.; Elkotb, M.A.; Abdelmohimen, M.A.; Hassan, A. Thermal energy investigation of magneto-hydrodynamic nano-material liquid flow over a stretching sheet: Comparison of single and composite particles. Alex. Eng. J. 2022, 61, 10453–10462. [Google Scholar] [CrossRef]
- Raju, C.S.K.; Sandeep, N.; Sugunamma, V. Unsteady magneto-nanofluid flow caused by a rotating cone with temperature dependent viscosity: A surgical implant application. J. Mol. Liq. 2016, 222, 1183–1191. [Google Scholar] [CrossRef]
- Hanif, H.; Khan, I.; Shafie, S. A novel study on time-dependent viscosity model of magneto-hybrid nanofluid flow over a permeable cone: Applications in material engineering. Eur. Phys. J. Plus 2020, 135, 730. [Google Scholar] [CrossRef]
- Nawaz, Y.; Arif, M.S. Generalized decomposition method: Applications to nonlinear oscillator and MHD fluid flow past cone/wedge geometries. Numer. Heat Transf. Part B Fundam. 2020, 77, 42–63. [Google Scholar] [CrossRef]
- Hussain, A.; Hassan, A.; Arshad, M.; Rehman, A.; Matoog, R.T.; Abdeljawad, T. Numerical simulation and thermal enhancement of multi-based nanofluid over an embrittled cone. Case Stud. Therm. Eng. 2021, 28, 101614. [Google Scholar] [CrossRef]
- Hassan, A.; Hussain, A.; Arshad, M.; Haider, Q.; Althobaiti, A.; Elagan, S.K.; Alqurashi, M.S.; Abdelmohimen, M.A. Heat transport investigation of hybrid nanofluid (Ag-CuO) porous medium flow: Under magnetic field and Rosseland radiation. Ain Shams Eng. J. 2022, 13, 101667. [Google Scholar] [CrossRef]
- Rekha, M.B.; Sarris, I.E.; Madhukesh, J.K.; Raghunatha, K.R.; Prasannakumara, B.C. Activation energy impact on flow of AA7072-AA7075/Water-Based hybrid nanofluid through a cone, wedge and plate. Micromachines 2022, 13, 302. [Google Scholar] [CrossRef]
- Hassan, A.; Hussain, A.; Arshad, M.; Alanazi, M.M.; Zahran, H.Y. Numerical and Thermal Investigation of Magneto-Hydrodynamic Hybrid Nanoparticles (SWCNT-Ag) under Rosseland Radiation: A Prescribed Wall Temperature Case. Nanomaterials 2022, 12, 891. [Google Scholar] [CrossRef]
- Nabwey, H.A.; Mahdy, A. Numerical approach of micropolar dust-particles natural convection fluid flow due to a permeable cone with nonlinear temperature. Alex. Eng. J. 2021, 60, 1739–1749. [Google Scholar] [CrossRef]
- Gul, T.; Bilal, M.; Alghamdi, W.; Asjad, M.I.; Abdeljawad, T. Hybrid nanofluid flow within the conical gap between the cone and the surface of a rotating disk. Sci. Rep. 2021, 11, 1180. [Google Scholar] [CrossRef] [PubMed]
- Hussain, A.; Hassan, A.; Al Mdallal, Q.; Ahmad, H.; Rehman, A.; Altanji, M.; Arshad, M. Heat transport investigation of magneto-hydrodynamics (SWCNT-MWCNT) hybrid nanofluid under the thermal radiation regime. Case Stud. Therm. Eng. 2021, 27, 101244. [Google Scholar] [CrossRef]
- Meena, O.P.; Janapatla, P.; Srinivasacharya, D. Mixed Convection Flow across a Vertical Cone with Heat Source/Sink and Chemical Reaction Effects. Math. Model. Comput. Simul. 2022, 14, 532–546. [Google Scholar] [CrossRef]
- Mahdy, A. Aspects of homogeneous-heterogeneous reactions on natural convection flow of micropolar fluid past a permeable cone. Appl. Math. Comput. 2019, 352, 59–67. [Google Scholar] [CrossRef]
- Saleem, S.; Al-Qarni, M.M.; Nadeem, S.; Sandeep, N. Convective heat and mass transfer in magneto Jeffrey fluid flow on a rotating cone with heat source and chemical reaction. Commun. Theor. Phys. 2018, 70, 534. [Google Scholar] [CrossRef]
- Reddy, P.S.; Chamkha, A. Heat and mass transfer analysis in natural convection flow of nanofluid over a vertical cone with chemical reaction. Int. J. Numer. Methods Heat Fluid Flow 2017, 27, 2–22. [Google Scholar] [CrossRef]
- Anilkumar, D.; Roy, S. Unsteady mixed convection flow on a rotating cone in a rotating fluid. Appl. Math. Comput. 2004, 155, 545–561. [Google Scholar] [CrossRef]
- Raju, C.S.K.; Sandeep, N. Opposing and assisting flow characteristics of radiative Casson fluid due to cone in the presence of induced magnetic field. Int. J. Adv. Sci. Technol. 2016, 88, 43–62. [Google Scholar] [CrossRef]
- Nadeem, S.; Saleem, S. Mixed convection flow of Eyring–Powell fluid along a rotating cone. Results Phys. 2014, 4, 54–62. [Google Scholar] [CrossRef] [Green Version]
- Karimipour, A.; Bagherzadeh, S.A.; Taghipour, A.; Abdollahi, A.; Safaei, M.R. A novel nonlinear regression model of SVR as a substitute for ANN to predict conductivity of MWCNT-CuO/water hybrid nanofluid based on empirical data. Phys. A Stat. Mech. Its Appl. 2019, 521, 89–97. [Google Scholar] [CrossRef]
- Shoaib, M.; Kausar, M.; Khan, M.I.; Zeb, M.; Gowda, R.P.; Prasannakumara, B.; Alzahrani, F.; Raja, M.A.Z. Intelligent backpropagated neural networks application on Darcy-Forchheimer ferrofluid slip flow system. Int. Commun. Heat Mass Transf. 2021, 129, 105730. [Google Scholar] [CrossRef]
- Soomro, F.A.; Alamir, M.A.; El-Sapa, S.; Haq, R.U.; Soomro, M.A. Artificial neural network modeling of MHD slip-flow over a permeable stretching surface. Arch. Appl. Mech. 2022, 92, 2179–2189. [Google Scholar] [CrossRef]
- Shoaib, M.; Zubair, G.; Nisar, K.S.; Raja, M.A.Z.; Khan, M.I.; Gowda, R.P.; Prasannakumara, B.C. Ohmic heating effects and entropy generation for nanofluidic system of Ree-Eyring fluid: Intelligent computing paradigm. Int. Commun. Heat Mass Transf. 2021, 129, 105683. [Google Scholar] [CrossRef]
- Raja, M.A.Z.; Shoaib, M.; Zubair, G.; Khan, M.I.; Gowda, R.P.; Prasannakumara, B.C.; Guedri, K. Intelligent neuro-computing for entropy generated Darcy-Forchheimer mixed convective fluid flow. Math. Comput. Simul. 2022, 201, 193–214. [Google Scholar] [CrossRef]
- He, X.; Sidi, M.O.; Ahammad, N.A.; Elkotb, M.A.; Elattar, S.; Algelany, A.M. Artificial neural network joined with lattice boltzmann method to study the effects of mhd on the slip velocity of fmwnt/water nanofluid flow inside a microchannel. Eng. Anal. Bound. Elem. 2022, 143, 95–108. [Google Scholar] [CrossRef]
- Safaei, M.R.; Hajizadeh, A.; Afrand, M.; Qi, C.; Yarmand, H.; Zulkifli, N.W.B.M. Evaluating the effect of temperature and concentration on the thermal conductivity of ZnO-TiO2/EG hybrid nanofluid using artificial neural network and curve fitting on experimental data. Phys. A Stat. Mech. Its Appl. 2019, 519, 209–216. [Google Scholar] [CrossRef]
- Khan, M.I.; Shoaib, M.; Zubair, G.; Kumar, R.N.; Prasannakumara, B.C.; Mousa, A.A.A.; Malik, M.Y.; Raja, M.A.Z. Neural artificial networking for nonlinear Darcy–Forchheimer nanofluidic slip flow. Appl. Nanosci. 2022, 1–20. [Google Scholar] [CrossRef]
- Çolak, A.B.; Shafiq, A.; Sindhu, T.N. Modeling of Darcy–Forchheimer bioconvective Powell Eyring nanofluid with artificial neural network. Chin. J. Phys. 2022, 77, 2435–2453. [Google Scholar] [CrossRef]
- Bala Anki Reddy, P.; Jakeer, S.; Thameem Basha, H.; Reddisekhar Reddy, S.R.; Mahesh Kumar, T. Multi-layer artificial neural network modeling of entropy generation on MHD stagnation point flow of Cross-nanofluid. Waves Random Complex Media 2022, 1–28. [Google Scholar] [CrossRef]
- Toghraie, D.; Sina, N.; Jolfaei, N.A.; Hajian, M.; Afrand, M. Designing an Artificial Neural Network (ANN) to predict the viscosity of Silver/Ethylene glycol nanofluid at different temperatures and volume fraction of nanoparticles. Phys. A Stat. Mech. Its Appl. 2019, 534, 122142. [Google Scholar] [CrossRef]
- Dey, P.; Sarkar, A.; Das, A.K. Prediction of unsteady mixed convection over circular cylinder in the presence of nanofluid-A comparative study of ANN and GEP. J. Nav. Archit. Mar. Eng. 2015, 12, 57–71. [Google Scholar] [CrossRef]
- Qureshi, I.H.; Awais, M.; Awan, S.E.; Abrar, M.N.; Raja, M.A.Z.; Alharbi, S.O.; Khan, I. Influence of radially magnetic field properties in a peristaltic flow with internal heat generation: Numerical treatment. Case Stud. Therm. Eng. 2021, 26, 101019. [Google Scholar] [CrossRef]
Nanofluid Thermophysical Properties Utilized to Generate Reference Data, | ||||
---|---|---|---|---|
Numeric Values Used to Generate Reference Data | ||||
Scenario | ||||
1 | 2 | 1 | 0.2 | 199 |
2 | 1 | 1 | 0.5 | 199 |
3 | 1 | 1 | 1 | 199 |
4 | 2 | 1 | 0.5 | 190 |
Raju and Sandeep [31] | Hussain et al. [1] | Present | |
10 | 1.183409 | 1.37415 | 0.980211 |
15 | 1.337339 | 1.30846 | 1.202210 |
20 | 1.456372 | 1.34327 | 0.990011 |
HLN | MSE Level | Performance Index | Value of Gradient | Step Size Mu | Executed Epochs | Time | ||
---|---|---|---|---|---|---|---|---|
Training | Validation | Testing | ||||||
15 | 188 | 1 s |
HLN | MSE Level | Performance Index | Value of Gradient | Step Size Mu | Executed Epochs | Time | ||
---|---|---|---|---|---|---|---|---|
Training | Validation | Testing | ||||||
15 | 391 | 1 s |
HLN | MSE Level | Performance Index | Value of Gradient | Step Size Mu | Executed Epochs | Time | ||
---|---|---|---|---|---|---|---|---|
Training | Validation | Testing | ||||||
15 | 462 | 1 s |
HLN | MSE Level | Performance Index | Value of Gradient | Step Size Mu | Executed Epochs | Time | ||
---|---|---|---|---|---|---|---|---|
Training | Validation | Testing | ||||||
15 | 51 | 1 s |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hassan, A.; Haider, Q.; Alsubaie, N.; Alharbi, F.M.; Alhushaybari, A.; Galal, A.M. Investigation of Mixed Convection in Spinning Nanofluid over Rotating Cone Using Artificial Neural Networks and BVP-4C Technique. Mathematics 2022, 10, 4833. https://doi.org/10.3390/math10244833
Hassan A, Haider Q, Alsubaie N, Alharbi FM, Alhushaybari A, Galal AM. Investigation of Mixed Convection in Spinning Nanofluid over Rotating Cone Using Artificial Neural Networks and BVP-4C Technique. Mathematics. 2022; 10(24):4833. https://doi.org/10.3390/math10244833
Chicago/Turabian StyleHassan, Ali, Qusain Haider, Najah Alsubaie, Fahad M. Alharbi, Abdullah Alhushaybari, and Ahmed M. Galal. 2022. "Investigation of Mixed Convection in Spinning Nanofluid over Rotating Cone Using Artificial Neural Networks and BVP-4C Technique" Mathematics 10, no. 24: 4833. https://doi.org/10.3390/math10244833
APA StyleHassan, A., Haider, Q., Alsubaie, N., Alharbi, F. M., Alhushaybari, A., & Galal, A. M. (2022). Investigation of Mixed Convection in Spinning Nanofluid over Rotating Cone Using Artificial Neural Networks and BVP-4C Technique. Mathematics, 10(24), 4833. https://doi.org/10.3390/math10244833