Linear and Energy-Stable Method with Enhanced Consistency for the Incompressible Cahn–Hilliard–Navier–Stokes Two-Phase Flow Model
Abstract
:1. Introduction
2. Cahn–Hilliard–Navier–Stokes Model
3. Numerical Scheme, Analysis, and Implementation
3.1. Time-Marching Scheme for the CHNS Model
- (i)
- If , we let and ,
- (ii)
- If , we let and
- (iii)
- If and
- (iv)
- If and
- Calculate from Equation (24);
- Calculate and from Equation (23);
- Update by solving Equations (21) and (22);
- Update and from Equations (18)–(20);
- Update from Equation (25).
3.2. Fully Discrete Implementation
4. Numerical Simulations
4.1. Accuracy in Time
4.2. Energy Stability
4.3. Flow-Coupled Phase Separation
4.4. Droplet Impacting on a Liquid-Liquid Interface
4.5. Dripping Droplet under Gravity
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Masiri, S.M.; Bayareh, M.; Nadooshan, A.A. Pairwise interaction of drops in shear-thinning inelastic fluids. Korea-Aust. Rheol. J. 2019, 31, 25–34. [Google Scholar] [CrossRef]
- Goodarzi, Z.; Nadooshan, A.A.; Bayareh, M. Numerical investigation of off-center binary collision of droplets in a horizontal channel. J. Braz. Soc. Mech. Sci. Eng. 2018, 40, 156. [Google Scholar] [CrossRef]
- Lee, C.; Jeong, D.; Yang, J.; Kim, J. Nonlinear multigrid implementation for the two-dimensional Cahn–Hilliard equation. Mathematics 2020, 8, 97. [Google Scholar] [CrossRef] [Green Version]
- Cahn, J.W.; Hilliard, J.E. Free energy of a non-uniform system I: Interfacial free energy. J. Chem. Phys. 1958, 28, 258–267. [Google Scholar] [CrossRef]
- Budiana, E.P. Meshless numerical model based on radial basis function (RBF) method to simulate the Rayleigh–Taylor instability (RTI). Comput. Fluids 2020, 201, 104472. [Google Scholar] [CrossRef]
- Hu, Y.; He, Q.; Li, D.; Li, Y.; Niu, X. On the total mass conservation and the volume presenvation in the diffuse interface method. Comput. Fluids 2019, 193, 104291. [Google Scholar] [CrossRef]
- Liang, H.; Xia, Z.; Huang, H. Late-time description of immiscible Rayleigh–Taylor instability: A lattice Boltzmann study. Phys. Fluids 2021, 33, 082103. [Google Scholar] [CrossRef]
- Chen, J.; Gao, P.; Xia, Y.T.; Li, E.; Liu, H.; Ding, H. Early stage of delayed coalescence of soluble paired droplets: A numerical study. Phys. Fluids 2021, 33, 092005. [Google Scholar] [CrossRef]
- Nishida, H.; Kohashi, S.; Tanaka, M. Construction of seamless immersed boundary phase-field method. Comput. Fluids 2018, 164, 41–49. [Google Scholar] [CrossRef]
- Yang, J.; Li, Y.; Kim, J. A correct benchmark problem of a two-dimensional droplet deformation in simple shear flow. Mathematics 2022, 10, 4092. [Google Scholar] [CrossRef]
- Yang, W.; Huang, Z.; Zhu, W. Image segmentation using the Cahn–Hilliard equation. J. Sci. Comput. 2019, 79, 1057–1077. [Google Scholar] [CrossRef]
- Bartels, A.; Kurzeja, P.; Mosler, J. Cahn–Hilliard phase field theory coupled to mechanics: Fundamentals, numerical implementation and application to topology optimization. Comput. Methods Appl. Mech. Eng. 2021, 383, 113918. [Google Scholar] [CrossRef]
- Khain, E.; Sander, L.M. Generalized Cahn–Hilliard equation for biological applications. Phys. Rev. E 2008, 77, 051129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeong, D.; Kim, J. A phase-field model and its hybrid numerical scheme for the tissue growth. Appl. Numer. Math. 2017, 117, 22–35. [Google Scholar] [CrossRef]
- Guo, J.; Wang, C.; Wise, S.; Yue, X. An H2 convergence of a second-order convex-splitting, finite difference scheme for the three-dimensional Cahn–Hilliard equation. Commun. Math. Sci. 2016, 14, 489–515. [Google Scholar] [CrossRef]
- Chen, W.; Liu, Y.; Wang, C.; Wise, S. Convergence analysis of a fully discrete finite difference scheme for Cahn–Hilliard–Hele–Shaw equation. Math. Comput. 2016, 85, 2231–2257. [Google Scholar] [CrossRef] [Green Version]
- Diegel, A.; Wang, C.; Wise, S. Stability and convergence of a second order mixed finite element method for the Cahn–Hilliard equation. IMA J. Numer. Anal. 2016, 36, 1867–1897. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.; Shin, J. Energy stable compact scheme for Cahn–Hilliard equation with periodic boundary condition. Comput. Math. Appl. 2019, 77, 189–198. [Google Scholar] [CrossRef]
- Shen, J.; Xu, J.; Yang, J. The scalar auxiliary variable (SAV) approach for gradient flows. J. Comput. Phys. 2018, 353, 407–416. [Google Scholar] [CrossRef]
- Zhang, C.; Ouyang, J.; Wang, C.; Wise, S.M. Numerical comparison of modified-energy stable SAV-type schemes and classical BDF methods on benchmark problems for the functionalized Cahn–Hilliard equation. J. Comput. Phys. 2020, 423, 109772. [Google Scholar] [CrossRef]
- Mu, K.; Si, T.; Li, E.; Xu, R.; Hang, D. Numerical study on droplet generation in axisymmetric flow focusing upon actuation. Phys. Fluids 2018, 30, 012111. [Google Scholar] [CrossRef]
- Huang, B.; Liang, H.; Xu, J. Lattice Boltzmann simulation of binary three-dimensional droplet coalescence in a confined shear flow. Phys. Fluids 2022, 34, 032101. [Google Scholar] [CrossRef]
- Korkmaz, F.C. Damping of sloshing impact on bottom-layer fluid by adding a viscous top-layer fluid. Ocean Eng. 2022, 254, 111357. [Google Scholar] [CrossRef]
- Lee, H.G.; Kim, J. Numerical simulation of the three-dimensional Rayleigh–Taylor instabilty. Comput. Math. Appl. 2013, 66, 1466–1474. [Google Scholar] [CrossRef]
- Li, X.; Shen, J. On fully decoupled MSAV schemes for the Cahn–Hilliard–Navier–Stokes model of two-phase fncompressible flows. Math. Model Meth. Appl. Sci. 2022, 32, 457–495. [Google Scholar] [CrossRef]
- Ye, Q.; Ouyang, Z.; Chen, C.; Yang, X. Efficient decoupled second-order numerical scheme for the flow-coupled Cahn–Hilliard phase-field model of two-phase flows. J. Comput. Appl. Math. 2022, 405, 113875. [Google Scholar] [CrossRef]
- Li, M.; Xu, C. New efficient time-stepping schemes for the Navier–Stokes–Cahn–Hilliard equations. Comput. Fluids 2021, 231, 105174. [Google Scholar] [CrossRef]
- Liu, Z.; Li, X. A highly efficient and accurate exponential semi-implicit scalar auxiliary variable (ESI-SAV) approach for dissipative system. J. Comput. Phys. 2021, 447, 110703. [Google Scholar] [CrossRef]
- Zheng, N.; Li, X. New efficient and unconditionally energy stable schemes for the Cahn–Hilliard–Brinkman system. Appl. Math. Lett. 2022, 128, 107918. [Google Scholar] [CrossRef]
- Yang, J.; Kim, J. Numerical study of the ternary Cahn–Hilliard fluids by using an efficient modified scalar auxiliary variable approach. Commun. Nonlinear Sci. Numer. Simulat. 2021, 102, 105923. [Google Scholar] [CrossRef]
- Jiang, M.; Zhang, Z.; Zhao, J. Improving the accuracy and consistency of the scalar auxiliary variable (SAV) method with relaxation. J. Comput. Phys. 2022, 456, 110954. [Google Scholar] [CrossRef]
- Zhang, Y.; Shen, J. A generalized SAV approach with relaxation for dissipative systems. J. Comput. Phys. 2022, 464, 111311. [Google Scholar] [CrossRef]
- Kim, J. Phase-field models for multi-component fluid flows. Commun. Comput. Phys. 2012, 12, 613–661. [Google Scholar] [CrossRef]
- Zhu, G.; Chen, H.; Yao, J.; Sun, S. Efficiet energy-stable schemes for the hydrodynamics coupled phase-field model. Appl. Math. Model 2019, 70, 82–108. [Google Scholar] [CrossRef]
- Yang, J.; Kim, J. An efficient stabilized multiple auxiliary variables method for the Cahn–Hilliard–Darcy two-phase flow system. Comput. Fluids 2021, 223, 104948. [Google Scholar] [CrossRef]
- Harlow, F.H.; Welch, J.E. Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Phys. Fluids 1965, 8, 2182–2189. [Google Scholar] [CrossRef]
- Jeong, D.; Kim, J. Conservative Allen–Cahn–Navier–Stokes system for incompressible two-phase fluid flows. Comput. Fluids 2017, 156, 239–246. [Google Scholar] [CrossRef]
- Zhu, G.; Chen, H.; Li, A.; Sun, S.; Yao, J. Fully discrete energy stable scheme for a phase-field moving contact line model with variable densities and viscosities. Appl. Math. Model 2020, 83, 614–639. [Google Scholar] [CrossRef] [Green Version]
- Pan, X.; Kim, K.H.; Choi, J.I. Monolithic projection-based method with staggered time discretization for solving non-Oberbck–Boussinesq natural convection flows. J. Comput. Phys. 2022, 463, 111238. [Google Scholar] [CrossRef]
- Kim, J. An augmented projection method for the incompressible Navier–Stokes equations in arbitrary domains. Int. J. Comput. Method 2005, 2, 1–12. [Google Scholar] [CrossRef]
- Lee, C.; Jeong, D.; Shin, J.; Li, Y.; Kim, J. A fourth-order spatial accurate and practically stable compact scheme for the Cahn–Hilliard equation. Physica A 2014, 409, 17–28. [Google Scholar] [CrossRef]
- Choi, J.W.; Lee, H.G.; Jeong, D.; Kim, J. An unconditionally gradient stable numerical method for solving the Allen–Cahn equation. Physica A 2009, 388, 1791–1803. [Google Scholar] [CrossRef]
- Lee, H.G.; Kim, J. A comparison stusy of the Boussinesq and the full variable density models on buoyancy-driven flows. J. Eng. Math. 2012, 75, 15–27. [Google Scholar] [CrossRef]
- Aihara, S.; Takaki, T.; Takada, N. Multi-phase-field modeling using a conservative Allen–Cahn equation for multiphase flow. Comput. Fluids 2019, 178, 141–151. [Google Scholar] [CrossRef]
- Yang, J.; Lee, C.; Kim, J. Reduction in vacuum phenomenon for the triple junction in the ternary Cahn–Hilliard model. Acta Mech. 2021, 232, 4485–4495. [Google Scholar] [CrossRef]
- Haghani-Hassan-Abadi, R.; Rahimian, M.H. Axisymmetric lattice Boltzmann model for simulation of ternary fluid flows. Acta Mech. 2020, 231, 2323–2334. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Q.; Yang, J. Linear and Energy-Stable Method with Enhanced Consistency for the Incompressible Cahn–Hilliard–Navier–Stokes Two-Phase Flow Model. Mathematics 2022, 10, 4711. https://doi.org/10.3390/math10244711
Huang Q, Yang J. Linear and Energy-Stable Method with Enhanced Consistency for the Incompressible Cahn–Hilliard–Navier–Stokes Two-Phase Flow Model. Mathematics. 2022; 10(24):4711. https://doi.org/10.3390/math10244711
Chicago/Turabian StyleHuang, Qiming, and Junxiang Yang. 2022. "Linear and Energy-Stable Method with Enhanced Consistency for the Incompressible Cahn–Hilliard–Navier–Stokes Two-Phase Flow Model" Mathematics 10, no. 24: 4711. https://doi.org/10.3390/math10244711
APA StyleHuang, Q., & Yang, J. (2022). Linear and Energy-Stable Method with Enhanced Consistency for the Incompressible Cahn–Hilliard–Navier–Stokes Two-Phase Flow Model. Mathematics, 10(24), 4711. https://doi.org/10.3390/math10244711