Double Diffusive Natural Convection in a Square Cavity Filled with a Porous Media and a Power Law Fluid Separated by a Wavy Interface
Abstract
:1. Introduction
2. Problem Formulation
3. The Governing Equations
- = 0, = 1, = 0, = 1 (left wall)
- U = 0, θ = 0, V = 0, C = 0 (right wall)
- , = = 0 and , U = V = 0 (top/bottom walls)
4. Solution Methodology
4.1. Grid Convergence
4.2. Code Validation
5. Results and Discussion
5.1. Impact of Rayleigh Number
5.2. Impact of Power Law Index
5.3. Impact of Darcy Number
5.4. Impact of Buoyancy Ratio
5.5. Impact of Lewis Number
6. Conclusions
- The temperature gradient rises by augmenting the Rayleigh number, as the flow is observed from the vertical to horizontal direction in both layers of the cavity, which seems to be a remarkable change in heat transfer. Similar behavior is observed in the concentration case.
- By increasing the values of the power law indices, a decline in the average Nu and Sh is observed.
- When Da to , the streamlines are localized in the non-Newtonian zone, which may indicate that no exchange is observed between the porous and non-Newtonian layers. By increasing the value of Da, the wavy interface is changed.
- Constant enhancement in heat and mass transfer is noticed in a wavy interface by enriching the buoyancy effect.
- The local Nu is almost the same for different values of Lewis number. On the other hand, the local Sh is enriched by increasing the Lewis number.
- The average Nusselt and Sherwood numbers decline by increasing the width of the porous layer with power law indices.
- It is visualized, in both figures, that the average Nu and Sh move towards the decline direction, by increasing the values of K and A, correspondingly.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kefayati, G.; Tang, H. Three-dimensional Lattice Boltzmann simulation on thermosolutal convection and entropy generation of Carreau-Yasuda fluids. Int. J. Heat Mass Transf. 2019, 131, 346–364. [Google Scholar] [CrossRef]
- Xin, S.; Le Quéré, P.; Tuckerman, L.S. Bifurcation analysis of double-diffusive convection with opposing horizontal thermal and solutal gradients. Phys. Fluids 1998, 10, 850–858. [Google Scholar] [CrossRef] [Green Version]
- Sezai, I.; Mohamad, A.A. Double diffusive convection in a cubic enclosure with opposing temperature and concentration gradients. Phys. Fluids 2000, 12, 2210–2223. [Google Scholar] [CrossRef]
- Kuznetsov, G.V.; Sheremet, M.A. A numerical simulation of double diffusive conjugate natural convection in an enclosure. Int. J. Therm. Sci. 2011, 50, 1878–1886. [Google Scholar] [CrossRef]
- Khezzar, L.; Siginer, D.; Vinogradov, I. Natural convection of power law fluids in inclined cavities. Int. J. Therm. Sci. 2012, 53, 8–17. [Google Scholar] [CrossRef]
- Ali, L.; Ali, B.; Liu, X.; Ahmed, S.; Shah, M.A. Analysis of bio-convective MHD Blasius and Sakiadis flow with Cattaneo-Christov heat flux model and chemical reaction. Chin. J. Phys. 2021; in press. [Google Scholar] [CrossRef]
- Al-Amir, Q.; Ahmed, S.Y.; Hamzah, H.K.; Ali, F.H. Effects of Prandtl Number on Natural Convection in a Cavity Filled with Silver/Water Nanofluid-Saturated Porous Medium and Non-Newtonian Fluid Layers Separated by Sinusoidal Vertical Interface. Arab. J. Sci. Eng. 2019, 44, 10339–10354. [Google Scholar] [CrossRef]
- Alsabery, A.; Chamkha, A.; Hussain, S.; Saleh, H.; Hashim, I. Heatline visualization of natural convection in a trapezoidal cavity partly filled with nanofluid porous layer and partly with non-Newtonian fluid layer. Adv. Powder Technol. 2015, 26, 1230–1244. [Google Scholar] [CrossRef]
- Nguyen, M.T.; Aly, A.; Lee, S.-W. Effect of a wavy interface on the natural convection of a nanofluid in a cavity with a partially layered porous medium using the ISPH method. Numer. Heat Transf. Part A Appl. 2017, 72, 68–88. [Google Scholar] [CrossRef]
- Alsabery, A.; Hussain, S.; Saleh, H.; Hashim, I. Inclination angle effect on natural convection in a square cavity partially filled with non-Newtonian fluids layer. AIP Conf. Proc. 2015, 1678, 060007. [Google Scholar]
- Bin Kim, G.; Hyun, J.M.; Kwak, H.S. Transient buoyant convection of a power-law non-Newtonian fluid in an enclosure. Int. J. Heat Mass Transf. 2003, 46, 3605–3617. [Google Scholar] [CrossRef]
- Wu, W.-T.; Massoudi, M. Recent Advances in Mechanics of Non-Newtonian Fluids. Fluids 2020, 5, 10. [Google Scholar] [CrossRef] [Green Version]
- Lamsaadi, M.; Naimi, M.; Hasnaoui, M.; Mamou, M. Natural Convection in a Vertical Rectangular Cavity Filled with a Non-Newtonian Power Law Fluid and Subjected to a Horizontal Temperature Gradient. Numer. Heat Transf. Part A Appl. 2006, 49, 969–990. [Google Scholar] [CrossRef]
- Lamsaadi, M.; Hasnaoui, M. Natural convection of non-Newtonian power law fluids in a shallow horizontal rectangular cavity uniformly heated from below. Heat Mass Transf. 2005, 41, 239–249. [Google Scholar] [CrossRef]
- Alsabery, A.I.; Chamkha, A.J.; Saleh, H.; Hashim, I. Natural Convection Flow of a Nanofluid in an Inclined Square Enclosure Partially Filled with a Porous Medium. Sci. Rep. 2017, 7, 2357. [Google Scholar] [CrossRef]
- Chamkha, A.J.; Ismael, M. Natural Convection in Differentially Heated Partially Porous Layered Cavities Filled with a Nanofluid. Numer. Heat Transf. Part A Appl. 2014, 65, 1089–1113. [Google Scholar] [CrossRef]
- Al-Srayyih, B.M.; Gao, S.; Hussain, S.H. Effects of linearly heated left wall on natural convection within a superposed cavity filled with composite nanofluid-porous layers. Adv. Powder Technol. 2019, 30, 55–72. [Google Scholar] [CrossRef]
- Barnoon, P.; Toghraie, D.; Dehkordi, R.B.; Afrand, M. Two phase natural convection and thermal radiation of Non-Newtonian nanofluid in a porous cavity considering inclined cavity and size of inside cylinders. Int. Commun. Heat Mass Transf. 2019, 108, 104285. [Google Scholar] [CrossRef]
- Jabbar, M.Y.; Ahmed, S.Y.; Hamazh, H.; Ali, F.H.; Khafaji, S.O.W. Effect of Layer Thickness on Natural Convection in a Square Enclosure Superposed by Nano-Porous and Non-Newtonian Fluid Layers Divided by a Wavy Permeable Wall. Int. J. Mech. Mechatron. Eng. 2019, 19, 3. [Google Scholar]
- Chen, C.K.; Cho, C.C. Natural Convection in Wavy-Wall Cavities Filled with Power-Law Fluid. Int. J. Mech. Mechatron. Eng. 2014, 8, 1387–1391. [Google Scholar]
- Kefayati, G.; Tang, H. MHD thermosolutal natural convection and entropy generation of Carreau fluid in a heated enclosure with two inner circular cold cylinders, using LBM. Int. J. Heat Mass Transf. 2018, 126, 508–530. [Google Scholar] [CrossRef]
- Saleh, H.; Alsabery, A.I.; Hashim, I. Natural convection in polygonal enclosures with inner circular cylinder. Adv. Mech. Eng. 2015, 7, 1687814015622899. [Google Scholar] [CrossRef] [Green Version]
- Massarotti, N.; Nithiarasu, P.; Zienkiewicz, O. Natural Convection in Porous Medium-Fluid Interface Problems: A Finite Element Analysis by Using the CBS Procedure. Int. J. Numer. Methods Heat Fluid Flow 2001, 11, 473–490. [Google Scholar] [CrossRef]
- Gobin, D.; Goyeau, B.; Neculae, A.P. Convective Heat and Solute Transfer in Partially Porous Cavities. Int. J. Heat Mass Transf. 2005, 48, 1898–1908. [Google Scholar] [CrossRef]
- Hirata, S.C.; Goyeau, B.; Gobin, D.; Carr, M.; Cotta, R. Linear Stability of Natural Convection in Superposed Fluid and Porous Layers: Influence of the Interfacial Modelling. Int. J. Heat Mass Transf. 2007, 50, 1356–1367. [Google Scholar] [CrossRef]
- Aguilar-Madera, C.G.; Valdés-Parada, F.J.; Goyeau, B.; Ochoa-Tapia, J.A. One-Domain Approach for Heat Transfer Between a Porous Medium and a Fluid. Int. J. Heat Mass Transf. 2011, 54, 2089–2099. [Google Scholar] [CrossRef]
- Aguilar-Madera, C.G.; Valdés-Parada, F.J.; Goyeau, B.; Ochoa-Tapia, J.A. Ochoa-Tapia, Convective Heat Transfer in a Channel Partially Filled with a Porous Medium. Int. J. Therm. Sci. 2011, 50, 1355–1368. [Google Scholar] [CrossRef]
- Abu-Hijleh, B.; Al-Nimr, M. The Effect of the Local Inertial Term on the Fluid Flow in Channels Partially Filled with Porous Material. Int. J. Heat Mass Transf. 2001, 44, 1565–1572. [Google Scholar] [CrossRef]
- Turan, O.; Sachdeva, A.; Chakraborty, N.; Poole, R.J. Laminar natural convection of power-law fluids in a square enclosure with differentially heated side walls subjected to constant temperatures. J. Non-Newton. Fluid Mech. 2011, 166, 1049–1063. [Google Scholar] [CrossRef]
- Kefayati, G.; Tang, H.; Chan, A.; Wang, X. A lattice Boltzmann model for thermal non-Newtonian fluid flows through porous media. Comput. Fluids 2018, 176, 226–244. [Google Scholar] [CrossRef]
- Akbal, S.; Baytaş, F. Effects of non-uniform porosity on double diffusive natural convection in a porous cavity with partially permeable wall. Int. J. Therm. Sci. 2008, 47, 875. [Google Scholar] [CrossRef]
- Mchirgui, A.; Hidouri, N.; Magherbi, M.; Ben Brahim, A. Second law analysis in double diffusive convection through an inclined porous cavity. Comput. Fluids 2014, 96, 105–115. [Google Scholar] [CrossRef]
- Bera, P.; Pippal, S.; Sharma, A.K. A thermal non-equilibrium approach on double-diffusive natural convection in a square porous-medium cavity. Int. J. Heat Mass Transf. 2014, 78, 1080–1094. [Google Scholar] [CrossRef]
- Zhu, Q.; Zhuang, Y.; Yu, H. Three-dimensional numerical investigation on thermosolutal convection of power-law fluids in anisotropic porous media. Int. J. Heat Mass Transf. 2017, 104, 897–917. [Google Scholar] [CrossRef]
- Kefayati, G. Simulation of double diffusive natural convection and entropy generation of power-law fluids in an inclined porous cavity with Soret and Dufour effects (Part I: Study of fluid flow, heat and mass transfer). Int. J. Heat Mass Transf. 2016, 94, 539–581. [Google Scholar] [CrossRef]
- Kefayati, G. Simulation of double diffusive natural convection and entropy generation of power-law fluids in an inclined porous cavity with Soret and Dufour effects (Part II: Entropy generation). Int. J. Heat Mass Transf. 2016, 94, 582–624. [Google Scholar] [CrossRef]
- Hussain, S.; Schieweck, F.; Turek, S. Effcient Newton multigrid solution techniques for higher order space time Galerkin discretizations of incompressible flow. Appl. Numer. Math. 2014, 83, 51–71. [Google Scholar] [CrossRef]
- SHussain, S.; Mehmood, K.; Sagheer, M.; Farooq, A. Entropy generation analysis of mixed convective flow in an inclined channel with cavity with Al2O3-water nanofluid in porous medium. Int. Commun. Heat Mass Transf. 2017, 89, 198–210. [Google Scholar] [CrossRef]
- Gibanov, N.S.; Sheremet, M.A.; Ismael, M.A.; Chamkha, A.J. Mixed convection in a ventilated cavity filled with a triangular porous layer. Transp. Porous Media 2017, 89, 198–210. [Google Scholar] [CrossRef]
- Corvaro, F.; Paroncini, M. Experimental analysis of natural convection in square cavities heated from below with 2D-PIV and holographic interferometry techniques. Exp. Therm. Fluid Sci. 2007, 31, 721–739. [Google Scholar] [CrossRef]
Grid | NEL | DOFs | ||
---|---|---|---|---|
G1 | 230 | 3322 | 3.428355 | 5.767679 |
G2 | 352 | 4974 | 3.418098 | 5.727896 |
G3 | 540 | 7319 | 3.420159 | 5.715686 |
G4 | 1006 | 13007 | 3.422258 | 5.703224 |
G5 | 1520 | 19040 | 3.424014 | 5.701316 |
G6 | 2470 | 29757 | 3.424601 | 5.700223 |
G7 | 6544 | 76933 | 3.424613 | 5.698674 |
G8 | 16790 | 192148 | 3.424915 | 5.698709 |
1.003544 | 1.294151 | 3.425027 | 8.530151 | |
1.021881 | 2.017548 | 5.699002 | 13.07502 |
3.424915 | 3.338505 | 3.272834 | 3.221858 | 3.181187 | |
5.698709 | 5.519309 | 5.383465 | 5.278273 | 5.194299 |
1.3556 | 1.373742 | 1.652894 | 3.425139 | 4.703467 | |
1.537805 | 1.582851 | 2.50985 | 5.699306 | 7.181993 |
N = 0.1 | N = 1 | N = 5 | N = 10 | |
---|---|---|---|---|
3.424915 | 4.102939 | 5.831249 | 7.130527 | |
5.698709 | 7.080791 | 10.47675 | 12.8777 |
Le = 1 | Le = 2.5 | Le = 5 | Le = 10 | |
---|---|---|---|---|
3.483756 | 3.425136 | 3.389914 | 3.366655 | |
3.48395 | 5.699383 | 7.703609 | 10.18238 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kolsi, L.; Hussain, S.; Ghachem, K.; Jamal, M.; Maatki, C. Double Diffusive Natural Convection in a Square Cavity Filled with a Porous Media and a Power Law Fluid Separated by a Wavy Interface. Mathematics 2022, 10, 1060. https://doi.org/10.3390/math10071060
Kolsi L, Hussain S, Ghachem K, Jamal M, Maatki C. Double Diffusive Natural Convection in a Square Cavity Filled with a Porous Media and a Power Law Fluid Separated by a Wavy Interface. Mathematics. 2022; 10(7):1060. https://doi.org/10.3390/math10071060
Chicago/Turabian StyleKolsi, Lioua, Shafqat Hussain, Kaouther Ghachem, Muhammad Jamal, and Chemseddine Maatki. 2022. "Double Diffusive Natural Convection in a Square Cavity Filled with a Porous Media and a Power Law Fluid Separated by a Wavy Interface" Mathematics 10, no. 7: 1060. https://doi.org/10.3390/math10071060
APA StyleKolsi, L., Hussain, S., Ghachem, K., Jamal, M., & Maatki, C. (2022). Double Diffusive Natural Convection in a Square Cavity Filled with a Porous Media and a Power Law Fluid Separated by a Wavy Interface. Mathematics, 10(7), 1060. https://doi.org/10.3390/math10071060