On Kudriasov Conditions for Univalence of Integral Operators Defined by Generalized Bessel Functions
Abstract
:1. Introduction and Preliminaries
2. Main Results
3. Applications
3.1. Bessel Functions
3.2. Modified Bessel Functions
3.3. Spherical Bessel Functions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Watson, G.N. A Treatise on the Theory of Bessel Functions, 2nd ed.; Cambridge University Press: Cambridge/London, UK; New York, NY, USA, 1944. [Google Scholar]
- Bassuony, M.A.; Abd–Elhameed, W.M.; Doha, E.H.; Youssri, Y.H. A legendre-laguerre-galerkin method for uniform euler-Bernoulli beam equation. East Asian J. Appl. Math. 2020, 8, 280–295. [Google Scholar] [CrossRef] [Green Version]
- Doha, E.H.; Youssri, Y.H. On the connection coefficients and recurrence relations arising from expansions in series of modified generalized Laguerre polynomials: Applications on a semi-infinite domain. Nonlinear Eng. 2019, 8, 318–327. [Google Scholar] [CrossRef]
- Gorenflo, R.; Kilbas, A.A.; Mainardi, F.; Rogosin, S.V. Mittag–Leffler Functions, Related Topics and Applications; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Paneva-Konovska, J. Convergence of series in three parametric Mittag-Leffler functions. Math. Slovaca 2014, 64, 73–84. [Google Scholar] [CrossRef]
- Shishkina, E.; Sitnik, S. Transmutations, Singular and Fractional Differential Equations with Applications to Mathematical Physics; Mathematics in Science and Engineering; Academic Press (Elsevier Science Publishers): New York, NY, USA; London, UK; Toronto, ON, Canada, 2020. [Google Scholar]
- Baricz, Á. Generalized Bessel Functions of the First Kind; Lecture Notes in Mathematics; Springer: Berlin, Germany, 2010; Volume 1994. [Google Scholar]
- Bansal, D.; Prajapat, J.K. Certain geometric properties of the Mittag–Leffler functions. Complex Var. Elliptic Equ. 2016, 61, 338–350. [Google Scholar] [CrossRef]
- Noreen, S.; Raza, M.; Malik, S.N. Certain geometric properties of Mittag–Leffler functions. J. Inequal. Appl. 2019, 2019, 94. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, H.M.; Kumar, A.; Das, S.; Mehrez, K. Geometric properties of a certain class of Mittag–Leffler-type functions. Fractal Fract. 2020, 6, 54. [Google Scholar] [CrossRef]
- Baricz, Á.; Deniz, E.; Yagmur, N. Close-to-convexity of normalized Dini functions. Math. Nachr. 2016, 289, 1721–1726. [Google Scholar] [CrossRef] [Green Version]
- Din, M.U.; Raza, M.; Hussain, S.; Darus, M. Certain geometric properties of generalized Dini Functions. J. Funct. Spaces 2018, 2018, 2684023. [Google Scholar] [CrossRef]
- Khan, B.; Khan, S.; Ro, J.-S.; Araci, S.; Khan, N.; Khan, N. Inclusion Relations for Dini Functions Involving Certain Conic Domains. Fractal Fract. 2022, 6, 118. [Google Scholar] [CrossRef]
- Ponnusamy, S.; Vuorinen, M. Univalence and convexity properties for Gaussian hypergeometric functions. Rocky Mt. J. Math. 2001, 31, 327–353. [Google Scholar] [CrossRef]
- Ponnusamy, S.; Vuorinen, M. Starlikeness of the Gaussian hypergeometric functions. Complex Var. Elliptic Equ. 2010, 55, 173–184. [Google Scholar]
- Orhan, H.; Yagmur, N. Geometric Properties of Generalized Struve Functions. Ann. Alexandru Ioan Cuza Univ. Math. 2014. [Google Scholar] [CrossRef] [Green Version]
- Raza, M.; Yagmur, N. Some properties of a class of analytic functions defined by generalized Struve functions. Turkish J. Math. 2015, 39, 931–944. [Google Scholar] [CrossRef]
- Prajapat, J. Certain geometric properties of the Wright function. Integral Transform. Spec. Funct. 2015, 26, 203–212. [Google Scholar] [CrossRef]
- Raza, M.; Din, M.U.; Malik, S.N. Certain geometric properties of normalized Wright functions. J. Funct. Spaces 2016, 2016, 1896154. [Google Scholar] [CrossRef] [Green Version]
- Baricz, Á.; Ponnusamy, S. Starlikeness and convexity of generalized Bessel functions. Integral Transforms Spec. Funct. 2010, 21, 641–653. [Google Scholar] [CrossRef]
- Deniz, E. Convexity of integral operators involving generalized Bessel functions. Integral Transforms Spec. Funct. 2013, 24, 201–216. [Google Scholar] [CrossRef]
- Baricz, Á. Functional inequalities involving special functions. J. Math. Anal. Appl. 2006, 319, 450–459. [Google Scholar] [CrossRef] [Green Version]
- Baricz, Á. Functional inequalities involving special functions II. J. Math. Anal. Appl. 2007, 327, 1202–1213. [Google Scholar] [CrossRef] [Green Version]
- Baricz, Á. Geometric properties of generalized Bessel functions. Publ. Math. Debr. 2008, 73, 155–178. [Google Scholar]
- Baricz, Á. Some inequalities involving generalized Bessel functions. Math. Inequal. Appl. 2007, 10, 827–842. [Google Scholar] [CrossRef]
- Selinger, V. Geometric properties of normalized Bessel functions. Pure Math. Appl. 1995, 6, 273–277. [Google Scholar]
- Szász, R. About the starlikeness of Bessel functions. Integral Transforms Spec. Funct. 2014, 25, 750–755. [Google Scholar] [CrossRef]
- Szász, R.; Kupán, P. About the univalence of the Bessel functions. Stud. Univ. Babes-Bolyai Math. 2009, 54, 127–132. [Google Scholar]
- Pescar, V.; Breaz, D. The Univalence of Integral Operators; Academic Publishing House: Sofia, Bulgaria, 2008. [Google Scholar]
- Breaz, D.; Breaz, N. Two integral operator. Stud. Univ. Babes-Bolyai Math. Clunj-Napoca 2002, 3, 13–21. [Google Scholar]
- Breaz, D.; Guney, H.Ö. The integral operator on the classes (b) and Cα(b). J. Math. Ineq. 2008, 2, 97–100. [Google Scholar] [CrossRef] [Green Version]
- Breaz, D.; Owa, S.; Breaz, N. A new integral univalent operator. Acta Univ. Apulensis Math. Inform. 2008, 16, 11–16. [Google Scholar]
- Pescar, V. New univalence criteria for some integral operators. Stud. Univ. Babes-Bolyai Math. 2014, 59, 167–176. [Google Scholar]
- Pescar, V.; Breaz, N. Kudriasov Type Univalence Criteria for Some Integral Operators. Abstract Appl. Anal. 2013, 2013, 721932. [Google Scholar] [CrossRef]
- Baricz, Á.; Frasin, B.A. Univalence of integral operators involving Bessel functions. App. Math. Lett. 2010, 23, 371–376. [Google Scholar] [CrossRef] [Green Version]
- Frasin, B.A. Sufficient conditions for integral operator defined by Bessel functions. J. Math. Ineq. 2010, 4, 301–306. [Google Scholar] [CrossRef] [Green Version]
- Ularu, N. The univalence of some integral operators using the Bessel functions. Math. Vasnik 2013, 65, 547–554. [Google Scholar]
- Arif, M.; Raza, M. Some properties of an integral operator defined by Bessel functions. Acta Univ. Apulensis 2011, 26, 69–74. [Google Scholar]
- Deniz, E.; Orhan, H.; Srivastava, H.M. Some sufficient conditions for univalence of certain families of integral operators involving generalized Bessel functions. Taiwan. J. Math. 2011, 15, 883–917. [Google Scholar]
- Srivastava, H.M.; Frasin, B.A.; Pescar, V. Univalence of integral operators involving Mittag–Leffler functions. Appl. Math. Inf. Sci. 2017, 11, 635–641. [Google Scholar] [CrossRef]
- Din, M.; Srivastava, H.M.; Raza, M. Univalence of integral operators involving generalized Struve functions. Hacet. J. Math. Stat. 2018, 47, 821–833. [Google Scholar]
- Park, J.H.; Srivastava, H.M.; Cho, N.E. Univalence and convexity conditions for certain integral operators associated with the Lommel function of the first kind. AIMS Math. 2021, 6, 11380–11402. [Google Scholar] [CrossRef]
- Din, M.U.; Raza, M.; Deniz, E. Univalence criteria for general integral operators involving normalized Dini functions. Filomat 2020, 34, 2203–2216. [Google Scholar] [CrossRef]
- Raza, M.; Malik, S.N. Properties of multivalent functions associated with integral operator defined by hypergeometric function. J. Inequ. Appl. 2013, 2013, 458. [Google Scholar] [CrossRef] [Green Version]
- Mahmood, S.; Mahroz, S.; Rafiq, A.; Malik, S.N.; Raza, M. Convexity of certain integral operators defined by Struve functions. J. Funct. Spaces 2018, 2018, 6327132. [Google Scholar] [CrossRef] [Green Version]
- Mahmood, S.; Srivastava, H.M.; Malik, S.N.; Raza, M.; Shahzadi, N.; Zainab, S. A certain family of integral operators associated with the Struve Functions. Symmetry 2019, 11, 463. [Google Scholar] [CrossRef] [Green Version]
- Malik, S.N.; Shahzadi, N.; Raza, M.; Ul Haq, W.; Zainab, S. On starlikeness and uniform convexity of certain integral operators defined by Struve functions. Maejo Int. J. Sci. Technol. 2019, 13, 82–95. [Google Scholar]
- Noreen, S.; Din, M.; Raza, M. Convexity of integral operators involving Dini functions. Int. J. Anal. Appl. 2018, 16, 462–471. [Google Scholar]
- Khan, Q.; Arif, M.; Raza, M.; Srivastava, G.; Tang, H.; Rehman, S.U. Some applications of a new integral operator in q-analog for multivalent functions. Mathematics 2019, 7, 1178. [Google Scholar] [CrossRef] [Green Version]
- El-Deeb, S.M.; Bulboacă, T. Differential sandwich-type results for symmetric functions connected with a q-analog integral operator. Mathematics 2019, 7, 1185. [Google Scholar] [CrossRef] [Green Version]
- Pascu, N. An improvement of Becker’s univalence criterion. In Proceedings of the Commemorative Session: Simion Stoilow (Brasov 1987); University of Brasov: Brasov, Romania, 1987; pp. 43–48. [Google Scholar]
- Kudryashov, N.S. Onekotorih priznakah odnolistnosti analiticeschih funktii. Mat. Zametki 1973, 13, 359–366. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raza, M.; Malik, S.N.; Xin, Q.; Din, M.U.; Cotîrlă, L.-I. On Kudriasov Conditions for Univalence of Integral Operators Defined by Generalized Bessel Functions. Mathematics 2022, 10, 1361. https://doi.org/10.3390/math10091361
Raza M, Malik SN, Xin Q, Din MU, Cotîrlă L-I. On Kudriasov Conditions for Univalence of Integral Operators Defined by Generalized Bessel Functions. Mathematics. 2022; 10(9):1361. https://doi.org/10.3390/math10091361
Chicago/Turabian StyleRaza, Mohsan, Sarfraz Nawaz Malik, Qin Xin, Muhey U. Din, and Luminiţa-Ioana Cotîrlă. 2022. "On Kudriasov Conditions for Univalence of Integral Operators Defined by Generalized Bessel Functions" Mathematics 10, no. 9: 1361. https://doi.org/10.3390/math10091361
APA StyleRaza, M., Malik, S. N., Xin, Q., Din, M. U., & Cotîrlă, L. -I. (2022). On Kudriasov Conditions for Univalence of Integral Operators Defined by Generalized Bessel Functions. Mathematics, 10(9), 1361. https://doi.org/10.3390/math10091361