Next Article in Journal
Multiple-Trigger Catastrophe Bond Pricing Model and Its Simulation Using Numerical Methods
Next Article in Special Issue
Applications of Subordination Chains and Fractional Integral in Fuzzy Differential Subordinations
Previous Article in Journal
On the De Blasi Measure of Noncompactness and Solvability of a Delay Quadratic Functional Integro-Differential Equation
Previous Article in Special Issue
New Applications of Gegenbauer Polynomials on a New Family of Bi-Bazilevič Functions Governed by the q-Srivastava-Attiya Operator
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

On Kudriasov Conditions for Univalence of Integral Operators Defined by Generalized Bessel Functions

1
Department of Mathematics, Government College University Faisalabad, Faisalabad 38000, Pakistan
2
Department of Mathematics, COMSATS University Islamabad, Wah Campus, Wah Cantt 47040, Pakistan
3
Faculty of Science and Technology, University of the Faroe Islands, Vestarabryggja 15, FO 100 Torshavn, Faroe Islands, Denmark
4
Department of Mathematics, Technical University of Cluj-Napoca, 400114 Cluj-Napoca, Romania
*
Author to whom correspondence should be addressed.
Mathematics 2022, 10(9), 1361; https://doi.org/10.3390/math10091361
Submission received: 7 March 2022 / Revised: 9 April 2022 / Accepted: 15 April 2022 / Published: 19 April 2022
(This article belongs to the Special Issue New Trends in Complex Analysis Researches)

Abstract

:
In this article, we studied the necessary conditions for the univalence of integral operators that involve two functions: the generalized Bessel function and a function from the well-known class of normalized analytic functions in the open unit disk. The main tools for our discussions were the Kudriasov conditions for the univalency of functions, as well as functional inequalities for the generalized Bessel functions. We included the conditions for the univalency of integral operators that involve Bessel, modified Bessel and spherical Bessel functions as special cases. Furthermore, we provided sufficient conditions for the integral operators that involve trigonometric, as well as hyperbolic, functions as an application of our results.

1. Introduction and Preliminaries

Special functions are functions that do not have a formal definition but are still widely used in mathematical analysis, physics, functional analysis and some other branches of applied science. Many elementary functions, such as trigonometric and hyperbolic functions, are also treated as special functions. The theory of special functions has earned the attention of many researchers throughout the nineteenth century and has been involved in many emerging fields. In particular, trigonometric functions have been used in astronomy due to their remarkable properties. In the twentieth century, the application of special functions enriched other branches of mathematics, such as topology, algebra, functional and real analysis and differential equations. Among the most popular and widely studied special functions, Bessel functions have a prominent position due to their applications and remarkable properties. Bessel functions and hypergeometric functions have been used in many emerging fields, such as probability, statistics, mathematics, applied physics and engineering science. Watson summarized all of the characteristics and applications of Bessel functions in his book [1]. This book is very important in the theory of special functions and is considered as a classical text on the asymptotic behavior of Bessel functions and their applications. We refer the reader to [2,3,4,5,6] for more information on generalized Bessel functions.
Special functions in general, and Bessel functions and hypergeometric functions in particular, have a wide variety of applications within the theory of analytic functions. Their use in the proof of the landmark result “Bieberbach conjecture”in 1986, later known as “De Branges’ theorem” initiated their meaningful involvement in the study of the geometric characteristics of analytic functions. As well as the use of special functions to solve many problems in geometric function theory, the geometric properties of many special functions, such as Bessel functions [7], Mittag Leffler functions [8,9,10], Dini functions [11,12,13], Gauss hypergeometric functions [14,15], Struve functions [16,17], Wright functions [18,19] and others, have been studied extensively. In this article, we intended to study the criteria for the univalency of the integral operators that are defined by using Bessel, modified Bessel and spherical Bessel functions.
Let A denote the class of analytic functions g in the form:
g ( ζ ) = ζ + m = 2 a m ζ m ,
in the open unit disk E = ζ : ζ < 1 , where a m = g m ( 0 ) m ! is a complex constant, and let S denote the collection of all univalent functions in A . Assuming the following second-order differential equation, which is homogeneous:
ζ 2 s ζ + c ζ s ζ + η ζ 2 σ 2 + 1 c σ s ζ = 0 ,
where c , η , σ C (see [7] for more details), the generalized Bessel function of the first kind and of order σ is defined as follows:
s σ , c , η ζ = m = 0 η m ζ / 2 2 m + σ m ! Γ σ + m + c + 1 / 2 ,
where the notation Γ . represents the gamma function. The function s σ , c , η ζ describes certain types of Bessel functions, as follows.
Special Cases
(i) For c = 1 , η = 1 , the function that was defined in (3) produces the Bessel function of the first kind and of order σ , which are given by:
J σ ζ = m = 0 1 m ζ / 2 2 m + σ m ! Γ σ + m + 1 .
(ii) For c = 1 , η = 1 , the function that was defined in (3) produces the modified Bessel function of the first kind and of order σ , which are given by:
I σ ζ = m = 0 ζ / 2 2 m + σ m ! Γ σ + m + 1 .
(iii) For c = 2 , η = 1 , the function that was defined in (3) produces the spherical Bessel function of the first kind and of order σ , which are given by:
j σ ζ = π 2 m = 0 ζ / 2 2 m + σ m ! Γ σ + m + 3 / 2 .
For more details about these functions, see [1,20].
Deniz et al. [21] studied the generalized Bessel functions that were defined in (3) by discussing the specific geometric properties of the following function:
ψ σ , c , η ζ = 2 σ Γ σ + c + 1 2 ζ 1 σ / 2 w σ , c , η ζ 1 / 2 ,
where c , η , σ C . With the help of the renowned Pochhammer symbol, which is defined as:
β m = Γ β + m Γ β = 1 , m = 0 , β C 0 , β β + 1 β + m 1 , m N , β C ,
we obtain the following series form of ψ σ , c , η ζ :
ψ σ , c , η ζ = ζ + m = 1 η m 4 m l m m ! ζ m + 1 ,
where l = σ + c + 1 / 2 0 , 1 , 2 , .
For the univalency, convexity, functional inequalities, starlikeness, integral representations, uniform convexity and some other geometric characteristics of ψ σ , c , η , we refer the readers to [7,20,22,23,24,25,26,27,28].
A significant area within function theory is the study of integral operators in the class of analytic functions ([29]). Alexander was the first mathematician to introduce and study an integral operator in a family of univalent functions within this area of research. R. Libera, S. Bernardi, S. S. Miller, P.T. Mocanu, M. O. Reade, R. Singh, N. N. Pascu and D. Breaz are among the major contributors to the study of the univalency criteria for integral operators. Nowadays, new frontiers for integral operators are designed to stimulate interest among young researchers within the field of geometric function theory. For more information on the integral operators of analytic functions, see references [30,31,32,33,34].
Baricz and Frasin [35] first used a special function (the Bessel function) to introduce a single family integral operator and studied its univalency conditions. This operator was further studied by Frasin [36], Ularu [37] and Arif and Raza [38]. By using generalized Bessel functions, Deniz et al. and Deniz [21,39] studied the univalency and convexity properties of the following integral operators:
G σ 1 , σ m , c , η , α 1 , α m , β ζ = β ζ 0 t β 1 i = 1 m ψ σ i , c , η t t 1 α i d t 1 / β ,
G σ 1 , σ m , c , η , m , μ ζ = m μ + 1 ζ 0 i = 1 m ψ σ i , c , η t μ d t 1 / m μ + 1 ,
H σ 1 , σ m , c , η , δ 1 , δ m , μ ζ = μ ζ 0 t μ 1 i = 1 m ψ σ i , c , η t δ j d t 1 / μ ,
Q σ , c , η , λ ζ = λ ζ 0 t λ 1 m e ψ σ i , c , η t λ d t 1 / λ .
Recently, some authors have studied the families of one parameter integral operator using certain special functions, such as Mittag–Leffler functions [40], Struve functions [41], Lommel functions [42] and Dini functions [43]. The geometric properties of these one parameter families of integral operators have been extensively studied by various authors. For details, we refer the reader to [44,45,46,47,48,49,50].
The main aim of this article is to introduce and study the univalence criteria for integral operators that involve two functions: the generalized Bessel function and the function of normalized analytic functions. These integral operators are defined as follows:
G σ 1 , σ m , c , η , μ 1 , μ m , β ζ = β ζ 0 t β 1 i = 1 m ψ σ i , c , η t g i t μ i d t 1 / β ,
H σ 1 , σ m , c , η , μ 1 , μ m , β ζ = β ζ 0 t β 1 i = 1 m ψ σ i i , c , η t g i t μ i d t 1 / β ,
and
I σ 1 , σ m , c , η , μ 1 , μ m , β ζ = β ζ 0 t β 1 i = 1 m ψ σ i , c , η t t μ i g i t δ i d t 1 / β .
To proceed further, we need the following results, which are also helpful in proving our consequent results:
Lemma 1.
[51] Let g A satisfies the following inequality:
1 ζ 2 R e ν R e ν ζ g ( ζ ) g ( ζ ) 1 , R e ( ν ) > 0 .
Then, for every complex number β , R e ( β ) R e ( ν ) produces the function:
G β ( ζ ) = β 0 ζ t β 1 g t d t 1 β S .
Lemma 2.
[52] Let g be a regular function in E and g ζ = ζ + a 2 ζ 2 + . When:
g ζ g ζ ξ , ζ E
where ξ 3.05 , then g is univalent.
Remark 1.
The constant ξ is the solution for:
8 y y 2 3 1 / 2 3 4 y 2 12 = 0 .
The approximated solution of the above equation is 3.03902118847875 . Kudriasov used 3.05 as this approximated value.
Lemma 3.
[21] Let σ , c R and η C be restricted so that l > max 0 , η 2 / 4 . Then, the function ψ σ , c , η : E C is given by (6) such that:
(i)
ζ ψ σ , c , η ζ ψ σ , c , η ζ 1 8 l + 1 η 32 l l + 1 8 2 l + 1 η + η 2 , ζ E ,
(ii)
ζ ψ σ , c , η ζ ψ σ , c , η ζ 4 l + 1 η + η 2 8 l l + 1 2 3 l + 2 η , ζ E .

2. Main Results

Our first main result provided sufficient univalence conditions for the integral operators of the type in (12) when the function g i A   ( i = 1 , , n ) and the generalized Bessel function ψ σ i , c , η involved some parameters. We used Lemma 3, the univalence criteria for integral operators due to Pascu [51] and the Kudriasov conditions for the univalence of the normalized analytic functions.
Theorem 1.
Let σ 1 , , σ m , c R , μ i , η C and l i > η 2 / 4 where l i = σ i + c + 1 / 2 , i = 1 , , m . Let ψ σ i , c , η : E C be given by:
ψ σ i , c , η ζ = 2 σ i Γ σ i + c + 1 2 ζ 1 σ i / 2 ψ σ i , c , η ζ .
Suppose l = min l 1 , l 2 , l m and when g i A with:
g i ζ g i ζ ξ , ζ E ,
where ξ 3.05 , such that:
1 R e ν 5 + 8 l + 1 η 32 l l + 1 8 2 l + 1 η + η 2 i = 1 m μ i < 1 ,
when 0 < R e ν < 1 and:
1 R e ν 1 + 8 l + 1 η 32 l l + 1 8 2 l + 1 η + η 2 + 4 i = 1 m μ i < 1
for R e ν 1 , then, for β C and R e ( β ) R e ( ν ) > 0 , the function G σ 1 , σ m , c , η , μ 1 , μ m , β : E C that is given by (12) is in S .
Proof. 
Consider:
G σ 1 , σ m , c , η , μ 1 , μ m ζ = ζ 0 i = 1 m ψ σ i , c , η t g i t μ i d t .
It is clear that G σ 1 , σ m , c , η , μ 1 , μ m ( 0 ) = G σ 1 , σ m , c , η , μ 1 , μ m 1 = 0 . So, it follows easily that:
G σ 1 , σ m , c , η , μ 1 , μ m ζ G σ 1 , σ m , c , η , μ 1 , μ m ζ = i = 1 m μ i ψ σ i , c , η ( ζ ) ψ σ i , c , η ( ζ ) g i ( ζ ) g i ( ζ ) .
Therefore, we obtain:
1 ζ 2 R e ν R e ν ζ G σ 1 , σ m , c , η , μ 1 , μ m ζ G σ 1 , σ m , c , η , μ 1 , μ m ζ 1 ζ 2 R e ν R e ν i = 1 m μ i ψ σ i , c , η ( ζ ) ψ σ i , c , η ( ζ ) + ζ g i ( ζ ) g i ( ζ ) .
Now, using Lemma 2, we have g i S , i = 1 m , and:
ζ g i ( ζ ) g i ( ζ ) 1 + ζ 1 ζ .
By virtue of (18) and (19), we find that:
1 ζ 2 R e ν R e ν ζ G σ 1 , σ m , c , η , μ 1 , μ m ζ G σ 1 , σ m , c , η , μ 1 , μ m ζ 1 ζ 2 R e ν R e ν i = 1 m μ i ζ ψ σ i , c , η ( ζ ) ψ σ i , c , η ( ζ ) + 1 + ζ 1 ζ 1 ζ 2 R e ν R e ν i = 1 m μ i ζ ψ σ i , c , η ( ζ ) ψ σ i , c , η ( ζ ) + 1 ζ 2 R e ν R e ν 2 1 ζ i = 1 m μ i .
First, we consider:
1 ζ 2 R e ν R e ν i = 1 m μ i ζ ψ σ i , c , η ( ζ ) ψ σ i , c , η ( ζ ) .
This implies that:
1 ζ 2 R e ν R e ν i = 1 m μ i ζ ψ σ i , c , η ( ζ ) ψ σ i , c , η ( ζ ) 1 R e ν i = 1 m μ i ζ ψ σ i , c , η ( ζ ) ψ σ i , c , η ( ζ ) .
Using Lemma 3 (i), we have:
1 ζ 2 R e ν R e ν i = 1 m μ i ζ ψ σ i , c , η ( ζ ) ψ σ i , c , η ( ζ ) 1 R e ν i = 1 m μ i 1 + 8 l i + 1 η 32 l i 2 l i + 1 8 2 l i + 1 η + η 2 .
Now, we take the function u : η 2 4 , R , u y = 8 η y + 1 8 y y + 1 32 η 2 y + 1 + η 2 . It is a decreasing function, therefore:
8 l i + 1 η 32 l i 2 l i + 1 8 2 l i + 1 η + η 2 8 l + 1 η 32 l l + 1 8 2 l + 1 η + η 2 .
Hence:
1 ζ 2 R e ν R e ν i = 1 m μ i ζ ψ σ i , c , η ( ζ ) ψ σ i , c , η ( ζ ) 1 R e ν 1 + 8 l + 1 η 32 l l + 1 8 2 l + 1 η + η 2 i = 1 m μ i .
Consider:
1 ζ 2 R e ν R e ν 2 1 ζ i = 1 m μ i .
For this, we have the following cases:
(1) For 0 < R e ν < 1 , the function σ : 0 , 1 R is defined by:
σ y = 1 a 2 y , y = R e ν , ζ = a
is increasing and:
1 ζ 2 R e ν 1 ζ 2 ,
therefore:
1 ζ 2 R e ν R e ν 2 1 ζ i = 1 m μ i 4 R e ν i = 1 m μ i .
From (20) and (21) and for 0 < R e ν < 1 , we have:
1 ζ 2 R e ν R e ν ζ G σ 1 , σ m , c , η , μ 1 , μ m ζ G σ 1 , σ m , c , η , μ 1 , μ m ζ 1 R e ν 5 + 8 l + 1 η 32 l l + 1 8 2 l + 1 η + η 2 i = 1 m μ i .
(2) For R e ν 1 , we define the function w : 1 , R , w y = 1 a 2 y y , y = R e ν and ζ = a as a decreasing function and
1 ζ 2 R e ν R e ν 1 ζ 2 ,
therefore:
1 ζ 2 R e ν R e ν 2 1 ζ i = 1 m μ i 4 i = 1 m μ i .
Combining (22) and (23) for R e ν 1 , we obtain:
1 ζ 2 R e ν R e ν ζ G σ 1 , σ m , c , η , μ 1 , μ m ζ G σ 1 , σ m , c , η , μ 1 , μ m ζ 1 R e ν 1 + 4 R e ν + 8 l + 1 η 32 l l + 1 8 2 l + 1 η + η 2 i = 1 m μ i .
From (15), (22), (16) and (24), we obtain:
1 ζ 2 R e ν R e ν ζ G σ 1 , σ m , c , η , μ 1 , μ m ζ G σ 1 , σ m , c , η , μ 1 , μ m ζ < 1 .
Now, from (17), we have G σ 1 , σ m , c , η , μ 1 , μ m ζ = i = 1 m ψ σ i , c , η t g i t μ i . Therefore, using Lemma 1, we can obtain the required result. □
Our second main result provided sufficient univalence conditions for the integral operators of the type in (13) when the function g i A   ( i = 1 , , n ) and the generalized Bessel function ψ σ i , c , η involved some parameters. We used Lemma 3, the univalence criteria for integral operators due to Pascu [51] and the Kudriasov conditions for the univalence of the normalized analytic functions.
Theorem 2.
Let σ 1 , σ m , c R , μ i , η C and l i > η 2 / 4 where l i = σ i + c + 1 / 2 , i = 1 , , m . Let ψ σ i , c , η : E C be given by:
ψ σ i , c , η ζ = 2 σ i Γ σ i + c + 1 2 ζ 1 σ i / 2 ψ σ i , c , η ζ .
Suppose l = min l 1 , l 2 , l m and when g i A with:
g i ζ g i ζ ξ ,
for all ζ E , where ξ 3.05 and these numbers satisfy the relation:
1 R e ν 4 l + 1 η + η 2 8 l l + 1 2 3 l + 2 η + 2 ξ 2 R e ν + 1 2 R e ν + 1 / 2 R e ν i = 1 m μ i < 1 .
Then, for β C and R e ( β ) R e ( ν ) , the function H σ 1 , σ m , c , η , μ 1 , μ m , β : E C that is given by (13) is in S .
Proof. 
Consider the function:
H σ 1 , σ m , c , η , μ 1 , μ m ζ = ζ 0 i = 1 m ψ σ i i , c , η t g i t μ i d t .
Clearly, H σ 1 , σ m , c , η , μ 1 , μ m A , i.e., H σ 1 , σ m , c , η , μ 1 , μ m ( 0 ) = H σ 1 , σ m , c , η , μ 1 , μ m 1 = 0 . On the other hand, it is easy to see that:
H σ 1 , σ m , c , η , μ 1 , μ m ζ H σ 1 , σ m , c , η , μ 1 , μ m ζ = i = 1 m μ i ψ σ i , c , η ( ζ ) ψ σ i , c , η ( ζ ) g i ( ζ ) g i ( ζ )
Therefore, we obtain:
1 ζ 2 R e ν R e ν ζ H σ 1 , σ m , c , η , μ 1 , μ m ζ H σ 1 , σ m , c , η , μ 1 , μ m ζ 1 ζ 2 R e ν R e ν i = 1 m μ i ψ σ i , c , η ( ζ ) ψ σ i , c , η ( ζ ) + ζ g i ( ζ ) g i ( ζ ) .
This implies that:
1 ζ 2 R e ν R e ν ζ H σ 1 , σ m , c , η , μ 1 , μ m ζ H σ 1 , σ m , c , η , μ 1 , μ m ζ 1 ζ 2 R e ν R e ν i = 1 m μ i ζ ψ σ i , c , η ( ζ ) ψ σ i , c , η ( ζ ) + 1 ζ 2 R e ν R e ν ζ i = 1 m μ i g i ( ζ ) g i ( ζ ) .
Using the Lemmas 2 and 3 (ii), we obtain:
1 ζ 2 R e ν R e ν ζ H σ 1 , σ m , c , η , μ 1 , μ m ζ H σ 1 , σ m , c , η , μ 1 , μ m ζ 1 ζ 2 R e ν R e ν i = 1 m μ i 4 l i + 1 η + η 2 8 l i l i + 1 2 3 l i + 2 η + 1 ζ 2 R e ν R e ν ζ ξ i = 1 m μ i .
Define h : 0 , 1 R , j y = y 1 y 2 a / a , y = ζ , a = R e ν . Then:
max y 0 , 1 h y = 2 2 a + 1 2 a + 1 / 2 a .
Additionally, define l : η 2 4 , R , l y = 4 η y + 1 + η 2 8 y y + 1 2 η 3 y + 2 . The function l is decreasing, therefore:
4 l i + 1 η + η 2 8 l i 1 + l i 2 η 2 + 3 l i 4 η l + 1 + η 2 8 l 1 + l 2 η 2 + 3 l .
This implies that:
1 ζ 2 R e ν R e ν ζ H σ 1 , σ m , c , η , μ 1 , μ m ζ H σ 1 , σ m , c , η , μ 1 , μ m ζ 1 R e ν 4 l + 1 η + η 2 8 l l + 1 2 3 l + 2 η i = 1 m μ i + 2 ξ 2 R e ν + 1 2 R e ν + 1 / 2 R e ν i = 1 m μ i .
Using (25) and Lemma 1, we can obtain the required result. □
Our third main result provided sufficient univalence conditions for the integral operators of the type in (14) when the function g i A   ( i = 1 , , n ) and the generalized Bessel function ψ σ i , c , η involved some parameters. We used Lemma 3, the univalence criteria for integral operators due to Pascu [51] and the Kudriasov conditions for the univalence of the normalized analytic functions.
Theorem 3.
Let σ 1 , σ m , c R , μ i , δ i η C and l i > η 2 / 4 where l i = σ i + c + 1 / 2 , i = 1 , , m . Let ψ σ i , c , η : E C be given as:
ψ σ i , c , η ζ = 2 σ i Γ σ i + c + 1 2 ζ 1 σ i / 2 ψ σ i , c , η ζ .
Suppose l = min l 1 , l 2 , l m and when g i A with:
g i ζ g i ζ ξ , ζ E
where ξ 3.05 , such that:
1 R e ν 8 l + 1 η 32 l l + 1 8 2 l + 1 η + η 2 i = 1 m μ i + 2 ξ 1 + 2 R e ν 1 + 2 R e ν / 2 R e ν i = 1 m δ i < 1 .
Then, for β C and R e ( β ) R e ( ν ) > 0 , the function I σ 1 , σ m , c , η , μ 1 , μ m , δ , β : E C that is given by (14) is in S .
Proof. 
Consider the function:
I σ 1 , σ m , c , η , μ 1 , μ m , δ ζ = ζ 0 i = 1 m ψ σ i , c , η t t μ i g i t δ i d t .
Clearly, I σ 1 , σ m , c , η , μ 1 , μ m , δ A , i.e., I σ 1 , σ m , c , η , μ 1 , μ m , δ ( 0 ) = I σ 1 , σ m , c , η , μ 1 , μ m , δ 1 = 0 . On the other hand, it is easy to see that:
ζ I σ 1 , σ m , c , η , μ 1 , μ m ζ I σ 1 , σ m , c , η , μ 1 , μ m ζ = i = 1 m μ i ψ σ i , c , η ( ζ ) ψ σ i , c , η ( ζ ) 1 + i = 1 m δ i ζ g i ( ζ ) g i ( ζ ) .
This implies that:
1 ζ 2 R e ν R e ν ζ I σ 1 , σ m , c , η , μ 1 , μ m ζ I σ 1 , σ m , c , η , μ 1 , μ m ζ 1 ζ 2 R e ν R e ν i = 1 m μ i ψ σ i , c , η ( ζ ) ψ σ i , c , η ( ζ ) 1 + ζ δ i g i ( ζ ) g i ( ζ ) .
Hence:
1 ζ 2 R e ν R e ν ζ I σ 1 , σ m , c , η , μ 1 , μ m ζ I σ 1 , σ m , c , η , μ 1 , μ m ζ 1 ζ 2 R e ν R e ν i = 1 m μ i ψ σ i , c , η ( ζ ) ψ σ i , c , η ( ζ ) 1 + 1 ζ 2 R e ν R e ν ζ i = 1 m δ i g i ( ζ ) g i ( ζ ) .
Using the Lemmas 2 and 3 (i), we obtain:
1 ζ 2 R e ν R e ν ζ I σ 1 , σ m , c , η , μ 1 , μ m ζ I σ 1 , σ m , c , η , μ 1 , μ m ζ 1 ζ 2 R e ν R e ν i = 1 m μ i 8 l i + 1 η 32 l i 2 l i + 1 8 2 l i + 1 η + η 2 + 1 ζ 2 R e ν R e ν ζ ξ i = 1 m δ i .
We also see that:
max x 0 , 1 h x = 2 2 a + 1 2 a + 1 / 2 a ,
and
8 l i + 1 η 32 l i 2 l i + 1 8 2 l i + 1 η + η 2 8 l + 1 η 32 l l + 1 8 2 l + 1 η + η 2 .
Therefore:
1 ζ 2 R e ν R e ν ζ I σ 1 , σ m , c , η , μ 1 , μ m ζ I σ 1 , σ m , c , η , μ 1 , μ m ζ 1 R e ν 8 l + 1 η 32 l l + 1 8 2 l + 1 η + η 2 i = 1 m μ i + 2 ξ 2 R e ν + 1 2 R e ν + 1 / 2 R e ν i = 1 m δ i .
Using (27) and (30), we obtain:
1 ζ 2 R e ν R e ν ζ I σ 1 , σ m , c , η , μ 1 , μ m ζ I σ 1 , σ m , c , η , μ 1 , μ m ζ < 1 .
Now, from (28), it is clear that I σ 1 , σ m , c , η , μ 1 , μ m , δ ζ = i = 1 m ψ σ i , c , η t t μ i g i t δ i . The result can be obtained using Lemma 1. □

3. Applications

Now, we provide some applications for our results in terms of the univalence of integral operators that involve Bessel, modified Bessel and spherical Bessel functions. We also present particular examples for trignometric and hyperbolic functions.

3.1. Bessel Functions

By choosing c = 1 and η = 1 in (2) and (3), we obtain the Bessel functions of the first kind and of order σ that are defined by (4). Further, we have J 3 / 2 ζ = 3 sin ζ ζ 3 cos ζ , J 1 / 2 ζ = ζ sin ζ and J 1 / 2 ζ = ζ cos ζ .
Corollary 1.
Let J σ : E C be introduced as J σ ζ = 2 σ Γ σ + 1 ζ 1 σ / 2 J σ ζ . Let σ 1 , , σ m > 1.25 . Additionally consider that σ = min σ 1 , , σ m and μ 1 , μ m , as in Theorem 1, and when g i A with:
g i ζ g i ζ ξ , ζ E .
These numbers satisfy the relations:
1 R e ν 5 + σ + 2 4 σ 2 + 10 σ + 41 / 8 i = 1 m μ i < 1 ,
then, when 0 < R e ν < 1 and for R e ν 1 :
1 R e ν 1 + σ + 2 4 σ 2 + 10 σ + 41 / 8 + 4 i = 1 m μ i < 1 .
Then, for β C and R e ( β ) R e ( ν ) > 0 , the function G σ 1 , σ m , μ 1 , μ m , β : E C that is given by:
G σ 1 , σ m , μ 1 , μ m , β ζ = β ζ 0 t β 1 i = 1 m J σ i ζ t g i t μ i d t 1 / β ,
is in S .
1. In particular, for:
μ R e ν 960 233 < 1 ,
when 0 < R e ν < 1 and for R e ν 1 :
1 R e ν 261 233 + 4 μ < 1 .
Then, for β C and R e ( β ) R e ( ν ) > 0 , the function G 3 / 2 , μ , β : E C that is given by:
G 3 / 2 , μ , β ζ = β ζ 0 t β 1 3 sin t 3 t cos t t t μ d t 1 / β
is in S .
2. For:
μ R e ν 376 89 < 1 ,
when 0 < R e ν < 1 and for R e ν 1 :
1 R e ν 109 89 + 4 μ < 1 .
Then, for β C and R e ( β ) R e ( ν ) > 0 , the function G 1 / 2 , μ , β : E C that is given by:
G 1 / 2 , μ , β ζ = β ζ 0 t β 1 t sin t t μ d t 1 / β
is in S .
3. For:
μ R e ν 16 3 < 1 ,
when 0 < R e ν < 1 and for R e ν 1 :
1 R e ν 7 3 + 4 μ < 1 .
Then, for β C and R e ( β ) R e ( ν ) > 0 , the function G 1 / 2 , μ , β : E C that is given by:
G 1 / 2 , μ , β ζ = β ζ 0 t β 1 t cos t t μ d t 1 / β
is in S .
Corollary 2.
Consider J σ : E C to be defined as J σ ζ = 2 σ Γ σ + 1 ζ 1 σ / 2 J σ ζ . Let σ 1 , , σ m > 1.25 . Additionally consider that σ = min σ 1 , , σ m and μ 1 , μ m , as in Theorem 2, and when g i A with:
g i ζ g i ζ ξ , ζ E .
These numbers satisfy the relations:
1 R e ν 4 σ + 9 8 σ 2 + 18 σ + 6 + 2 ξ 2 R e ν + 1 2 R e ν + 1 / 2 R e ν i = 1 m μ i < 1 .
Then, for β C and R e ( β ) R e ( ν ) > 0 , the function H σ 1 , σ m , μ 1 , μ m , β : E C that is given by:
H σ 1 , σ m , μ 1 , μ m , β ζ = β ζ 0 t β 1 i = 1 m J σ i t g i t μ i d t 1 / β ,
is in S .
1. In particular, when 5 μ 17 R e ν < 1 , then, for β C and R e ( β ) R e ( ν ) > 0 , the function H 3 / 2 , μ , β : E C that is given by:
H 3 / 2 , μ , β ζ = β ζ 0 t β 1 3 t t 1 sin t 3 t t cos t 2 t 2 t μ d t 1 / β
is in S .
2. When 11 μ 17 R e ν < 1 , then, for β C and R e ( β ) R e ( ν ) > 0 , the function H 1 / 2 , μ , β : E C that is given by:
H 1 / 2 , μ , β ζ = β ζ 0 t β 1 sin t 2 t cos t 2 μ d t 1 / β
is in S .
Corollary 3.
Consider J σ : E C to be defined as J σ ζ = 2 σ Γ σ + 1 ζ 1 σ / 2 J σ ζ . Let σ 1 , , σ m > 1.25 . Additionally consider that σ = min σ 1 , , σ m and μ 1 , μ m , δ 1 , δ m , as in Theorem 3, and when g i A with:
g i ζ g i ζ ξ , ζ E .
These numbers satisfy the relations:
1 R e ν σ + 2 4 σ 2 + 10 σ + 41 / 8 i = 1 m μ i + 2 ξ 2 R e ν + 1 2 R e ν + 1 / 2 R e ν i = 1 m δ i < 1 .
Then, for β C and R e ( β ) R e ( ν ) > 0 , the function I σ 1 , σ m , μ 1 , μ m , δ , β : E C that is given by:
I σ 1 , σ m , c , η , μ 1 , μ m , δ , β ζ = β ζ 0 t β 1 i = 1 m J σ i t t μ i g i t δ i d t 1 / β ,
is in S .
1. In particular, when g A with:
g ζ g ζ ξ , ζ E .
4 3 R e ν μ + 2 δ ξ 2 R e ν + 1 2 R e ν + 1 / 2 R e ν < 1 .
Then, for β C and R e ( β ) R e ( ν ) > 0 , the function I 1 / 2 , μ , δ , β : E C that is given by:
I 1 / 2 , μ , δ , β ζ = β ζ 0 t β 1 ζ cos ζ t μ g t δ d t 1 / β
is in S .

3.2. Modified Bessel Functions

By choosing c = 1 and η = 1 in (2) and (3), we obtain the Modified Bessel functions that are given by (5). We also see that I 3 / 2 ζ = 3 cosh ζ 3 sinh ζ ζ , I 1 / 2 ζ = ζ sinh ζ and I 1 / 2 ζ = ζ cosh ζ .
Corollary 4.
Let I σ : E C be given by I σ ζ = 2 σ Γ σ + 1 ζ 1 σ / 2 I σ ζ . Let σ 1 , , σ m > 1.25 . Additionally consider that σ = min σ 1 , , σ m and μ 1 , μ m , as in Theorem 1, and when g i A such that:
g i ζ g i ζ ξ , ζ E .
Additionally:
1 R e ν 5 + σ + 2 4 σ 2 + 10 σ + 41 / 8 i = 1 m μ i < 1 ,
when 0 < R e ν < 1 and:
1 R e ν 1 + σ + 2 4 σ 2 + 10 σ + 41 / 8 + 4 i = 1 m μ i < 1
for R e ν 1 . Then, for β C and R e ( β ) R e ( ν ) > 0 , the function G σ 1 , σ m , μ 1 , μ m , β : E C that is given by:
G σ 1 , σ m , μ 1 , μ m , β ζ = β ζ 0 t β 1 i = 1 m I σ i t g i t μ i d t 1 / β ,
is in S .
1. In particular, for:
μ R e ν 960 233 < 1 ,
where 0 < R e ν < 1 and for R e ν 1 :
1 R e ν 261 233 + 4 μ < 1 .
Then, for β C and R e ( β ) R e ( ν ) > 0 , the function G 3 / 2 , μ , β : E C that is given by:
G 3 / 2 , μ , β ζ = β ζ 0 t β 1 3 cosh t 3 sinh t t μ d t 1 / β
is in S .
Corollary 5.
Let I σ : E C be given as I σ ζ = 2 σ Γ σ + 1 ζ 1 σ / 2 I σ ζ . Let σ 1 , , σ m > 1.25 . Additionally consider that σ = min σ 1 , , σ m and μ 1 , μ m , as in Theorem 2, and when g i A such that:
g i ζ g i ζ ξ , ζ E .
Additionally:
1 R e ν 4 σ + 9 8 σ 2 + 18 σ + 6 + 2 ξ 2 R e ν + 1 2 R e ν + 1 / 2 R e ν i = 1 m μ i < 1 .
Then, for β C and R e ( β ) R e ( ν ) > 0 , the function H σ 1 , σ m , μ 1 , μ m , β : E C that is given by:
H σ 1 , σ m , μ 1 , μ m , β ζ = β ζ 0 t β 1 i = 1 m I σ i t g i t μ i d t 1 / β ,
is in S .
1. In particular, when 11 17 R e ν μ < 1 , then, for β C and R e ( β ) R e ( ν ) > 0 , the function H 1 / 2 , μ , β : E C that is given by:
H 1 / 2 , μ , β ζ = β ζ 0 t β 1 sinh t 2 t + cosh t 2 μ d t 1 / β
is in S .
Corollary 6.
Consider J σ : E C to be defined as J σ ζ = 2 σ Γ σ + 1 ζ 1 σ / 2 J σ ζ . Let σ 1 , , σ m > 1.25 . Additionally consider that σ = min σ 1 , , σ m and μ 1 , μ m , δ 1 , δ m , as in Theorem 3, and when g i A with:
g i ζ g i ζ ξ , ζ E .
Let:
1 R e ν σ + 2 4 σ 2 + 10 σ + 41 / 8 i = 1 m μ i + 2 ξ 1 + 2 R e ν 1 + 2 R e ν / 2 R e ν i = 1 m δ i < 1 .
Then, for β C and R e ( β ) R e ( ν ) > 0 , the function I σ 1 , σ m , μ 1 , μ m , δ 1 , δ m , β : E C that is given by:
I σ 1 , σ m , μ 1 , μ m , δ 1 , δ m , β ζ = β ζ 0 t β 1 i = 1 m J σ i t t μ i g i t δ i d t 1 / β
is in S .
1. In particular, when 4 μ 3 R e ν < 1 , then, for β C and R e ( β ) R e ( ν ) > 0 , the function I 1 / 2 , μ , β : E C that is given by:
I 1 / 2 , μ , β ζ = β ζ 0 t β 1 cosh t 2 t + sinh t 2 μ d t 1 / β
is in S .

3.3. Spherical Bessel Functions

By choosing c = 2 and η = 1 in (2) and (3), we obtain the function 2 j σ ζ / π , where j σ is the spherical Bessel function that is given by (6).
Corollary 7.
Let K σ : E C be introduced as K σ ζ = π 1 2 2 σ Γ σ + 3 / 2 ζ 1 σ / 2 j σ ζ . Let σ 1 , , σ m > 2.25 . Additionally consider that σ = min σ 1 , , σ m and μ 1 , μ m , as in Theorem 1, and when g i A such that:
g i ζ g i ζ ξ , ζ E .
Additionally:
1 R e ν 5 + 2 σ + 5 8 σ 2 + 28 σ + 89 / 4 i = 1 m μ i < 1 ,
when 0 < R e ν < 1 and:
1 R e ν 1 + 2 σ + 5 8 σ 2 + 28 σ + 89 / 4 + 4 i = 1 m μ i < 1 ,
for R e ν 1 . Then, for β C and R e ( β ) R e ( ν ) > 0 , the function G σ 1 , σ m , μ 1 , μ m , β : E C that is given by:
G σ 1 , σ m , μ 1 , μ m , β ζ = β ζ 0 t β 1 i = 1 m K σ i t g i t μ i d t 1 / β
is in S .
Corollary 8.
Let K σ : E C be introduced as K σ ζ = π 1 2 2 σ Γ σ + 3 / 2 ζ 1 σ / 2 j σ ζ . Let σ 1 , , σ m > 2.25 . Additionally, σ = min σ 1 , , σ m and μ 1 , μ m are as in Theorem 2 and when g i A with:
g i ζ g i ζ ξ , ζ E .
Let:
1 R e ν 4 σ + 11 8 σ 2 + 26 σ + 17 + 2 ξ 1 + 2 R e ν 1 + 2 R e ν / 2 R e ν i = 1 m μ i < 1
Then, for β C and R e ( β ) R e ( ν ) > 0 , the function H σ 1 , σ m , μ 1 , μ m , β : E C that is given by:
H σ 1 , σ m , μ 1 , μ m , β ζ = β ζ 0 t β 1 i = 1 m K σ i t g i t μ i d t 1 / β
is in S .
Corollary 9.
Consider K σ : E C to be defined as K σ ζ = π 1 2 2 σ Γ σ + 3 / 2 ζ 1 σ / 2 j σ ζ . Let σ 1 , , σ m > 2.25 . Additionally consider that σ = min σ 1 , , σ m and μ 1 , μ m , δ 1 , δ m , as in Theorem 3, and when g i A with:
g i ζ g i ζ ξ , ζ E .
These numbers satisfy the relations:
1 R e ν 2 σ + 5 8 σ 2 + 28 σ + 89 / 4 i = 1 m μ i + 2 ξ 1 + 2 R e ν 1 + 2 R e ν / 2 R e ν i = 1 m δ i < 1 .
Then, for β C and R e ( β ) R e ( ν ) > 0 , the function I σ 1 , σ m , μ 1 , μ m , δ 1 , δ m , β : E C that is given by:
I σ 1 , σ m , μ 1 , μ m , δ 1 , δ m , β ζ = β ζ 0 t β 1 i = 1 m K σ i t t μ i g i t δ i d t 1 / β
is in S .
The sharp bounds of the the above results can be obtained using the following results. These results were due to [39].
Lemma 4.
When σ , c R and η C are such that l > max 0 , η / 8 1 / , then, the function ψ σ , c , η : E C that is given by (6) satisfies:
ζ ψ σ , c , η ζ ψ σ , c , η ζ 1 8 l + 1 η + η 2 32 l l + 1 4 2 l + 3 η , ζ E ,
and
ζ ψ σ , c , η ζ ψ σ , c , η ζ η 2 64 l + 1 2 8 l + 2 η + 128 l + 1 l + 2 8 l + 2 + η η 2 2 l l + 1 8 l + 1 η 16 l + 1 2 l η 4 l + η η .
Using the inequalities l m > l l + λ 0 m 1 and m ! > 1 + λ 0 m 1 for l > 0 and m > 3 . Here, λ 0 1.302775637 is the largest solution for the equation λ 2 + λ 3 = 0 . These results were proved in [20]. By making use of these inequalities, Deniz [39] discussed the following results. Similar results can be proved using the following results:
Lemma 5.
When σ , c R and η C are such that l = σ i + c + 1 / 2 > max { 0 , η / 4 1 + λ 0 λ 0 } , then, the function ψ σ , c , η : E C that is given by (6) satisfies:
ζ ψ σ , c , η ζ ψ σ , c , η ζ 1 < η 1 + Φ l + 1 4 l 1 + Φ l , ζ E ,
and
ζ ψ σ , c , η ζ ψ σ , c , η ζ η / 2 l η / 8 l + 1 1 + Φ l + 2 + 1 + Φ l + 1 η / 4 l 1 Φ l + 1 + 1 Φ l ,
where:
Φ l = η 2 16 1 + λ 0 l l + λ 0 + η 2 32 l l + 1 + η l 1 + λ 0 l + λ 0 4 1 + λ 0 l + λ 0 + η .

4. Conclusions

In this paper, we studied the univalence of certain integral operators using generalized Bessel functions. We used the Kudriasov conditions for functions to be univalent in order to derive the univalence criteria for these integral operators. For particular parameters, we obtained the univalence of the integral operators that are defined by Bessel, modified Bessel and spherical Bessel functions.

Author Contributions

Conceptualization, M.R., M.U.D. and Q.X.; methodology, M.R., M.U.D. and Q.X.; software, S.N.M.; validation, S.N.M. and M.R.; formal analysis, M.R.; investigation, M.R., M.U.D. and Q.X.; resources, S.N.M. and L.-I.C.; data curation, M.R.; writing—original draft preparation, S.N.M. and M.R.; writing—review and editing, S.N.M.; visualization, M.U.D. and L.-I.C.; supervision, M.R.; project administration, M.R., L.-I.C. and S.N.M.; funding acquisition, M.R. and S.N.M. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Acknowledgments

The authors acknowledge the heads of their institutes for their support and for providing the research facilities.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Watson, G.N. A Treatise on the Theory of Bessel Functions, 2nd ed.; Cambridge University Press: Cambridge/London, UK; New York, NY, USA, 1944. [Google Scholar]
  2. Bassuony, M.A.; Abd–Elhameed, W.M.; Doha, E.H.; Youssri, Y.H. A legendre-laguerre-galerkin method for uniform euler-Bernoulli beam equation. East Asian J. Appl. Math. 2020, 8, 280–295. [Google Scholar] [CrossRef] [Green Version]
  3. Doha, E.H.; Youssri, Y.H. On the connection coefficients and recurrence relations arising from expansions in series of modified generalized Laguerre polynomials: Applications on a semi-infinite domain. Nonlinear Eng. 2019, 8, 318–327. [Google Scholar] [CrossRef]
  4. Gorenflo, R.; Kilbas, A.A.; Mainardi, F.; Rogosin, S.V. Mittag–Leffler Functions, Related Topics and Applications; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
  5. Paneva-Konovska, J. Convergence of series in three parametric Mittag-Leffler functions. Math. Slovaca 2014, 64, 73–84. [Google Scholar] [CrossRef]
  6. Shishkina, E.; Sitnik, S. Transmutations, Singular and Fractional Differential Equations with Applications to Mathematical Physics; Mathematics in Science and Engineering; Academic Press (Elsevier Science Publishers): New York, NY, USA; London, UK; Toronto, ON, Canada, 2020. [Google Scholar]
  7. Baricz, Á. Generalized Bessel Functions of the First Kind; Lecture Notes in Mathematics; Springer: Berlin, Germany, 2010; Volume 1994. [Google Scholar]
  8. Bansal, D.; Prajapat, J.K. Certain geometric properties of the Mittag–Leffler functions. Complex Var. Elliptic Equ. 2016, 61, 338–350. [Google Scholar] [CrossRef]
  9. Noreen, S.; Raza, M.; Malik, S.N. Certain geometric properties of Mittag–Leffler functions. J. Inequal. Appl. 2019, 2019, 94. [Google Scholar] [CrossRef] [Green Version]
  10. Srivastava, H.M.; Kumar, A.; Das, S.; Mehrez, K. Geometric properties of a certain class of Mittag–Leffler-type functions. Fractal Fract. 2020, 6, 54. [Google Scholar] [CrossRef]
  11. Baricz, Á.; Deniz, E.; Yagmur, N. Close-to-convexity of normalized Dini functions. Math. Nachr. 2016, 289, 1721–1726. [Google Scholar] [CrossRef] [Green Version]
  12. Din, M.U.; Raza, M.; Hussain, S.; Darus, M. Certain geometric properties of generalized Dini Functions. J. Funct. Spaces 2018, 2018, 2684023. [Google Scholar] [CrossRef]
  13. Khan, B.; Khan, S.; Ro, J.-S.; Araci, S.; Khan, N.; Khan, N. Inclusion Relations for Dini Functions Involving Certain Conic Domains. Fractal Fract. 2022, 6, 118. [Google Scholar] [CrossRef]
  14. Ponnusamy, S.; Vuorinen, M. Univalence and convexity properties for Gaussian hypergeometric functions. Rocky Mt. J. Math. 2001, 31, 327–353. [Google Scholar] [CrossRef]
  15. Ponnusamy, S.; Vuorinen, M. Starlikeness of the Gaussian hypergeometric functions. Complex Var. Elliptic Equ. 2010, 55, 173–184. [Google Scholar]
  16. Orhan, H.; Yagmur, N. Geometric Properties of Generalized Struve Functions. Ann. Alexandru Ioan Cuza Univ. Math. 2014. [Google Scholar] [CrossRef] [Green Version]
  17. Raza, M.; Yagmur, N. Some properties of a class of analytic functions defined by generalized Struve functions. Turkish J. Math. 2015, 39, 931–944. [Google Scholar] [CrossRef]
  18. Prajapat, J. Certain geometric properties of the Wright function. Integral Transform. Spec. Funct. 2015, 26, 203–212. [Google Scholar] [CrossRef]
  19. Raza, M.; Din, M.U.; Malik, S.N. Certain geometric properties of normalized Wright functions. J. Funct. Spaces 2016, 2016, 1896154. [Google Scholar] [CrossRef] [Green Version]
  20. Baricz, Á.; Ponnusamy, S. Starlikeness and convexity of generalized Bessel functions. Integral Transforms Spec. Funct. 2010, 21, 641–653. [Google Scholar] [CrossRef]
  21. Deniz, E. Convexity of integral operators involving generalized Bessel functions. Integral Transforms Spec. Funct. 2013, 24, 201–216. [Google Scholar] [CrossRef]
  22. Baricz, Á. Functional inequalities involving special functions. J. Math. Anal. Appl. 2006, 319, 450–459. [Google Scholar] [CrossRef] [Green Version]
  23. Baricz, Á. Functional inequalities involving special functions II. J. Math. Anal. Appl. 2007, 327, 1202–1213. [Google Scholar] [CrossRef] [Green Version]
  24. Baricz, Á. Geometric properties of generalized Bessel functions. Publ. Math. Debr. 2008, 73, 155–178. [Google Scholar]
  25. Baricz, Á. Some inequalities involving generalized Bessel functions. Math. Inequal. Appl. 2007, 10, 827–842. [Google Scholar] [CrossRef]
  26. Selinger, V. Geometric properties of normalized Bessel functions. Pure Math. Appl. 1995, 6, 273–277. [Google Scholar]
  27. Szász, R. About the starlikeness of Bessel functions. Integral Transforms Spec. Funct. 2014, 25, 750–755. [Google Scholar] [CrossRef]
  28. Szász, R.; Kupán, P. About the univalence of the Bessel functions. Stud. Univ. Babes-Bolyai Math. 2009, 54, 127–132. [Google Scholar]
  29. Pescar, V.; Breaz, D. The Univalence of Integral Operators; Academic Publishing House: Sofia, Bulgaria, 2008. [Google Scholar]
  30. Breaz, D.; Breaz, N. Two integral operator. Stud. Univ. Babes-Bolyai Math. Clunj-Napoca 2002, 3, 13–21. [Google Scholar]
  31. Breaz, D.; Guney, H.Ö. The integral operator on the classes S a * (b) and Cα(b). J. Math. Ineq. 2008, 2, 97–100. [Google Scholar] [CrossRef] [Green Version]
  32. Breaz, D.; Owa, S.; Breaz, N. A new integral univalent operator. Acta Univ. Apulensis Math. Inform. 2008, 16, 11–16. [Google Scholar]
  33. Pescar, V. New univalence criteria for some integral operators. Stud. Univ. Babes-Bolyai Math. 2014, 59, 167–176. [Google Scholar]
  34. Pescar, V.; Breaz, N. Kudriasov Type Univalence Criteria for Some Integral Operators. Abstract Appl. Anal. 2013, 2013, 721932. [Google Scholar] [CrossRef]
  35. Baricz, Á.; Frasin, B.A. Univalence of integral operators involving Bessel functions. App. Math. Lett. 2010, 23, 371–376. [Google Scholar] [CrossRef] [Green Version]
  36. Frasin, B.A. Sufficient conditions for integral operator defined by Bessel functions. J. Math. Ineq. 2010, 4, 301–306. [Google Scholar] [CrossRef] [Green Version]
  37. Ularu, N. The univalence of some integral operators using the Bessel functions. Math. Vasnik 2013, 65, 547–554. [Google Scholar]
  38. Arif, M.; Raza, M. Some properties of an integral operator defined by Bessel functions. Acta Univ. Apulensis 2011, 26, 69–74. [Google Scholar]
  39. Deniz, E.; Orhan, H.; Srivastava, H.M. Some sufficient conditions for univalence of certain families of integral operators involving generalized Bessel functions. Taiwan. J. Math. 2011, 15, 883–917. [Google Scholar]
  40. Srivastava, H.M.; Frasin, B.A.; Pescar, V. Univalence of integral operators involving Mittag–Leffler functions. Appl. Math. Inf. Sci. 2017, 11, 635–641. [Google Scholar] [CrossRef]
  41. Din, M.; Srivastava, H.M.; Raza, M. Univalence of integral operators involving generalized Struve functions. Hacet. J. Math. Stat. 2018, 47, 821–833. [Google Scholar]
  42. Park, J.H.; Srivastava, H.M.; Cho, N.E. Univalence and convexity conditions for certain integral operators associated with the Lommel function of the first kind. AIMS Math. 2021, 6, 11380–11402. [Google Scholar] [CrossRef]
  43. Din, M.U.; Raza, M.; Deniz, E. Univalence criteria for general integral operators involving normalized Dini functions. Filomat 2020, 34, 2203–2216. [Google Scholar] [CrossRef]
  44. Raza, M.; Malik, S.N. Properties of multivalent functions associated with integral operator defined by hypergeometric function. J. Inequ. Appl. 2013, 2013, 458. [Google Scholar] [CrossRef] [Green Version]
  45. Mahmood, S.; Mahroz, S.; Rafiq, A.; Malik, S.N.; Raza, M. Convexity of certain integral operators defined by Struve functions. J. Funct. Spaces 2018, 2018, 6327132. [Google Scholar] [CrossRef] [Green Version]
  46. Mahmood, S.; Srivastava, H.M.; Malik, S.N.; Raza, M.; Shahzadi, N.; Zainab, S. A certain family of integral operators associated with the Struve Functions. Symmetry 2019, 11, 463. [Google Scholar] [CrossRef] [Green Version]
  47. Malik, S.N.; Shahzadi, N.; Raza, M.; Ul Haq, W.; Zainab, S. On starlikeness and uniform convexity of certain integral operators defined by Struve functions. Maejo Int. J. Sci. Technol. 2019, 13, 82–95. [Google Scholar]
  48. Noreen, S.; Din, M.; Raza, M. Convexity of integral operators involving Dini functions. Int. J. Anal. Appl. 2018, 16, 462–471. [Google Scholar]
  49. Khan, Q.; Arif, M.; Raza, M.; Srivastava, G.; Tang, H.; Rehman, S.U. Some applications of a new integral operator in q-analog for multivalent functions. Mathematics 2019, 7, 1178. [Google Scholar] [CrossRef] [Green Version]
  50. El-Deeb, S.M.; Bulboacă, T. Differential sandwich-type results for symmetric functions connected with a q-analog integral operator. Mathematics 2019, 7, 1185. [Google Scholar] [CrossRef] [Green Version]
  51. Pascu, N. An improvement of Becker’s univalence criterion. In Proceedings of the Commemorative Session: Simion Stoilow (Brasov 1987); University of Brasov: Brasov, Romania, 1987; pp. 43–48. [Google Scholar]
  52. Kudryashov, N.S. Onekotorih priznakah odnolistnosti analiticeschih funktii. Mat. Zametki 1973, 13, 359–366. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Raza, M.; Malik, S.N.; Xin, Q.; Din, M.U.; Cotîrlă, L.-I. On Kudriasov Conditions for Univalence of Integral Operators Defined by Generalized Bessel Functions. Mathematics 2022, 10, 1361. https://doi.org/10.3390/math10091361

AMA Style

Raza M, Malik SN, Xin Q, Din MU, Cotîrlă L-I. On Kudriasov Conditions for Univalence of Integral Operators Defined by Generalized Bessel Functions. Mathematics. 2022; 10(9):1361. https://doi.org/10.3390/math10091361

Chicago/Turabian Style

Raza, Mohsan, Sarfraz Nawaz Malik, Qin Xin, Muhey U. Din, and Luminiţa-Ioana Cotîrlă. 2022. "On Kudriasov Conditions for Univalence of Integral Operators Defined by Generalized Bessel Functions" Mathematics 10, no. 9: 1361. https://doi.org/10.3390/math10091361

APA Style

Raza, M., Malik, S. N., Xin, Q., Din, M. U., & Cotîrlă, L. -I. (2022). On Kudriasov Conditions for Univalence of Integral Operators Defined by Generalized Bessel Functions. Mathematics, 10(9), 1361. https://doi.org/10.3390/math10091361

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop