Next Article in Journal
On Kudriasov Conditions for Univalence of Integral Operators Defined by Generalized Bessel Functions
Previous Article in Journal
Optimal Task Abort and Maintenance Policies Considering Time Redundancy
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

On the De Blasi Measure of Noncompactness and Solvability of a Delay Quadratic Functional Integro-Differential Equation

by
Ahmed M. A. El-Sayed
1,
Eman M. A. Hamdallah
1 and
Malak M. S. Ba-Ali
2,*
1
Faculty of Science, Alexandria University, Alexandria 21521, Egypt
2
Faculty of Science, Princess Nourah Bint Abdul Rahman University, Riyadh 11671, Saudi Arabia
*
Author to whom correspondence should be addressed.
Mathematics 2022, 10(9), 1362; https://doi.org/10.3390/math10091362
Submission received: 16 March 2022 / Revised: 16 April 2022 / Accepted: 18 April 2022 / Published: 19 April 2022

Abstract

:
Quadratic integro-differential equations have been discussed in many works, for instance. Some analytic results on the existence and the uniqueness of problem solutions to quadratic integro-differential equations have been investigated in different classes. Various techniques have been applied such as measure of noncompactness, Schauder’s fixed point theorem and Banach contraction mapping. Here, we shall investigate quadratic functional integro-differential equations with delay. To prove the existence of solutions of the quadratic integro-differential equations, we use the technique of De Blasi measure of noncompactness. Moreover, we study some uniqueness results and continuous dependence of the solution on the initial condition and on the delay function. Some examples are presented to verify our results.

1. Introduction

Quadratic integral equations have gained much attention [1,2,3,4] because of their application of the real world. The existence of solutions of those equations have been studied in different classes of function spaces (see [1,2,5,6,7,8,9,10,11,12,13,14,15,16,17] and the references therein). For the theoretical results concerning the existence of solutions, in the classes of continuous or integrable functions, you can see Banaś [18,19,20,21].
Each of these monographs contains some existence results, and the main objective is to present a technique to obtain some results concerning various quadratic integral equations.
In this paper, we study the quadratic integro-differential equations by considering the initial value problem of the implicit quadratic integro-differential equation with delay.
d x d t = f t , d x d t . 0 ϕ ( t ) g ( s , x ( s ) ) d s , a . e . t ( 0 , 1 ]
satisfying an initial condition
x ( 0 ) = x 0 .
We present a new quadratic integro-differential, where the derivative of the function x is multiplied by an integral term involving the function x.
Let d x d t = y ( t ) then we can deduce that
x ( t ) = x 0 + 0 t y ( s ) d s
and (1) can be written as
y ( t ) = f t , y ( t ) . 0 ϕ ( t ) g s , x 0 + 0 s y ( θ ) d θ d s .
The existence of non-decreasing solutions y L 1 [ 0 , 1 ] of (4) will be studied by the De Blasi measure of non-compactness. Additionally, we shall prove the continuous dependence of the solution of the Problems (1) and (2) on the delay function and on the functions g. Consequently, the existence of a solution x A C [ 0 , 1 ] of the Problems (1) and (2) will be studied.

2. Research Methods

Let I = [0, 1] and suppose that:
(i)
ϕ : I I , ϕ ( t ) t is continuous and increasing.
(ii)
f , g : I × R R + are Carathéodory functions, which are measurable in t I     x R and continuous in x R     t I , and there exist m i : I R , m i L 1 ( I ) , i = 1 , 2 and b i R + where
| f ( t , x ) |     | m 1 ( t ) |   +   b 1 | x |     m 1   +   b 1 | x | , m 1   =   0 1 | m 1 ( t ) | d t ;
| g ( t , x ) |     | m 2 ( t ) |   +   b 2 | x |     m 2   +   b 2 | x | , m 2   =   0 1 | m 2 ( t ) | d t .
Moreover, f is non-decreasing for every non-decreasing x, i.e., for almost all t 1 , t 2 I satisfying t 1     t 2 and for all x ( t 1 )     x ( t 2 ) implies f ( t 1 , x ( t 1 ) ) f ( t 2 , x ( t 2 ) ) .
(iii)
Let rα be a positive root of the following equation
b 1 b 2 r 2 + ( m 2 b 1 + b 1 b 2 | x 0 | 1 ) r + m 1 = 0 .
Now, the following lemma can be proved.
Lemma 1.
The Problems (1) and (2) is equivalent to the coupled system of integral Equations (3) and (4).
Proof. 
It is clear that the solution of the Problems (1) and (2) is given by the coupled system of integral Equations (3) and (4).
Conversely, let the solution y L 1 ( I ) of (4) exist, then from (3) and d d t x ( t ) , the solution xAC [0, 1] of the problems (1) and (2) will exist. □
Now, we have the following existences theorem.
Theorem 1.
Suppose the conditions (i)–(iii) hold. If b 1 m 2 + b 2 | x 0 | + b 2 r < 1 , then the Equation (4) has a solution y L 1 ( I ) , which is non-decreasing.
Proof. 
Let Qr be a closed ball containing all non-decreasing functions on I by
Q r = { y L 1 ( I ) : y r } , r = m 1 + m 2 b 1 r + b 1 b 2 | x 0 | r + b 1 b 2 r 2
and define the supper position operator F
F y ( t ) = f t , y ( t ) . 0 ϕ ( t ) g s , x 0 + 0 s y ( θ ) d θ d s , y Q r .
Now, let y Q r , then
| F y ( t ) | = | f ( t , y ( t ) . 0 ϕ ( t ) g ( s , x 0 + 0 s y ( θ ) d θ ) d s ) | | m 1 ( t ) | + b 1 | y ( t ) . 0 ϕ ( t ) g ( s , x 0 + 0 s y ( θ ) d θ ) d s | | m 1 ( t ) | + b 1 | y ( t ) | 0 ϕ ( t ) | m 2 ( s ) | d s + b 2 0 ϕ ( t ) | x 0 + 0 s y ( θ ) d θ | d s | m 1 ( t ) | + b 1 | y ( t ) | 0 ϕ ( t ) | m 2 ( s ) | d s + b 2 | x 0 | 0 ϕ ( t ) d s + b 2 0 ϕ ( t ) 0 s | y ( θ ) | d θ d s | m 1 ( t ) | + b 1 | y ( t ) | ( m 2 + b 2 | x 0 | + b 2 y )
and
0 1 | F y ( t ) | d t 0 1 | m 1 ( t ) | d t + b 1 ( m 2 + b 2 | x 0 | + b 2 r ) . 0 1 | y ( t ) | d t F y m 1 + b 1 r ( m 2 + b 2 | x 0 | + b 2 r ) m 1 + m 2 b 1 r + b 1 b 2 | x 0 | r + b 1 b 2 r 2 = r .
Now, let { y n } Q r , and y n y , then
F y n ( t ) = f t , y n ( t ) . 0 ϕ ( t ) g ( s , x 0 + 0 s y n ( θ ) d θ ) d s
and
lim n F y n ( t ) = lim n f t , y n ( t ) . 0 ϕ ( t ) g ( s , x 0 + 0 s y n ( θ ) d θ ) d s .
Applying Lebesgue dominated convergence Theorem [22], then from our assumptions we get
lim n F y n ( t ) = f t , lim n y n ( t ) . 0 ϕ ( t ) g ( s , x 0 + 0 s lim n y n ( θ ) d θ ) d s = f t , y ( t ) . 0 ϕ ( t ) g ( s , x 0 + 0 s y ( θ ) d θ ) d s = F y ( t ) .
i.e., F y n ( t ) F y ( t ) implies the operator F is continuous.
Taking Ω be a non empty subset of Qr. Let ϵ > 0 be fixed number and take a measurable set DI such that measure Dϵ. Then, for any y ∈ Ω,
F y L 1 ( D ) D | F y ( t ) | d t D | m 1 ( t ) | d t + b 1 ( m 2 + b 2 | x 0 | + b 2 r ) . D | y ( t ) | d t .
But
lim ϵ 0 { s u p D | m 1 ( t ) | d t : D I , m e a s D < ϵ } = 0 ,
then applying the De Blasi measure of noncompactness [23,24,25,26].
β ( X ) = lim ϵ 0 sup x X s u p D | x ( t ) | d t : D [ a , b ] , m e a s D ϵ ,
we obtain
β ( F y ( t ) ) 0 + b 1 β ( y ( t ) ) . ( m 2 + b 2 | x 0 | + b 2 r )
and
β ( F Ω ) b 1 β ( y ( t ) ) . ( m 2 + b 2 | x 0 | + b 2 r ) .
Then implies
χ ( F Ω ) b 1 ( m 2 + b 2 | x 0 | + b 2 r ) χ ( Ω ) ,
where χ is the Hausdorff measure of noncompactness [23,24,25,26], which is defined by
χ ( X ) = i n f r > 0 ; t h e r e   e x i s t   a   f i n i t e   s u b s e t   Y   o f   E   s u c h   t h a t X Y + B r .
Since b 1 ( m 2 + b 2 | x 0 | + b 2 r ) < 1 , then F is a contraction with regard to χ [26] and has a fixed point y Q r . Then, there exists a solution y L 1 ( I ) for (4). Hence, ∃ a solution xAC (I of the Problems (1) and (2). □

2.1. Uniqueness of the Solution

Now, assume that:
(ii)*
f , g : I × R R are measurable in t I x R and satisfy
| f ( t , x ) f ( t , y ) | b 1 | x y | , t I , x , y R .
| g ( t , x ) g ( t , y ) | b 2 | x y | , t I , x , y R .
Moreover, f is non-decreasing for every non-decreasing x, i.e., for almost all t 1 , t 2 I satisfying t 1 t 2 and for all x ( t 1 ) x ( t 2 ) implies f ( t 1 , x ( t 1 ) ) f ( t 2 , x ( t 2 ) ) .
From the assumption (ii)* we have
| f ( t , x ) | | f ( t , 0 ) | + b 1 | x |
and
| f ( t , x ) | m 1 + b 1 | x | , w h e r e m 1 = 0 1 | m 1 ( t ) | d t .
Additionally, we get
| g ( t , x ) | | g ( t , 0 ) | + b 2 | x |
and
| g ( t , x ) | m 2 + b 2 | x | , w h e r e m 2 = 0 1 | m 2 ( t ) | d t .
Remark 1.
The assumption (ii)* implies the assumptions (ii).
Theorem 2.
Assume that (i) and (ii)* are satisfied. Moreover,
2 b 1 b 2 r + m 2 b 1 + b 1 b 2 | x 0 | < 1 .
Then, there exists a unique solution of (1) and (2).
Proof. 
From Remark 1, the assumptions of Theorem 1 are satisfied and the solution of (4) exists. Let y 1 , y 2 be two solutions in Qr of the integral Equation (4), then
| y 2 ( t ) y 1 ( t ) | = | f ( t , y 2 ( t ) . 0 ϕ ( t ) g ( s , x 0 + 0 s y 2 ( θ ) d θ ) d s ) f ( t , y 1 ( t ) . 0 ϕ ( t ) g ( s , x 0 + 0 s y 1 ( θ ) d θ ) d s ) | b 1 | y 2 ( t ) . 0 ϕ ( t ) g ( s , x 0 + 0 s y 2 ( θ ) d θ ) d s y 1 ( t ) . 0 ϕ ( t ) g ( s , x 0 + 0 s y 1 ( θ ) d θ ) d s | b 1 | y 2 ( t ) . 0 ϕ ( t ) g ( s , x 0 + 0 s y 2 ( θ ) d θ ) d s y 2 ( t ) . 0 ϕ ( t ) g ( s , x 0 + 0 s y 1 ( θ ) d θ ) d s + y 2 ( t ) . 0 ϕ ( t ) g ( s , x 0 + 0 s y 1 ( θ ) d θ ) d s y 1 ( t ) . 0 ϕ ( t ) g ( s , x 0 + 0 s y 1 ( θ ) d θ ) d s | b 1 b 2 | y 2 ( t ) | . 0 ϕ ( t ) 0 s | y 2 ( θ ) y 1 ( θ ) | d θ d s + b 1 | y 2 ( t ) y 1 ( t ) | . ( m 2 + b 2 | x 0 | + b 2 y 1 ) .
Then,
0 1 | y 2 ( t ) y 1 ( t ) | d t b 1 b 2 y 2 y 1 0 1 | y 2 ( t ) | d t + b 1 ( m 2 + b 2 | x 0 | + b 2 r ) . 0 1 | y 2 ( t ) y 1 ( t ) | d t
and
y 2 y 1 b 1 b 2 y 2 y 1 r + ( m 2 b 1 + b 1 b 2 | x 0 | + b 1 b 2 r ) y 2 y 1 .
Hence,
y 2 y 1 1 2 b 1 b 2 r + m 2 b 1 + b 1 b 2 | x 0 | 0 ,
then y 1 = y 2 and the solution of (4) is unique. As a result, the uniqueness of the solution of (1) and (2) is proved. □

2.2. Continuous Dependence

Theorem 3.
Suppose the conditions of Theorem 2 hold, then the unique solution of the Problems (1) and (2) depends continuously on the parameterx0.
Proof. 
Given δ > 0 and | x 0 x 0 | δ and let x be the solution of (1) and (2) corresponding to initial value x 0 , then
| x ( t ) x ( t ) | = | x 0 + 0 t y ( s ) d s x 0 0 t y ( s ) d s | | x 0 x 0 | + 0 t | y ( s ) y ( s ) | δ + y y .
However,
| y ( t ) y ( t ) | = | f t , y ( t ) . 0 ϕ ( t ) g ( s , x 0 + 0 s y ( θ ) d θ ) d s f t , y ( t ) . 0 ϕ ( t ) g ( s , x 0 + 0 s y ( θ ) d θ ) d s | b 1 | y ( t ) | . 0 ϕ ( t ) g ( s , x 0 + 0 s | y ( θ ) | d θ ) | y ( t ) | . 0 ϕ ( t ) g ( s , x 0 + 0 s | y ( θ ) | d θ b 1 ( | y ( t ) | . 0 ϕ ( t ) g ( s , x 0 + 0 s | y ( θ ) | d θ ) | y ( t ) | . 0 ϕ ( t ) g ( s , x 0 + 0 s | y ( θ ) | d θ ) + | y ( t ) | . 0 ϕ ( t ) g ( s , x 0 + 0 s | y ( θ ) | d θ ) | y ( t ) | . 0 ϕ ( t ) g ( s , x 0 + 0 s | y ( θ ) | d θ ) b 1 b 2 | y ( t ) | ( 0 ϕ ( t ) | x 0 x 0 | d s + 0 ϕ ( t ) 0 s | y ( θ ) y ( θ ) | d θ ) + b 1 | y ( t ) y ( t ) | . 0 ϕ ( t ) ( m 2 ( s ) + b 2 | x 0 + y | ) d s b 1 b 2 | y ( t ) | ( δ + y y ) + b 1 | y ( t ) y ( t ) | ( m 2 + b 2 | x 0 | + b 2 r ) .
Then,
0 1 | y ( t ) y ( t ) | d t b 1 b 2 ( δ + y y ) . 0 1 | y ( t ) | d t + b 1 ( m 2 + b 2 | x 0 | + b 2 r ) . 0 1 | y ( t ) y ( t ) | d t
and
y y b 1 b 2 r δ + b 1 b 2 r y y + ( m 2 b 1 + b 1 b 2 | x 0 | + b 1 b 2 r ) y y .
Hence,
y y 1 ( 2 b 1 b 2 r + m 2 b 1 + b 1 b 2 | x 0 | ) b 1 b 2 r δ ,
then
y y b 1 b 2 r δ 1 2 b 1 b 2 r + m 2 b 1 + b 1 b 2 | x 0 | = ϵ 1
and
x x c δ + ϵ 1 = ϵ .
Theorem 4.
Suppose that the conditions of Theorem 2 hold, then the unique solution of the problem (1) and (2) depends continuously on g.
Proof. 
Given δ > 0 and | g ( t , x ( t ) ) g ( t , x ( t ) ) | δ and let x be the solution of (1) and (2) corresponding to g ( t , x ( t ) ) , then
| x ( t ) x ( t ) | = | x 0 + 0 t y ( s ) d s x 0 0 t y ( s ) d s | | y ( t ) y ( t ) | y y .
However,
| y ( t ) y ( t ) | = | f t , y ( t ) . 0 ϕ ( t ) g ( s , x 0 + 0 s y ( θ ) d θ ) d s f t , y ( t ) . 0 ϕ ( t ) g ( s , x 0 + 0 s y ( θ ) d θ ) d s | b 1 | y ( t ) | . 0 ϕ ( t ) g ( s , x 0 + 0 s | y ( θ ) | d θ ) d s | y ( t ) | . 0 ϕ ( t ) g ( s , x 0 + 0 s | y ( θ ) | d θ ) d s b 1 ( | y ( t ) | . 0 ϕ ( t ) g ( s , x 0 + 0 s | y ( θ ) | d θ ) d s | y ( t ) | . 0 ϕ ( t ) g ( s , x 0 + 0 s | y ( θ ) | d θ ) d s + | y ( t ) | . 0 ϕ ( t ) g ( s , x 0 + 0 s | y ( θ ) | d θ ) d s | y ( t ) | . 0 ϕ ( t ) g ( s , x 0 + 0 s | y ( θ ) | d θ ) d s | b 1 | y ( t ) | . 0 ϕ ( t ) g ( s , x 0 + 0 s | y ( θ ) | d θ ) g ( s , x 0 + 0 s | y ( θ ) | d θ ) d s + | y ( t ) y ( t ) | . 0 ϕ ( t ) g ( s , x 0 + 0 s | y ( θ ) | d θ ) d s b 1 | y ( t ) | δ + b 1 | y ( t ) y ( t ) | . ( m 2 + b 2 | x 0 | + b 2 y )
Then,
0 1 | y ( t ) y ( t ) | d t b 1 δ 0 1 | y ( t ) | d t + b 1 ( m 2 + b 2 | x 0 | + b 2 r ) . 0 1 | y ( t ) y ( t ) | d t
and
y y b 1 δ r + b 1 ( m 2 + b 2 | x 0 | + b 2 r ) y y b 1 r δ + ( m 2 b 1 + b 1 b 2 | x 0 | + b 1 b 2 r ) y y + b 1 b 2 r y y .
Hence,
y y 1 ( 2 b 1 b 2 r + m 2 b 1 + b 1 b 2 | x 0 | ) b 1 r δ ,
then
y y b 1 r δ 1 2 b 1 b 2 r + m 2 b 1 + b 1 b 2 | x 0 | = ϵ
and
x x c ϵ
Theorem 5.
Suppose that the conditions of Theorem 2 hold, then the unique solution of the problems (1) and (2) depends continuously on the delay function ϕ.
Proof. 
Given δ > 0 and | ϕ ( t ) ϕ ( t ) | δ and let x satisfies
x ( t ) = x 0 + 0 t y ( s ) d s ,
then
| x ( t ) x ( t ) | = | x 0 + 0 t y ( s ) d s x 0 0 t y ( s ) d s | | y ( t ) y ( t ) | y y .
However,
| y ( t ) y ( t ) | = | f t , y ( t ) . 0 ϕ ( t ) g ( s , x 0 + 0 s y ( θ ) d θ ) d s f t , y ( t ) . 0 ϕ ( t ) g ( s , x 0 + 0 s y ( θ ) d θ ) d s | b 1 | y ( t ) . 0 ϕ ( t ) g ( s , x 0 + 0 s y ( θ ) d θ ) d s y ( t ) . 0 ϕ ( t ) g ( s , x 0 + 0 s y ( θ ) d θ ) d s | b 1 ( | y ( t ) | . 0 ϕ ( t ) g ( s , x 0 + 0 s | y ( θ ) | d θ ) d s | y ( t ) | . 0 ϕ ( t ) g ( s , x 0 + 0 s | y ( θ ) | d θ ) d s + | y ( t ) | . 0 ϕ ( t ) g ( s , x 0 + 0 s | y ( θ ) | d θ ) d s | y ( t ) | . 0 ϕ ( t ) g ( s , x 0 + 0 s | y ( θ ) | d θ ) ) b 1 ( | y ( t ) | . 0 ϕ ( t ) g ( s , x 0 + 0 s | y ( θ ) | d θ ) d s 0 ϕ ( t ) g ( s , x 0 + 0 s | y ( θ ) | d θ ) d s + | y ( t ) y ( t ) | . 0 ϕ ( t ) g ( s , x 0 + 0 s | y ( θ ) | d θ ) d s ) b 1 | y ( t ) | . ( 0 ϕ ( t ) g ( s , x 0 + 0 s | y ( θ ) | d θ ) d s 0 ϕ ( t ) g ( s , x 0 + 0 s | y ( θ ) | d θ ) d s + 0 ϕ ( t ) g ( s , x 0 + 0 s | y ( θ ) | d θ ) d s 0 ϕ ( t ) g ( s , x 0 + 0 s | y ( θ ) | d θ ) d s ) + b 1 | y ( t ) y ( t ) | . ( a + b 2 | x 0 | + b 2 y ) ) b 1 | y ( t ) | b 2 0 ϕ ( t ) 0 s | y ( θ ) y ( θ ) | d θ d s + ϕ ( t ) ϕ ( t ) g ( s , x 0 + 0 s | y ( θ ) | d θ ) d s + b 1 | y ( t ) y ( t ) | ( m 2 + b 2 | x 0 | + b 2 r ) b 1 | y ( t ) | b 2 y y + ( m 2 + b 2 | x 0 | + b 2 y ) | ϕ ϕ | + b 1 | y ( t ) y ( t ) | ( m 2 + b 2 | x 0 | + b 2 r ) b 1 b 2 y y | y ( t ) | + | y ( t ) | ( m 2 b 1 + b 1 b 2 | x 0 | + b 1 b 2 r ) δ + | y ( t ) y ( t ) | ( m 2 b 1 + b 1 b 2 | x 0 | + b 1 b 2 r ) .
Then
0 1 | y ( t ) y ( t ) | d t b 1 b 2 y y 0 1 | y ( t ) | d t + ( m 2 b 1 + b 1 b 2 | x 0 | + b 1 b 2 r ) δ 0 1 | y ( t ) | d t + ( m 2 b 1 + b 1 b 2 | x 0 | + b 1 b 2 r ) 0 1 | y ( t ) y ( t ) | d t
and
y y     b 1 b 2 r y y + m 2 b 1 + b 1 b 2 | x 0 | + b 1 b 2 r r δ + y y m 2 b 1 + b 1 b 2 | x 0 | + b 1 b 2 r .
Hence,
y y 1 ( 2 b 1 b 2 r + m 2 b 1 + b 1 b 2 | x 0 | ) m 2 b 1 + b 1 b 2 | x 0 | + b 1 b 2 r r δ ,
then
y y ( m 2 b 1 + b 1 b 2 | x 0 | + b 1 b 2 r ) r δ 1 ( 2 b 1 b 2 r + m 2 b 1 + b 1 b 2 | x 0 | ) = ϵ
and
x x c ϵ .

3. Examples

Example 1.
Let the following differential equation
d x d t = t 3 96 + 1 2 d x d t . 0 t β s 4 + 1 2 | x ( s ) | d s . t ( 0 , 1 ] .
satisfying the initial data
x ( 0 ) = 1 .
Then
f ( t , x ) = m 1 ( t ) + b 1 d x d t . 0 t β ( m ( s ) + b 2 | x ( s ) | ) d s = t 3 96 + 1 2 d x d t . 0 t β s 4 + 1 2 | x ( s ) | d s . t I , β 1 g ( t , x ( t ) ) = m 2 ( t ) + b 2 ( | x ( t ) | ) = t 4 + 1 2 | x ( t ) | , ϕ ( t ) = t β t I , β 1 .
Easily we can verify all conditions of Theorem 1. Then, the initial value problem (7) and (8) has a solution.
Example 2.
Let the following differential equation
d x d t = 3 t 40 + 1 4 d x d t 0 t β s 3 + 1 2 | x ( s ) | d s . t ( 0 , 1 ] .
with initial data
x ( 0 ) = 1 .
Then,
f ( t , x ) = 3 t 40 + 1 4 d x d t 0 t β s 3 + 1 2 | x ( s ) | d s . t I , β 1 g ( t , x ( t ) ) = t 3 + 1 2 x ( t ) , ϕ ( t ) = t β t I , β 1 .
Obviously we can verify all conditions of Theorem 1. Then, the initial value Problems (9) and (10) has a solution.

4. Conclusions

In this paper, we have studied a delay quadratic functional integro-differential Equation (1). We have investigated the solvability of the problems (1) and (2) by applying the technique of measure of non-compactness. Then, we have established some uniqueness results and continuous dependence of solution on some initial data and the functions g, ϕ Finally, two examples have been introduced to demonstrate our results.

Author Contributions

A.M.A.E.-S., E.M.A.H. and M.M.S.B.-A. contributed equally to this work. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Acknowledgments

We thank the referee for their remarks and comments that help to improve our manuscript.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Gaafar, F. Positive solutions of a quadratic integro-differential equation. J. Egypt. Math. Soc. 2014, 22, 162–166. [Google Scholar] [CrossRef] [Green Version]
  2. Hashem, H.H.G.; El-Sayed, A.M.A. Existence results for a quadratic integral equation of fractional order by a certain function. J. Fixed Point Theory Appl. 2020, 21, 181–219. [Google Scholar] [CrossRef]
  3. Mirzaee, F.; Alipour, S. Numerical solution of nonlinear partial quadratic integro-differential equations of fractional order via hybrid of block-pulse and parabolic functions. Numer. Methods Partial Differ. Equ. 2019, 35, 1134–1151. [Google Scholar] [CrossRef]
  4. von Wolfersdorf, L. A Class of Quadratic Integral-Differential Equations. Complex Var. Elliptic Equ. Int. J. 2002, 47, 537–552. [Google Scholar] [CrossRef]
  5. Argyros, I.K. On a class of quadratic integral equations with perturbations. Funct. Approx. 1992, 20, 51–63. [Google Scholar]
  6. Banaś, J.; Martinon, A. Monotonic Solutions of a quadratic Integral Equation of Volterra Type. Comput. Math. Appl. 2004, 47, 271–279. [Google Scholar] [CrossRef] [Green Version]
  7. Banaś, J.; Caballero, J.; Rocha, J.; Sadarangani, K. Monotonic Solutions of a Class of Quadratic Integral Equations of Volterra Type. Comput. Math. Appl. 2005, 49, 943–952. [Google Scholar] [CrossRef] [Green Version]
  8. Banaś, J.; Martin, J.R.; Sadarangani, K. On the solution of a quadratic integral equation of Hammerstein type. Math. Comput. Model. 2006, 43, 97–104. [Google Scholar] [CrossRef]
  9. Banaś, J.; Rzepka, B. Monotonic solutions of a quadratic integral equations of fractional order. J. Math. Anal. Appl. 2007, 332, 1370–11378. [Google Scholar] [CrossRef] [Green Version]
  10. Caballero, J.; Mingarelli, A.B.; Sadarangani, K. Existence of solutions of an integral equation of Chandrasekhar type in the theory of radiative transfer. Electron. J. Differ. Equat. 2006, 57, 111. [Google Scholar]
  11. Cichon, M.; Metwali, M.A. On quadratic integral equations in Orlicz spaces. J. Math. Anal. Appl. 2012, 387, 419–432. [Google Scholar] [CrossRef] [Green Version]
  12. Dhage, B.C. A fixed point theorem in Banach algebras involving three operators with applications. Kyungpook Math. J. 2004, 44, 145–155. [Google Scholar]
  13. Basseem, M.; Alalyani, A. On the Solution of Quadratic Nonlinear Integral Equation with Different Singular Kernels. Math. Probl. Eng. 2020, 2020, 7856207. [Google Scholar] [CrossRef]
  14. El-Sayed, A.M.A.; Hashem, H.H.G. Monotonic positive solution of nonlinear quadratic Hammerstein and Urysohn functional integral equations. Comment. Math. 2008, 48, 199–207. [Google Scholar]
  15. El-Sayed, A.M.A.; Hashem, H.H.G. Integrable and continuous solutions of nonlinear quadratic integral equation. Electron. J. Qual. Theory Differ. Equ. 2008, 25, 1–10. [Google Scholar] [CrossRef]
  16. El-Sayed, A.M.A.; Hashem, H.H.G. Monotonic solutions of functional integral and differential equations of fractional order. Electron. J. Qual. Theory Differ. Equ. 2009, 7, 1–8. [Google Scholar] [CrossRef]
  17. El-Sayed, A.M.A.; Hashem, H.H.G.; Al-Issa, S.M. Analytical Study of a ϕ-Fractional Order Quadratic Functional Integral Equation. Foundations 2022, 2, 10. [Google Scholar] [CrossRef]
  18. Banaś, J.; O’Regan, D.; Agarwal, R. Measures of noncompactness and asymptotic stability of solutions of a quadratic Hammerstein integral equation. Rocky Mt. J. Math. 2011, 41, 1769–1792. [Google Scholar] [CrossRef]
  19. Banaś, J.; O’Regan, D.; Kishin, S. On solutions of a quadratic Hammerstein integral equation on an unbounded interval. Dyn. Syst. Appl. 2009, 18, 2. [Google Scholar]
  20. Banaś, J.; Chlebowic, A. On a quadratic integral equation of Erdélyi-Kober type in the class of subpower functions. J. Nonlinear Convex Anal. 2018, 19, 823–840. [Google Scholar]
  21. Banaś, J.; Dudek, S. The Technique of Measures of Noncompactness in Banach Algebras and Its Applications to Integral Equations. Abstr. Appl. Anal. 2013, 2013, 537897. [Google Scholar] [CrossRef]
  22. Dunford, N.; Schwartz, J.T. Linear Operators, (Part 1), General Theory; New York Interscience: New York, NY, USA, 1957. [Google Scholar]
  23. Banaś, J. On the superposition operator and integrable solutions of some functional equations. Nonlinear Anal. 1988, 12, 777–784. [Google Scholar] [CrossRef]
  24. Blasi, F.S.D. On a property of the unit sphere in a Banach space. Bull. Math. Soc. Sci. 1977, 21, 259–262. [Google Scholar]
  25. Appell, J.; Pascale, E.D. Su alcuni parametri connessi con la misura di non compattezza di Hausdorff in spazi di funzioni misurabili. Boll. Un. Mat. Ital. 1984, 6, 497–515. [Google Scholar]
  26. Banaś, J.; Goebel, K. Measures of Noncompactness in Banach Spaces; Lecture Notes in Pure and Applied Mathematics; Marcel Dekker: New York, NY, USA, 1980; Volume 60. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

El-Sayed, A.M.A.; Hamdallah, E.M.A.; Ba-Ali, M.M.S. On the De Blasi Measure of Noncompactness and Solvability of a Delay Quadratic Functional Integro-Differential Equation. Mathematics 2022, 10, 1362. https://doi.org/10.3390/math10091362

AMA Style

El-Sayed AMA, Hamdallah EMA, Ba-Ali MMS. On the De Blasi Measure of Noncompactness and Solvability of a Delay Quadratic Functional Integro-Differential Equation. Mathematics. 2022; 10(9):1362. https://doi.org/10.3390/math10091362

Chicago/Turabian Style

El-Sayed, Ahmed M. A., Eman M. A. Hamdallah, and Malak M. S. Ba-Ali. 2022. "On the De Blasi Measure of Noncompactness and Solvability of a Delay Quadratic Functional Integro-Differential Equation" Mathematics 10, no. 9: 1362. https://doi.org/10.3390/math10091362

APA Style

El-Sayed, A. M. A., Hamdallah, E. M. A., & Ba-Ali, M. M. S. (2022). On the De Blasi Measure of Noncompactness and Solvability of a Delay Quadratic Functional Integro-Differential Equation. Mathematics, 10(9), 1362. https://doi.org/10.3390/math10091362

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop