On the De Blasi Measure of Noncompactness and Solvability of a Delay Quadratic Functional Integro-Differential Equation
Abstract
:1. Introduction
2. Research Methods
- (i)
- is continuous and increasing.
- (ii)
- are Carathéodory functions, which are measurable in and continuous in , and there exist and whereMoreover, f is non-decreasing for every non-decreasing x, i.e., for almost all satisfying and for all implies .
- (iii)
- Let rα be a positive root of the following equation
2.1. Uniqueness of the Solution
- (ii)*
- are measurable in and satisfy
2.2. Continuous Dependence
3. Examples
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gaafar, F. Positive solutions of a quadratic integro-differential equation. J. Egypt. Math. Soc. 2014, 22, 162–166. [Google Scholar] [CrossRef] [Green Version]
- Hashem, H.H.G.; El-Sayed, A.M.A. Existence results for a quadratic integral equation of fractional order by a certain function. J. Fixed Point Theory Appl. 2020, 21, 181–219. [Google Scholar] [CrossRef]
- Mirzaee, F.; Alipour, S. Numerical solution of nonlinear partial quadratic integro-differential equations of fractional order via hybrid of block-pulse and parabolic functions. Numer. Methods Partial Differ. Equ. 2019, 35, 1134–1151. [Google Scholar] [CrossRef]
- von Wolfersdorf, L. A Class of Quadratic Integral-Differential Equations. Complex Var. Elliptic Equ. Int. J. 2002, 47, 537–552. [Google Scholar] [CrossRef]
- Argyros, I.K. On a class of quadratic integral equations with perturbations. Funct. Approx. 1992, 20, 51–63. [Google Scholar]
- Banaś, J.; Martinon, A. Monotonic Solutions of a quadratic Integral Equation of Volterra Type. Comput. Math. Appl. 2004, 47, 271–279. [Google Scholar] [CrossRef] [Green Version]
- Banaś, J.; Caballero, J.; Rocha, J.; Sadarangani, K. Monotonic Solutions of a Class of Quadratic Integral Equations of Volterra Type. Comput. Math. Appl. 2005, 49, 943–952. [Google Scholar] [CrossRef] [Green Version]
- Banaś, J.; Martin, J.R.; Sadarangani, K. On the solution of a quadratic integral equation of Hammerstein type. Math. Comput. Model. 2006, 43, 97–104. [Google Scholar] [CrossRef]
- Banaś, J.; Rzepka, B. Monotonic solutions of a quadratic integral equations of fractional order. J. Math. Anal. Appl. 2007, 332, 1370–11378. [Google Scholar] [CrossRef] [Green Version]
- Caballero, J.; Mingarelli, A.B.; Sadarangani, K. Existence of solutions of an integral equation of Chandrasekhar type in the theory of radiative transfer. Electron. J. Differ. Equat. 2006, 57, 111. [Google Scholar]
- Cichon, M.; Metwali, M.A. On quadratic integral equations in Orlicz spaces. J. Math. Anal. Appl. 2012, 387, 419–432. [Google Scholar] [CrossRef] [Green Version]
- Dhage, B.C. A fixed point theorem in Banach algebras involving three operators with applications. Kyungpook Math. J. 2004, 44, 145–155. [Google Scholar]
- Basseem, M.; Alalyani, A. On the Solution of Quadratic Nonlinear Integral Equation with Different Singular Kernels. Math. Probl. Eng. 2020, 2020, 7856207. [Google Scholar] [CrossRef]
- El-Sayed, A.M.A.; Hashem, H.H.G. Monotonic positive solution of nonlinear quadratic Hammerstein and Urysohn functional integral equations. Comment. Math. 2008, 48, 199–207. [Google Scholar]
- El-Sayed, A.M.A.; Hashem, H.H.G. Integrable and continuous solutions of nonlinear quadratic integral equation. Electron. J. Qual. Theory Differ. Equ. 2008, 25, 1–10. [Google Scholar] [CrossRef]
- El-Sayed, A.M.A.; Hashem, H.H.G. Monotonic solutions of functional integral and differential equations of fractional order. Electron. J. Qual. Theory Differ. Equ. 2009, 7, 1–8. [Google Scholar] [CrossRef]
- El-Sayed, A.M.A.; Hashem, H.H.G.; Al-Issa, S.M. Analytical Study of a ϕ-Fractional Order Quadratic Functional Integral Equation. Foundations 2022, 2, 10. [Google Scholar] [CrossRef]
- Banaś, J.; O’Regan, D.; Agarwal, R. Measures of noncompactness and asymptotic stability of solutions of a quadratic Hammerstein integral equation. Rocky Mt. J. Math. 2011, 41, 1769–1792. [Google Scholar] [CrossRef]
- Banaś, J.; O’Regan, D.; Kishin, S. On solutions of a quadratic Hammerstein integral equation on an unbounded interval. Dyn. Syst. Appl. 2009, 18, 2. [Google Scholar]
- Banaś, J.; Chlebowic, A. On a quadratic integral equation of Erdélyi-Kober type in the class of subpower functions. J. Nonlinear Convex Anal. 2018, 19, 823–840. [Google Scholar]
- Banaś, J.; Dudek, S. The Technique of Measures of Noncompactness in Banach Algebras and Its Applications to Integral Equations. Abstr. Appl. Anal. 2013, 2013, 537897. [Google Scholar] [CrossRef]
- Dunford, N.; Schwartz, J.T. Linear Operators, (Part 1), General Theory; New York Interscience: New York, NY, USA, 1957. [Google Scholar]
- Banaś, J. On the superposition operator and integrable solutions of some functional equations. Nonlinear Anal. 1988, 12, 777–784. [Google Scholar] [CrossRef]
- Blasi, F.S.D. On a property of the unit sphere in a Banach space. Bull. Math. Soc. Sci. 1977, 21, 259–262. [Google Scholar]
- Appell, J.; Pascale, E.D. Su alcuni parametri connessi con la misura di non compattezza di Hausdorff in spazi di funzioni misurabili. Boll. Un. Mat. Ital. 1984, 6, 497–515. [Google Scholar]
- Banaś, J.; Goebel, K. Measures of Noncompactness in Banach Spaces; Lecture Notes in Pure and Applied Mathematics; Marcel Dekker: New York, NY, USA, 1980; Volume 60. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Sayed, A.M.A.; Hamdallah, E.M.A.; Ba-Ali, M.M.S. On the De Blasi Measure of Noncompactness and Solvability of a Delay Quadratic Functional Integro-Differential Equation. Mathematics 2022, 10, 1362. https://doi.org/10.3390/math10091362
El-Sayed AMA, Hamdallah EMA, Ba-Ali MMS. On the De Blasi Measure of Noncompactness and Solvability of a Delay Quadratic Functional Integro-Differential Equation. Mathematics. 2022; 10(9):1362. https://doi.org/10.3390/math10091362
Chicago/Turabian StyleEl-Sayed, Ahmed M. A., Eman M. A. Hamdallah, and Malak M. S. Ba-Ali. 2022. "On the De Blasi Measure of Noncompactness and Solvability of a Delay Quadratic Functional Integro-Differential Equation" Mathematics 10, no. 9: 1362. https://doi.org/10.3390/math10091362
APA StyleEl-Sayed, A. M. A., Hamdallah, E. M. A., & Ba-Ali, M. M. S. (2022). On the De Blasi Measure of Noncompactness and Solvability of a Delay Quadratic Functional Integro-Differential Equation. Mathematics, 10(9), 1362. https://doi.org/10.3390/math10091362