Convolution, Correlation and Uncertainty Principle in the One-Dimensional Quaternion Quadratic-Phase Fourier Transform Domain
Abstract
:1. Introduction
2. Preliminaries
2.1. Quadratic-Phase Fourier Transform
2.2. Quaternions
3. Quaternion One-Dimensional Quadratic-Phase Fourier Transform
- For , the 1D-QQPFT (2) boils down to the quaternion one-dimensional Fourier Transform [34]
4. Application to the 2-Dimensional Quaternion Quadratic-Phase Fourier Transform
5. Potential Applications
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Castro, L.P.; Haque, M.R.; Murshed, M.M.; Saitoh, S.; Tuan, N.M. Quadratic Fourier transforms. Ann. Funct. Anal. 2014, 5, 10–23. [Google Scholar] [CrossRef]
- Castro, L.P.; Minh, L.T.; Tuan, N.M. New convolutions for quadratic-phase Fourier integral operators and their applications. Mediterr. J. Math. 2018, 15, 13. [Google Scholar] [CrossRef] [Green Version]
- Rashid, H.H.; Srivastava, H.M.; Hama, M.; Mohammed, P.O.; Sarairah, E.A. New Numerical Results on Existence of Volterra–Fredholm Integral Equation of Nonlinear Boundary Integro-Differential Type. Symmetry 2023, 15, 1144. [Google Scholar]
- Srivastava, H.M.; Tariq, M.; Mohammed, P.O.; Alrweili, H.; Sarairah, E.A. On Modified Integral Inequalities for a Generalized Class of Convexity and Applications. Axioms 2023, 12, 162. [Google Scholar] [CrossRef]
- Bhat, M.Y.; Dar, A.H. Quadratic-phase scaled Wigner distribution: Convolution and correlation. Signal Image Video Process. 2023, 17, 2779–2788. [Google Scholar] [CrossRef]
- Bhat, M.Y.; Dar, A.H.; Urynbassarova, D.; Urynbassarova, A. Quadratic-phase wave packet transform. Opt. Int. J. Light Electron Opt. 2022, 261, 169120. [Google Scholar] [CrossRef]
- Bhat, M.Y.; Dar, A.H. Quadratic phase S-Transform: Properties and uncertainty principles. e-Prime-Adv. Electr. Eng. Electron. Energy 2023, 4, 100162. [Google Scholar] [CrossRef]
- Prasad, A.; Sharma, P.B. The quadratic-phase Fourier wavelet transform. Math. Meth. Appl. Sci. 2019, 43, 1953–1969. [Google Scholar] [CrossRef]
- Urynbassarova, D.; Li, B.Z.; Tao, R. Convolution and correlation theorems for Wigner-ville distribution associated with offset linear canonical transform. Optik 2018, 157, 455–466. [Google Scholar] [CrossRef]
- Wei, D.; Li, Y.M. Generalized wavelet transform based on the convolution operator in the linear canonical transform domain. Optik 2014, 125, 4491–4496. [Google Scholar] [CrossRef]
- Bahri, M.; Ashino, R.; Vaillancourt, R. Convolution theorems for quaternion fourier transform: Properties and applications. Abstr. Appl. Anal. 2013, 2013, 162769. [Google Scholar] [CrossRef] [Green Version]
- Sharma, V.D.; Deshmukh, P.B. Convolution structure of fractional quaternion fourier transform. IJESRT 2016, 5, 176–182. [Google Scholar]
- Bhat, M.Y.; Dar, A.H. Convolution and Correlation Theorems for Wigner-Ville Distribution Associated with the Quaternion Offset Linear Canonical Transform. Signal Image Video Process. 2022, 16, 1235–1242. [Google Scholar] [CrossRef]
- Zhang, Z. Linear canonical wigner distribution based noisy LFM signals detection through the output SNR improvement analysis. IEEE Trans. Signal Process. 2019, 67, 5527–5542. [Google Scholar] [CrossRef]
- Snopek, K.M. The study of properties of n-d analytic signals and their spectra in complex and hypercomplex domains. Radio Eng. 2012, 21, 29–36. [Google Scholar]
- Sangwine, S.J.; Ell, T.A. Colour image filters based on hypercomplex convolution. IEEE Proc. Vis. Image Signal Process. 2000, 49, 89–93. [Google Scholar] [CrossRef]
- Pei, S.C.; Chang, J.H.; Ding, J.J. Color pattern recognition by quaternion corre- lation. In Proceedings of the IEEE International Conference Image Process, Thessaloniki, Greece, 7–10 October 2001. [Google Scholar]
- Sangwine, S.J.; Evans, C.J.; Ell, T.A. Colour-sensitive edge detection using hyper- complex filters. In Proceedings of the 10th European Signal Processing Conference EUSIPCO, Tampere, Finland, 4–8 September 2000; Volume 1, pp. 107–110. [Google Scholar]
- Gao, C.; Zhou, J.; Lang, F.; Pu, Q.; Liu, C. Novel approach to edge detection of color image based on quaternion fractional directional differentiation. Adv. Autom. Robot. 2012, 1, 163–170. [Google Scholar]
- Took, C.C.; Mandic, D.P. The quaternion LMS algorithm for adaptive filtering of hypercomplex processes. IEEE Trans. Signal Process. 2009, 57, 1316–1327. [Google Scholar] [CrossRef] [Green Version]
- Witten, B.; Shragge, J. Quaternion-based signal processing, stanford exploration project. In Proceedings of the SEG International Exposition and 76th Annual Meeting (SEG New Orleans 2006), New Orleans, LA, USA, 1–6 October 2006; 2006; pp. 2862–2866. [Google Scholar]
- Bülow, T.; Sommer, G. The hypercomplex signal-a novel extensions of the an- alytic signal to the multidimensional case. IEEE Trans. Signal Process. 2001, 49, 2844–2852. [Google Scholar] [CrossRef] [Green Version]
- Bayro-Corrochano, E.; Trujillo, N.; Naranjo, M. Quaternion Fourier descriptors for preprocessing and recognition of spoken words using images of spatiotemporal representations. J. Math. Imaging Vis. 2007, 28, 179–190. [Google Scholar] [CrossRef]
- Bas, P.; LeBihan, N.; Chassery, J.M. Color image water marking using quaternion Fourier transform. In Proceedings of the IEEE International Conference on Acoustics Speech and Signal and Signal Processing, ICASSP, Hong Kong, China, 6–10 April 2003; pp. 521–524. [Google Scholar]
- Kou, K.I.; Ou, J.; Morais, J. Uncertainty principles associated with quaternionic linear canonical transforms. Math. Meth. Appl. Sci. 2016, 39, 2722–2736. [Google Scholar] [CrossRef]
- Kassimi, M.E.; Haoui, Y.E.; Fahlaoui, S. The Wigner-Ville distribution associ- ated with the quaternion offset linear canonical transform. Anal. Math. 2019, 45, 787–802. [Google Scholar] [CrossRef]
- Bhat, M.Y.; Dar, A.H. The algebra of 2D Gabor quaternionic offset linear canonical transform and uncertainty principles. J. Anal. 2022, 30, 637–649. [Google Scholar] [CrossRef]
- Bhat, M.Y.; Dar, A.H. Octonion spectrum of 3D short-time LCT signals. Opt. Int. J. Light Electron Opt. 2022, 261, 169156. [Google Scholar] [CrossRef]
- Bhat, M.Y.; Dar, A.H. Towards quaternion quadratic-phase Fourier transform. Math. Meth. Appl. Sci. 2023. [Google Scholar] [CrossRef]
- Dar, A.H.; Bhat, M.Y. Donoho-Stark’s and Hardy’s Uncertainty Principles for the Short-time Quaternion Offset Linear Canonical Transform. Filomat 2023, 37, 4467–4480. [Google Scholar]
- Bhat, M.Y.; Dar, A.H. The 2-D Hyper-complex Gabor quadratic-phase Fourier transform and uncertainty principles. J. Anal. 2023, 31, 243–260. [Google Scholar] [CrossRef]
- Bhat, M.Y.; Dar, A.H.; Nurhidaya, I.; Pinelas, S. An interplay of Wigner-Ville distribution and 2D Hyper-complex quadratic-phase Fourier transform. Fractal Fract. 2023, 7, 159. [Google Scholar] [CrossRef]
- Bhat, M.Y.; Dar, A.H.; Nurhidaya, I.; Pinelas, S. Uncertainty principles for the two-sided quaternion windowed quadratic-phase Fourier transform. Symmetry 2022, 14, 2650. [Google Scholar] [CrossRef]
- Bahri, M.; Toaha, S.; Rahim, A.; Azis, M.I. On one-dimensional quaternion fourier transform. Phys. Conf. Ser. 2019, 1341, 062004. [Google Scholar] [CrossRef] [Green Version]
- Roopkumar, R. Quaternionic one-dimensional fractional fourier transform. Optik 2016, 127, 11657–11661. [Google Scholar] [CrossRef]
- Bhat, M.Y.; Dar, A.H. Quaternion offset linear canonical transform in one-dimensional setting. J. Anal. 2023, 1–10. [Google Scholar] [CrossRef]
- Siddiqui, S.; Bing, L. Quaternionic one-dimensional linear canonical transform. Optik 2021, 244, 166914. [Google Scholar] [CrossRef]
- Gao, W.B.; Li, B.Z. Quaternion windowed linear canonical transform of two-dimensional quaternionic signals. Adv. Appl. Clifford Algebr. 2020, 30, 16. [Google Scholar] [CrossRef]
- Lengyel, E. Mathematics for 3D Programming and Computer Graphics; Charles River Media, Inc.: Newton, MA, USA, 2001. [Google Scholar]
- Andreis, D.; Canuto, E. Orbit Dynamics and Kinematics with Full Quaternions; American Control Conference: Boston, MA, USA, 2004. [Google Scholar]
- Zhao, H.; Wang, R.Y.; Song, D.P. Recovery of bandlimited signals in linear canon- ical transform domain from noisy samples. Circ. Syst. Signal Process. 2014, 33, 1997–2008. [Google Scholar] [CrossRef]
- Pei, S.C.; Ding, J.J.; Chang, J.H. Efficient implementation of quaternion fourier transform, convolution and correlation by 2-D complex FFT. IEEE Trans. Signal Process. 2001, 49, 2783–2797. [Google Scholar]
- Dar, A.H.; Bhat, M.Y.; Rahman, M. Generalized wave packet transform based on convolution operator in the quaternion quadratic-phase Fourier domain. Optik Int. J. Light Electron Opt. 2023, 286, 171029. [Google Scholar] [CrossRef]
- Wei, D.; Ran, Q.; Li, Y.; Ma, J.; Tan, L. A convolution and product theorem for the linear canonical transform. IEEE Signal Process. Lett. 2009, 16, 853–856. [Google Scholar]
- Stern, A. Uncertainty principles in linear canonical transform domains and some of their implications in optics. J. Opt. Soc. Am. A-Opt. Image Sci. Vis. 2008, 25, 647–652. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bhat, M.Y.; Dar, A.H.; Zayed, M.; Bhat, A.A. Convolution, Correlation and Uncertainty Principle in the One-Dimensional Quaternion Quadratic-Phase Fourier Transform Domain. Mathematics 2023, 11, 3002. https://doi.org/10.3390/math11133002
Bhat MY, Dar AH, Zayed M, Bhat AA. Convolution, Correlation and Uncertainty Principle in the One-Dimensional Quaternion Quadratic-Phase Fourier Transform Domain. Mathematics. 2023; 11(13):3002. https://doi.org/10.3390/math11133002
Chicago/Turabian StyleBhat, Mohammad Younus, Aamir H. Dar, Mohra Zayed, and Altaf A. Bhat. 2023. "Convolution, Correlation and Uncertainty Principle in the One-Dimensional Quaternion Quadratic-Phase Fourier Transform Domain" Mathematics 11, no. 13: 3002. https://doi.org/10.3390/math11133002
APA StyleBhat, M. Y., Dar, A. H., Zayed, M., & Bhat, A. A. (2023). Convolution, Correlation and Uncertainty Principle in the One-Dimensional Quaternion Quadratic-Phase Fourier Transform Domain. Mathematics, 11(13), 3002. https://doi.org/10.3390/math11133002