SOS Approach for Practical Stabilization of Tempered Fractional-Order Power System
Abstract
:1. Introduction
- The TFO derivative is considered, which is more general than the Caputo fractional derivative.
- The practical stability of TFO nonlinear systems is investigated.
- Unlike the standard feedback controller, the gain is not constant; however, it instead follows a polynomial function. Consequently, it allows for greater flexibility in ensuring practical stability.
2. Preliminaries
3. Practical Stability of Tempered Fractional-Order Nonlinear Systems
- 1.
- 2.
4. Practical Stabilization for a Class of Power Systems with Load Disturbance
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mohamed, E.A.; Aly, M.; Watanabe, M. New Tilt Fractional-Order Integral Derivative with Fractional Filter (TFOIDFF) Controller with Artificial Hummingbird Optimizer for LFC in Renewable Energy Power Grids. Mathematics 2022, 10, 3006. [Google Scholar] [CrossRef]
- Mohamed, E.A.; Aly, M.; Elmelegi, A.; Ahmed, E.M.; Watanabe, M.; Said, S.M. Enhancement the Frequency Stability and Protection of Interconnected Microgrid Systems Using Advanced Hybrid Fractional Order Controller. IEEE Access 2022, 10, 111936–111961. [Google Scholar] [CrossRef]
- Huang, S.; Wang, J.; Huang, C.; Zhou, L.; Xiong, L.; Liu, J.; Li, P. A fixed-time fractional-order sliding mode control strategy for power quality enhancement of PMSG wind turbine. Int. J. Electr. Power Energy Syst. 2022, 134, 107354. [Google Scholar] [CrossRef]
- Zhang, T.; Li, Y. Exponential Euler scheme of multi-delay Caputo-Fabrizio fractional-order differential equations. Appl. Math. Lett. 2022, 124, 107709. [Google Scholar] [CrossRef]
- Nisar, K.S.; Farman, M.; Abdel-Aty, M.; Cao, J. A review on epidemic models in sight of fractional calculus. Alex. Eng. J. 2023, 75, 81–113. [Google Scholar] [CrossRef]
- Yue, X.J.; Shen, Y.; Kaplan, M.; Kaabar, M.K.A.; Yang, H. Forecasting the dynamics of the model of cold bosonic atoms in a zig-zag optical lattice by symbolic computation. Int. J. Mod. Phys. B 2023, 2023, 2350250. [Google Scholar] [CrossRef]
- Khan, H.; Alzabut, J.; Tunç, O.; Kaabar, M.K.A. A fractal-fractional COVID-19 model with a negative impact of quarantine on the diabetic patients. Results Control Optim. 2023, 10, 100199. [Google Scholar] [CrossRef]
- Iqbal, S.; Martínez, F.; Kaabar, M.K.A.; Samei, M.E. A novel Elzaki transform homotopy perturbation method for solving time-fractional non-linear partial differential equations. Bound. Value Probl. 2022, 2022, 91. [Google Scholar] [CrossRef]
- Kamran Irfan, M.; Alotaibi, F.M.; Haque, S.; Mlaiki, N.; Shah, K. RBF-Based Local Meshless Method for Fractional Diffusion Equations. Fractal Fract. 2023, 7, 143. [Google Scholar] [CrossRef]
- Williams, W.K.; Vijayakumar, V.; Udhayakumar, R.; Panda, S.K.; Nisar, K.S. Existence and controllability of nonlocal mixed Volterra-Fredholm type fractional delay integro-differential equations of order 1 < r < 2. Numer. Methods Partial Differ. Equ. 2020, 2020, 1–18. [Google Scholar]
- Mahdy, A.M.S.; Amer, Y.A.E.; Mohamed, M.S.; Sobhy, E. General fractional financial models of awareness with Caputo–Fabrizio derivative. Adv. Mech. Eng. 2020, 12, 1687814020975525. [Google Scholar] [CrossRef]
- Feng, Y.Y.; Yang, X.J.; Liu, J.G. On overall behavior of Maxwell mechanical model by the combined Caputo fractional derivative. Chin. J. Phys. 2020, 66, 269–276. [Google Scholar] [CrossRef]
- Sinan, M.T.; Shah, K.; Kuman, P.; Mahariq, I.; Ansari, K.J.; Ahmad, Z.; Shah, Z. Fractional order mathematical modeling of typhoid fever disease. Results Phys. 2022, 32, 105044. [Google Scholar] [CrossRef]
- Shah, K.; Alqudah, M.A.; Jarad, F.; Abdeljawad, T. Semi-analytical study of Pine Wilt Disease model with convex rate under Caputo–Febrizio fractional order derivative. Chaos Solitons Fractals 2020, 135, 109754. [Google Scholar] [CrossRef]
- Ahmad, Z.; El-Kafrawy, S.A.; Alandijany, T.A.; Giannino, F.; Mirza, A.A.; El-Daly, M.M.; Faizo, A.A.; Bajrai, L.H.; Kamal, M.A.; Azhar, E.I. A global report on the dynamics of COVID-19 with quarantine and hospitalization: A fractional order model with non-local kernel. Comput. Biol. Chem. 2022, 98, 107645. [Google Scholar] [CrossRef]
- Shah, K.; Khalil, H.; Khan, M.A. Investigation of positive solution to a coupled system of impulsive boundary value problems for nonlinear fractional order differential equations. Chaos Solitons Fractals 2015, 77, 240–246. [Google Scholar] [CrossRef]
- Ahmad, Z.; Bonanomi, G.; di Serafino, D.; Giannino, F. Transmission dynamics and sensitivity analysis of pine wilt disease with asymptomatic carriers via fractal-fractional differential operator of Mittag–Leffler kernel. Appl. Numer. Math. 2023, 185, 446–465. [Google Scholar] [CrossRef]
- Chen, L.; Chai, Y.; Wu, R.; Yang, J. Stability and Stabilization of a Class of Nonlinear Fractional-Order Systems With Caputo Derivative. IEEE Trans. Circuits Syst. II Express Briefs 2012, 59, 602–606. [Google Scholar] [CrossRef]
- Chen, L.; Huang, T.; Machado, J.T.; Lopes, A.M.; Chai, Y.; Wu, R. Delay-dependent criterion for asymptotic stability of a class of fractional-order memristive neural networks with time-varying delays. Neural Netw. 2019, 118, 289–299. [Google Scholar] [CrossRef]
- Ding, D.; Qi, D.; Wang, Q. Non-linear Mittag–Leffler stabilisation of commensurate fractional-order non-linear systems. Control Theory Appl. 2015, 9, 681–690. [Google Scholar] [CrossRef]
- Wei, Y.; Cao, J.; Chen, Y.; Wei, Y. The proof of Lyapunov asymptotic stability theorems for Caputo fractional order systems. Appl. Math. Lett. 2022, 129, 107961. [Google Scholar] [CrossRef]
- He, B.B.; Zhou, H.C. Caputo-Hadamard fractional Halanay inequality. Appl. Math. Lett. 2022, 125, 107723. [Google Scholar] [CrossRef]
- Deng, J.; Ma, W.; Deng, K.; Li, Y. Tempered Mittag–Leffler Stability of Tempered Fractional Dynamical Systems. Math. Probl. Eng. 2020, 2020, 7962542. [Google Scholar] [CrossRef]
- Ben Makhlouf, A.; Hammami, M.A.; Sioud, K. Stability of fractional-order nonlinear systems depending on a parameter. Bull. Korean Math. Soc. 2017, 54, 1309–1321. [Google Scholar]
- Ben Makhlouf, A. Partial practical stability for fractional-order nonlinear systems. Math. Methods Appl. Sci. 2022, 45, 5135–5148. [Google Scholar] [CrossRef]
- Hamzaoui, A.; Hadj Taieb, N.; Hammami, M.A. Practical partial stability of time-varying systems. Discret. Contin. Dyn. Syst. B 2022, 7, 3585–3603. [Google Scholar] [CrossRef]
- Damak, H.; Hammami, M.A.; Kicha, A. A Converse Theorem on Practical h-Stability of Nonlinear Systems. Mediterr. J. Math. 2020, 17, 1–18. [Google Scholar] [CrossRef]
- Vijay, P.S.; Kishorb, N.; Samuel, P. Improved Load Frequency Control of Power System Using LMI Based PID Approach. J. Frankl. Inst. 2017, 354, 6805–6830. [Google Scholar]
- Alshammari, B.; Ben Salah, R.; Kahouli, O.; Kolsi, L. Design of Fuzzy TS-PDC Controller for Electrical Power System via Rules Reduction Approach. Symmetry 2020, 12, 2068. [Google Scholar] [CrossRef]
- Yu, Z.; Sun, Y.; Dai, X. Stability analysis of interconnected nonlinear fractional-order systems via a single-state variable control. Int. J. Robust Nonlinear Control 2019, 29, 6374–6397. [Google Scholar] [CrossRef]
- Yu, Z.; Sun, Y.; Dai, X. Stability and Stabilization of the Fractional-Order Power System With Time Delay. IEEE Trans. Circuits Syst. 2021, 68, 3446–3450. [Google Scholar] [CrossRef]
- Gassara, H.; Boukattaya, M.; El Hajjaji, A. Polynomial Adaptive Observer-Based Fault Tolerant Control for Time Delay Polynomial Fuzzy Systems Subject to Actuator Faults. Int. J. Fuzzy Syst. 2023, 25, 1327–1337. [Google Scholar] [CrossRef]
- Tanaka, K.; Ohtake, H.; Seo, T.; Tanaka, M.; Wang, H. Polynomial Fuzzy Observer Designs: A Sum-of-Squares Approach. IEEE Trans. Fuzzy Syst. 2012, 42, 1330–1342. [Google Scholar] [CrossRef] [PubMed]
- Xiao, B.; Lam, H.K.; Zhou, H.; Gao, J. Analysis and Design of Interval Type-2 Polynomial-Fuzzy-Model-Based Networked Tracking Control Systems. IEEE Trans. Fuzzy Syst. 2021, 29, 2750–2759. [Google Scholar] [CrossRef]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and applications of fractional differential equations. In North-Holland Mathematics Studies; Elsevier Science B.V.: Amsterdam, The Netherlands, 2006; Volume 204. [Google Scholar]
- Tanaka, K.; Yosihida, H.; Ohtake, H.; Wang, H. A sum of squares approach to modeling and control of nonlinear dynamical systems with polynomial fuzzy systems. IEEE Trans. Fuzzy Syst. 2009, 17, 911–922. [Google Scholar] [CrossRef]
- Petersen, I.R. A stabilization algorithm for a class of uncertain linear systems. Syst. Control Lett. 1987, 8, 351–357. [Google Scholar] [CrossRef]
- Sala, A.; Arinos, C. Polynomial Fuzzy Models for Nonlinear Control: A Taylor Series Approach. IEEE Trans. Fuzzy Syst. 2009, 17, 1284–1295. [Google Scholar] [CrossRef]
- Alvaro, H.; Salas, S. Analytic solution to the pendulum equation for a given initial conditions. J. King Saud Univ. 2020, 32, 974–978. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gassara, H.; Kharrat, D.; Ben Makhlouf, A.; Mchiri, L.; Rhaima, M. SOS Approach for Practical Stabilization of Tempered Fractional-Order Power System. Mathematics 2023, 11, 3024. https://doi.org/10.3390/math11133024
Gassara H, Kharrat D, Ben Makhlouf A, Mchiri L, Rhaima M. SOS Approach for Practical Stabilization of Tempered Fractional-Order Power System. Mathematics. 2023; 11(13):3024. https://doi.org/10.3390/math11133024
Chicago/Turabian StyleGassara, Hamdi, Dhouha Kharrat, Abdellatif Ben Makhlouf, Lassaad Mchiri, and Mohamed Rhaima. 2023. "SOS Approach for Practical Stabilization of Tempered Fractional-Order Power System" Mathematics 11, no. 13: 3024. https://doi.org/10.3390/math11133024
APA StyleGassara, H., Kharrat, D., Ben Makhlouf, A., Mchiri, L., & Rhaima, M. (2023). SOS Approach for Practical Stabilization of Tempered Fractional-Order Power System. Mathematics, 11(13), 3024. https://doi.org/10.3390/math11133024