Characterizations of the Frame Bundle Admitting Metallic Structures on Almost Quadratic ϕ-Manifolds
Abstract
:1. Introduction
p | q | Structure |
0 | 1 | an almost product structure [15] |
0 | −1 | an almost complex structure [16,17] |
1 | 1 | a golden structure [18,19] |
2 | 1 | a silver structure [20] |
- We study the complete lifts of an almost quadratic -structure to the metallic structure on .
- We establish the existence of a metallic structure on in the tensor field , which we define.
- We obtain results on the 2-Form and its derivative on .
- We derive the expressions of the Nijenhuis tensor of a tensor field on .
- We construct an example related to it.
2. Preliminaries
2.1. Metallic Structure
2.2. Almost Quadratic -Structure
3. Proposed Theorems on FM Admitting Metallic Structures on Almost Quadratic -Manifolds
4. Behavior of the Nijehuis Tensor on FM
5. Example
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yano, K.; Kon, M. Structures on Manifolds, Series in Pure Mathematics; World Scientific Publishing Co.: Singapore, 1984; Volume 3. [Google Scholar]
- Ishihara, S.; Yano, K. On integrability conditions of a structure f satisfying f3+f=0. Q. J. Math. Oxf. Ser. 1964, 15, 217–222. [Google Scholar] [CrossRef]
- Blair, D.E. Contact Manifolds in Riemannian Geometry. Lect. Notes in Math. 509; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1976. [Google Scholar]
- Nakagawa, H. f-structures induced on submanifolds in spaces, almost Hermitian or Kaehlerian. Kodai Math. Semin. Rep. 1966, 18, 161–183. [Google Scholar] [CrossRef]
- Yano, K. On a structure defined by a tensor field f of type (1, 1) satisfying f3+f=0. Tensor N. S. 1963, 14, 99–109. [Google Scholar]
- Goldberg, S.I.; Yano, K. Polynomial structures on manifolds. Kodai Math. Semin. Rep. 1970, 22, 199–218. [Google Scholar] [CrossRef]
- Goldberg, S.I.; Petridis, N.C. Differentiable solutions of algebraic equations on manifolds. Kodai Math. Semin. Rep. 1973, 25, 111–128. [Google Scholar] [CrossRef]
- Singh, K.D.; Singh, R. Some f(3,ε)-structure manifolds. Demonstr. Math. 1977, 10, 637–645. [Google Scholar]
- Khan, M.N.I.; Das Lovejoy, S. ON CR-structure and the general quadratic structure. J. Geom. Graph. 2020, 24, 249–255. [Google Scholar]
- Yano, K.; Houh, C.S.; Chen, B.Y. Structure defined by a tensor field ϕ of type (1,1) satisfying ϕ4±ϕ2=0. Tensor N. S. 1972, 23, 81–87. [Google Scholar]
- Vanzura, J. Almost r-contact structures. Ann. Sci. Fis. Mat. 1972, 26, 97–115. [Google Scholar]
- Azami, S. General natural metallic structure on tangent bundle. Iran. J. Sci. Technol. Trans. Sci. 2018, 42, 81–88. [Google Scholar] [CrossRef]
- Khan, M.N.I. Complete and horizontal lifts of metallic structures. Int. J. Math. Comput. Sci. 2020, 15, 983–992. [Google Scholar]
- De Spinadel, V.W. The metallic means family and multifractal spectra. Nonlinear Anal. 1999, 36, 721–745. [Google Scholar] [CrossRef]
- Naveira, A. A classification of Riemannian almost-product manifolds. Rend. Di Mat. Di Roma 1983, 3, 577–592. [Google Scholar]
- Bonome, A.; Castro, R.; Hervella, L.M. Almost complex structure in the frame bundle of an almost contact metric manifold. Math. Z. 1986, 193, 431–440. [Google Scholar] [CrossRef]
- Cordero, L.A.; Dodson, C.T.; León, M.D. Differential Geometry of Frame Bundles; Kluwer Academic: Dordrecht, The Netherlands, 1989. [Google Scholar]
- Crasmareanu, M.; Hretcanu, C.E. Golden differential geometry. Chaos Solitons Fractals 2008, 38, 1229–1238. [Google Scholar] [CrossRef]
- Stakhov, A. The generalized golden proportions, a new theory of real numbers, and ternary mirror-symmetrical arithmetic. Chaos Solitons Fractals 2007, 33, 315–334. [Google Scholar] [CrossRef] [Green Version]
- Ozkan, M.; Peltek, B. A new structure on manifolds: Silver structure. Int. Electron. J. Geom. 2016, 9, 59–69. [Google Scholar] [CrossRef]
- Hretcanu, C.E.; Crasmareanu, M. Metallic structures on Riemannian manifolds. Rev. Unión Mat. Argent. 2013, 54, 15–27. [Google Scholar]
- Blaga, A.M.; Hretcanu, C.E. Remarks on metallic warped product manifolds. Facta Univ. Ser. Math. Inform. 2018, 33, 269–277. [Google Scholar] [CrossRef]
- Blaga, A.M.; Hretcanu, C.E. Golden warped product Riemannian manifolds. Lib. Math. 2017, 37, 39–49. [Google Scholar]
- Hretcanu, C.E.; Blaga, A.M. Slant and semi-slant submanifolds in metallic Riemannian manifolds. J. Funct. Spaces 2018, 2018, 2864263. [Google Scholar] [CrossRef] [Green Version]
- Hretcanu, C.E.; Blaga, A.M. Warped product submanifolds in metallic Riemannian manifods. Tamkang J. Math. 2020, 51, 161–186. [Google Scholar] [CrossRef]
- Hretcanu, C.E.; Blaga, A.M. Hemi-slant submanifolds in metallic Riemannian manifolds. Carpathian J. Math. 2019, 35, 59–68. [Google Scholar] [CrossRef]
- Debmath, P.; Konar, A. A new type of structure on differentiable manifold. Int. Electron. J. Geom. 2011, 4, 102–114. [Google Scholar]
- Gonul, S.; Erken, I.K.; Yazla, A.; Murathan, C. A Neutral relation between metallic structure and almost quadratic ϕ-structure. Turk. J. Math. 2019, 43, 268–278. [Google Scholar] [CrossRef]
- Gök, M.; Kiliç, E.; Özgür, C. f(a,b)(3,2,1)-structures on manifolds. J. Geom. Phys. 2021, 169, 104346. [Google Scholar] [CrossRef]
- Sasaki, S. On the differential geometry of tangent bundles of Riemannian manifolds. Tohoku Math. J. 1958, 10, 338–354. [Google Scholar] [CrossRef]
- Yano, K.; Ishihara, S. Horizontal lifts of tensor fields to tangent bundles. J. Math. Mech. 1967, 16, 1015–1029. [Google Scholar]
- Yano, K.; Davies, E.T. On the tangent bundles of finsler and Riemannian manifolds. Rend. Circ. Mat. Palermo 1963, 12, 1–18. [Google Scholar] [CrossRef]
- Kobayashi, S.; Nomizu, K. Foundations of Differential Geometry; Interscience: New York, NY, USA, 1963; Volume 1. [Google Scholar]
- Mok, K.P. Complete lift of tensor fields and connections to the frame bundle. Proc. Lond. Math. Soc. 1979, 3, 72–88. [Google Scholar] [CrossRef]
- Okubo, T. On the differential geometry of frame bundles. Ann. Mat. Pura Appl. 1966, 72, 29–44. [Google Scholar] [CrossRef]
- Khan, M.N.I. Novel theorems for the frame bundle endowed with metallic structures on an almost contact metric manifold. Chaos Solitons Fractals 2021, 146, 110872. [Google Scholar] [CrossRef]
- Cordero, L.A.; De Leon, M. Prolongation of G-structures to the frame bundle. Ann. Mat. Pura Appl. 1986, 143, 123–141. [Google Scholar] [CrossRef]
- Kowalski, O.; Sekizawa, M. Curvatures of the diagonal lift from an affine manifold to the linear frame bundle. Cent. Eur. J. Math. 2012, 10, 837–843. [Google Scholar] [CrossRef]
- Sekizawa, M. On the geometry of orthonormal frame bundles. Note Mat. 2008, 33, 357–371. [Google Scholar]
- Kowalski, O.; Sekizawa, M. On the geometry of orthonormal frame bundles II. Ann. Glob. Anal. Geom. 2008, 33, 357–371. [Google Scholar] [CrossRef]
- Niedzialomski, K. On the frame bundle adapted to a submanifold. Math. Nachr. 2015, 288, 648–664. [Google Scholar] [CrossRef] [Green Version]
- Lachieze-Rey, M. Connections and frame bundle reductions. arXiv 2020, arXiv:2002.01410. [Google Scholar]
- Khan, M.N.I. Proposed theorems for lifts of the extended almost complex structures on the complex manifold. Asian-Eur. J. Math. 2022, 15, 2250200. [Google Scholar] [CrossRef]
- Khan, M.N.I. Novel theorems for metallic structures on the frame bundle of the second order. Filomat 2022, 36, 4471–4482. [Google Scholar] [CrossRef]
- Khan, M.N.I. Integrability of the metallic structures on the frame bundle. Kyungpook Math. J. 2021, 61, 791–803. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, M.N.I.; De, U.C.; Alam, T. Characterizations of the Frame Bundle Admitting Metallic Structures on Almost Quadratic ϕ-Manifolds. Mathematics 2023, 11, 3097. https://doi.org/10.3390/math11143097
Khan MNI, De UC, Alam T. Characterizations of the Frame Bundle Admitting Metallic Structures on Almost Quadratic ϕ-Manifolds. Mathematics. 2023; 11(14):3097. https://doi.org/10.3390/math11143097
Chicago/Turabian StyleKhan, Mohammad Nazrul Islam, Uday Chand De, and Teg Alam. 2023. "Characterizations of the Frame Bundle Admitting Metallic Structures on Almost Quadratic ϕ-Manifolds" Mathematics 11, no. 14: 3097. https://doi.org/10.3390/math11143097
APA StyleKhan, M. N. I., De, U. C., & Alam, T. (2023). Characterizations of the Frame Bundle Admitting Metallic Structures on Almost Quadratic ϕ-Manifolds. Mathematics, 11(14), 3097. https://doi.org/10.3390/math11143097