Autoregression, First Order Phase Transition, and Stochastic Resonance: A Comparison of Three Models for Forest Insect Outbreaks
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Autoregression (AR) Model
2.2. Models of an Outbreak as a First-Order Phase Transition
- Local minima of potential function G(x1) and G(x2) and corresponding values x1 and x2 of population density (in this context: x1 << x2);
- Local maximum of function G(xc): the height of the potential barrier when potential function G(x) reaches the local maximum;
- With the help of these “base values” additional parameters can be defined;
- Difference , which characterizes the range of population densities.
- Difference between values of potential functions G(x2) − G(x1);
- Depths of potential wells: and ;
- Half-width of the potential barrier at which is the half-height of the potential barrier;
- Absolute values of derivatives of the potential function to the left and to the right of point x = xc. These derivatives can be viewed as the susceptibility of state function G(x) to a change in density x of the population. At sufficiently small values of , we will say that potential G(x) is “soft”; at large values of , the potential function will be characterized as “hard”. Approximately, the values of the derivatives can be replaced by quantities and .
- Current susceptibility (or on a logarithmic scale: ) characterizes the current reproduction rate of the population.
2.3. Stochastic Resonance (SR) Model
3. Results
3.1. AR Models of Dynamics of Forest Insect Abundance
3.2. The Model of First-Order Phase Transitions for the Siberian Silkmoth Population in the Lower Yenisei River Region
3.3. An Outbreak as a Consequence of SR
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
References
- Van Mantgem, P.J.; Stephenson, N.L.; Byrne, J.C.; Daniels, L.; Franklin, J.F.; Fulé, P.Z.; Harmon, M.E.; Larson, A.J.; Smith, J.M.; Taylor, A.H. Widespread increase of tree mortality rates in the western United States. Science 2009, 323, 521–524. [Google Scholar] [CrossRef] [PubMed]
- Chapin, F.S., III; Matson, P.A.; Mooney, H.A. Principles of Terrestrial Ecosystem Ecology; Springer: New York, NY, USA, 2012; 436p. [Google Scholar]
- Peterson, D.L.; Vose, J.M.; Patel-Weynand, T. Climate Change and United States Forests; Advances in Global Change Research; Springer: Dordrecht, The Netherlands, 2014; 57p. [Google Scholar]
- Hicke, J.A.; Allen, C.D.; Desai, A.; Dietze, M.; Hall, R.J.; Hogg, E.H.; Kashian, D.; Moore, D.J.P.; Raffa, K.F.; Sturrock, R.N.; et al. Effects of biotic disturbances on forest carbon cycling in the United States and Canada. Glob. Chang. Biol. 2012, 18, 7–34. [Google Scholar] [CrossRef]
- Ghimire, B.; Williams, C.A.; James, G.; Collatz, G.J.; Vanderhoof, M.; Rogan, J.; Kulakowski, D.; Masek, J.G. Large carbon release legacy from bark beetle outbreaks across western United States. Glob. Chang. Biol. 2015, 21, 3087–3101. [Google Scholar] [CrossRef] [PubMed]
- Hicke, J.A.; Meddens, A.J.H.; Allen, C.D.; Kolden, C.A. Carbon stocks of trees killed by bark beetles and wildfire in the western United States. Environ. Res. Lett. 2013, 8, 035032. [Google Scholar] [CrossRef]
- Kurz, W.A.; Dymond, C.C.; Stinson, G.; Rampley, G.J.; Neilson, E.T.; Carroll, A.L.; Safranyik, L. Mountain pine beetle and forest carbon feedback to climate change. Nature 2008, 452, 987–990. [Google Scholar] [CrossRef]
- Clark, K.L.; Skowronski, N.; Hom, J. Invasive insects impact forest carbon dynamics. Glob. Chang. Biol. 2010, 16, 88–101. [Google Scholar] [CrossRef]
- Albani, M.; Moorcroft, P.R.; Ellison, A.M.; Orwig, D.A.; Foster, D.R. Predicting the impact of hemlock woolly adelgid on carbon dynamics of eastern United States forests. Can. J. For. Res. 2010, 40, 119–133. [Google Scholar] [CrossRef]
- Dymond, C.C.; Neilson, E.T.; Stinson, G.; Porter, K.; MacLean, D.A.; Gray, D.R.; Kurz, W.A. Future spruce budworm outbreak may create a carbon source in eastern Canadian forests. Ecosystems 2010, 13, 917–931. [Google Scholar] [CrossRef]
- Stinson, G.; Kurz, W.A.; Smyth, C.E.; Neilson, E.T.; Dymond, C.C.; Metsaranta, J.M.; Blain, D. An inventory-based analysis of Canada’s managed forest carbon dynamics, 1990 to 2008. Glob. Chang. Biol. 2011, 17, 2227–2244. [Google Scholar] [CrossRef]
- Review of Sanitary and Pathological Condition of Russian Federation Forests for 2021; Russian Forest Protection Center: Moscow, Russia, 2022; 117p. (In Russian)
- Ludwig, D.; Jones, D.; Holling, C.S. Qualitative analysis of insect outbreak systems: The spruce budworm and forest. J. Anim. Ecol. 1978, 47, 315–332. [Google Scholar] [CrossRef]
- Hastings, A.; Abbott, K.C.; Cuddington, K.; Francis, T.; Gellner, G.; Lai, Y.C.; Morozov, A.; Petrovskii, S.; Scranton, K.; Zeeman, M.L. Transient phenomena in ecology. Science 2018, 361, eaat6412. [Google Scholar] [CrossRef] [PubMed]
- Hastings, A.; Abbott, K.C.; Cuddington, K.; Francis, T.B.; Lai, Y.C.; Morozov, A.; Petrovskii, S.; Zeeman, M.L. Effects of stochasticity on the length and behavior of ecological transients. R. Soc. Interface 2021, 18, 20210257. [Google Scholar] [CrossRef] [PubMed]
- Abbott, K.C.; Dwyer, G. Using mechanistic models to understand synchrony in forest insect populations: The North American gypsy moth as a case study. Am. Nat. 2008, 172, 613–624. [Google Scholar] [CrossRef] [PubMed]
- Ives, A.R.; Abbott, K.C.; Ziebarth, N.L. Analysis of ecological time series with ARMA(p,q) models. Ecology 2010, 91, 858–871. [Google Scholar] [CrossRef]
- Sharma, Y.; Abbott, K.C.; Dutta, P.S.; Gupta, A.K. Stochasticity and bistability in insect outbreak dynamics. Theor. Ecol. 2014, 8, 163–174. [Google Scholar] [CrossRef]
- Lotka, A. Elements of Physical Biology; The Williams and Wilkim Co.: Baltimore, MD, USA, 1925; 495p. [Google Scholar]
- Volterra, V. Leçons sur la Théorie Mathématique de la Lutte pour la Vie; Gauthier-Villars: Paris, France, 1931; 214p. (In French) [Google Scholar]
- Murray, J.D. Mathematical Biology; Springer: New York, NY, USA, 2002; 575p. [Google Scholar]
- Liebhold, A.M.; Hajek, A.E.; Walter, J.A.; Haynes, K.J.; Elkinton, J.; Muzika, R.M. Historical change in the outbreak dynamics of an invading forest insect. Biol. Invasions 2022, 24, 879–889. [Google Scholar] [CrossRef]
- Allstadt, A.J.; Haynes, K.J.; Liebhold, A.M.; Johnson, D.M. Long-term shifts in the cyclicity of outbreaks of a forest-defoliating insect. Oecologia 2013, 172, 141–151. [Google Scholar] [CrossRef]
- Williams, D.W.; Fuester, R.W.; Metterhouse, W.W.; Balaam, R.J.; Bullock, R.H.; Chianesei, R.J. Oak defoliation and population density relationships for the gypsy moth (Lepidoptera: Lymantriidae). J. Econ. Entomol. 1991, 84, 1508–1514. [Google Scholar] [CrossRef]
- Liebhold, A.M.; Simons, E.E.; Sior, A.; Unger, J.D. Forecasting defoliation caused by the gypsy moth from field measurements. Environ. Entomol. 1993, 22, 26–32. [Google Scholar] [CrossRef]
- Isaev, A.S.; Khlebopros, R.G.; Kiselev, V.V.; Kondakov, Y.P.; Nedorezov, L.V.; Soukhovolsky, V.G. Forest Insects Population Dynamics; Publishing House of the Eurasian Entomological Journal: Novosibirsk, Russia, 2009; 115p. [Google Scholar]
- Barbosa, P.; Schultz, J. Insect Outbreaks; Academic Press: New York, NY, USA, 1987; 578p. [Google Scholar]
- Barbosa, P.; Letourneau, D.; Agrawal, A.A. Insect Outbreaks Revisited; Wiley-Blackwell: Oxford, UK, 2012; 480p. [Google Scholar]
- Berryman, A.A. Dynamics of Forest Insect Populations; Plenum Press: New York, NY, USA, 1988; 603p. [Google Scholar]
- Berryman, A.A. Population Cycles. Causes and Analysis. Population Cycles: The Case for Trophic Interactions; Oxford University Press: New York, NY, USA, 2002; pp. 3–28. [Google Scholar]
- Berryman, A.A. On principles, laws and theory in population ecology. Oikos 2003, 103, 695–701. [Google Scholar] [CrossRef]
- Isaev, A.S.; Soukhovolsky, V.G.; Tarasova, O.V.; Palnikova, E.N.; Kovalev, A.V. Forest Insect Population Dynamics, Outbreaks and Global Warming Effects; Wiley and Sons: Hoboken, NJ, USA, 2017; 286p. [Google Scholar]
- Prozorov, S.S. The silk moth in fir forests of Siberia. Proc. SibLTI. Krasn. 1952, 93–132. (In Russian) [Google Scholar]
- Boldaruyev, V.O. Population Dynamics of the Siberian Silk Moth and Its Parasites; Buryat Publishers: Ulan-Ude, Russia, 1969; 162p. (In Russian) [Google Scholar]
- Epova, V.I.; Pleshanov, A.S. Zones of Severity of Phyllophagous Insects in Asian Russia; Nauka: Novosibirsk, Russia, 1995; 147p. (In Russian) [Google Scholar]
- Kolomiyets, N.G. Parasites and Predators of the Siberian Silk Moth; Nauka: Novosibirsk, Russia, 1962; 172p. (In Russian) [Google Scholar]
- Kondakov, Y.P. Siberian silk moth outbreaks. In Population Ecology of Forest Animals in Siberia; Nauka: Novosibirsk, Russia, 1974; pp. 206–265. (In Russian) [Google Scholar]
- Rozhkov, A.S. Siberian Silk Moth; Nauka: Moscow, Russia, 1963; 175p. (In Russian) [Google Scholar]
- Rozhkov, A.S. Outbreak of the Siberian Silk Moth and Insect Control Measures; Nauka: Moscow, Russia, 1965; 178p. (In Russian) [Google Scholar]
- Soukhovolsky, V.G.; Tarasova, O.V.; Kovalev, A.V. A modeling of critical events in forest insects populations. Rus. J. Gen. Biol. 2020, 81, 374–386. (In Russian) [Google Scholar]
- Yurchenko, G.I.; Turova, G.I. Siberian and White-Striped Silkworms in the Far East; DalNIILCH Puplishers: Habarovsk, Russia, 2007; 98p. (In Russian) [Google Scholar]
- Barbour, D.A. The pine looper in Britain and Europe. In Dynamics of Forest Insect Populations: Patterns, Causes, Implications; Berryman, A.A., Ed.; Plenum Press: New York, NY, USA; London, UK, 1988; pp. 291–308. [Google Scholar]
- Bevan, D.; Brown, R.M. Pine Looper Moth; Forestry Commission Forest Record; HMSO: London, UK, 1978; 119p. [Google Scholar]
- Botterweg, P.F. Moth behaviour and dispersal of the pine looper, Bupalus piniarius (L.) (Lepidoptera, Geometridae). Neth. J. Zool. 1978, 28, 341–464. [Google Scholar] [CrossRef]
- Broekhuizen, N.; Evans, H.F.; Hassell, M.P. Site characteristics and the population dynamics of the pine looper moth. J. Anim. Ecol. 1993, 62, 511–518. [Google Scholar] [CrossRef]
- Broekhuizen, N.; Hassell, M.P.; Evans, H.F. Common mechanisms underlying contrasting dynamics in two populations of the pine looper moth. J. Anim. Ecol. 1994, 63, 245–255. [Google Scholar] [CrossRef]
- Demidko, D.A.; Trefilova, O.V.; Kulakov, S.S.; Mikhaylov, P.V. Pine Looper Bupalus piniaria (L.) Outbreaks Reconstruction: A Case Study for Southern Siberia. Insects 2021, 12, 90. [Google Scholar] [CrossRef]
- Kendall, B.E.; Ellner, S.P.; McCauley, E.; Wood, S.N.; Briggs, C.J.; Murdoch, W.W.; Turchin, P. Population cycles in the pine looper moth: Dynamical tests of mechanistic hypotheses. Ecol. Monogr. 2005, 75, 259–276. [Google Scholar] [CrossRef]
- Klomp, H. The dynamics of field population of the Bupalus piniarius L. Advans. Ecol. Res. 1966, 3, 207–306. [Google Scholar]
- Kolomiyets, N.G. Pine looper outbreaks in West Siberia and their practical significance. In Plant Protection; RIO LTA: St. Petersburg, Russia, 1977; Volume 2, pp. 61–63. (In Russian) [Google Scholar]
- Palnikova, E.N.; Sviderskaya, I.V.; Soukhovolsky, V.G. Pine Looper in Siberian Forests; Nauka: Novosibirsk, Russia, 2002; 252p. (In Russian) [Google Scholar]
- Smits, A.; Larsson, S. Effects of previous defoliation on pine looper larval performance. Agric. For. Entomol. 1999, 1, 19–26. [Google Scholar] [CrossRef]
- Smits, A.; Larsson, S.; Hopkins, R. Reduced realised fecundity in the pine looper (Bupalus piniarius) caused by host plant defoliation. Ecol. Entomol. 2001, 26, 417–424. [Google Scholar] [CrossRef]
- Smits, A. Performance of pine looper Bupalus piniarius larvae under population build-up conditions. Entomol. Exp. Appl. 2002, 104, 117–124. [Google Scholar] [CrossRef]
- Straw, N.A. The impact of pine looper moth, Bupalus piniaria L. (Lepidoptera; Geometridae) on the growth of Scots pine in the Tentsmuir Forest, Scotland. For. Ecol. Manag. 1996, 87, 209–232. [Google Scholar] [CrossRef]
- Subklew, W. Untersuchungen uber Bevolkerungsbevegung des Kiefernspanners Bupalus piniarius L. MFF 1939, 10, 10–51. [Google Scholar]
- Ginzburg, L.; Colyvan, M. Ecological Orbits: How Planets Moved and Populations Grow; Oxford Univ. Press: New York, NY, USA, 2004; 184p. [Google Scholar]
- Dorf, R.C.; Bishop, R.H. Modern Control Systems; Prentice Hall: Hoboken, NJ, USA, 2008; 1018p. [Google Scholar]
- Royama, T. Analytical Population Dynamics; Chapman and Hall: London, UK, 1992; 371p. [Google Scholar]
- Turchin, P. Complex Population Dynamics: A Theoretical/Empirical Synthesis; Princeton Univ. Press: Princeton, NJ, USA, 2003; 472p. [Google Scholar]
- Soukhovolsky, V.G.; Ivanova, Y.D.; Kovalev, A.V. Are Data on Predators Necessary When Modeling Prey Population Dynamics? Biol. Bull. Rev. 2023, 13, 216–227. [Google Scholar] [CrossRef]
- Box, G.E.P.; Jenkins, G.M. Time Series Analysis: Forecasting and Control; Holden-Day: San Francisco, CA, USA, 1970; 784p. [Google Scholar]
- Anderson, T.W. The Statistical Analysis of Time Series; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1971; 704p. [Google Scholar]
- Bruce, A.D.; Cowley, R.A. Structural Phase Transitions; Taylor & Francis: London, UK, 1981; 326p. [Google Scholar]
- Lifshitz, E.M.; Pitaevsky, L.P. Statistical Physics. Part 2. The Theory of Condensed State; Butterworth-Heinemann: Boston, MA, USA, 1980; 387p. [Google Scholar]
- Landau, L.D.; Lifshitz, E.M. Statistical Physics; Elsevier: Oxford, UK, 2013; 544p. [Google Scholar]
- Anishchenko, V.S.; Astakhov, V.V.; Neiman, A.B.; Vadivasova, T.E.; Schimansky-Geier, L. Nonlinear Dynamics of Chaotic and Stochastic Systens; Springer: Berlin/Heidelberg, Germany, 2002; 446p. [Google Scholar]
- Benzi, R.; Sutera, A.; Vulpiani, A. The mechanism of stochastic resonance. J. Phys. A Math. Gen. 1981, 14, 453. [Google Scholar] [CrossRef]
- McNamara, B.; Wiesenfeld, K. Theory of stochastic resonance. Phys. Rev. A 1989, 39, 4854. [Google Scholar] [CrossRef]
- Lanzara, E.; Mantegna, R.N.; Spagnolo, B.; Zangara, R. Experimental study of a nonlinear system in the presence of noise: The stochastic resonance. Am. J. Phys. 1997, 65, 341–349. [Google Scholar] [CrossRef]
- Gammaitoni, L.; Hänggi, P.; Jung, P.; Marchesoni, F. Stochastic resonance. Rev. Mod. Phys. 1998, 70, 223–287. [Google Scholar] [CrossRef]
- Mantegna, R.N.; Spagnolo, B.; Trapanese, M. Linear and nonlinear experimental regimes of stochastic resonance. Phys. Rev. E 2000, 63, 011101. [Google Scholar] [CrossRef]
- Mei, D.C.; Du, L.C.; Wang, C.J. The effects of time delay on stochastic resonance in a bistable system with correlated noises. J. Stat. Phys. 2009, 137, 625–638. [Google Scholar] [CrossRef]
- Benzi, R.; Parisi, G.; Sutera, A.; Vulpiani, A. Stochastic resonance in climatic change. Tellus 1982, 34, 10–16. [Google Scholar] [CrossRef]
- Valenti, D.; Fiasconaro, A.; Spagnolo, B. Stochastic resonance and noise delayed extinction in a model of two competing species. Phys. A 2004, 331, 477–486. [Google Scholar] [CrossRef]
- Bjørnstad, O.N.; Grenfell, B.T. Noisy clockwork: Time series analysis of population fluctuations in animals. Science 2001, 293, 638–643. [Google Scholar] [CrossRef] [PubMed]
- Chichigina, O.A. Noise with memory as a model of lemming cycles. Eur. Phys. J. B 2008, 65, 347–352. [Google Scholar] [CrossRef]
- Vilar, J.M.G.; Solé, R.V. Effects of noise in symmetric two-species competition. Phys. Rev. Lett. 1998, 80, 4099–4102. [Google Scholar] [CrossRef]
- Chizhevsky, A.L. Physical Factors of the Historical Process. A Short Sketch; 1-st Gostypolitographia: Kaluga, Russia, 1924; 72p. (In Russian) [Google Scholar]
- Elton, C.S. Periodic fluctuations in the numbers of animals: Their causes and effects. Brit. J. Exp. Biol. 1924, 11, 119–163. [Google Scholar] [CrossRef]
- Huxley, J. Fluctuations of mammals and the sun spot cycle. Harpers Mag. 1927, 12, 42–50. [Google Scholar]
- Uvarov, B.P. Insects and Climate; The Entomological Society of London: London, UK, 1931; 247p. [Google Scholar]
- Wing, L.W. Migration and solar cycles. Auk 1934, 51, 302–305. [Google Scholar] [CrossRef]
- Anthony, H.E. Sun-spots and squirrel emigrations. Lit. Dig. 1934, 20, 30–31. [Google Scholar]
- Elton, C.S. Voles, Mice and Lemming: Problems in Population Dynamics; Oxford University Press: London, UK, 1942; 490p. [Google Scholar]
- Levengood, W.G. Factors influencing biomagnetic environment during the solar cycle. Nature 1965, 205, 465–467. [Google Scholar] [CrossRef]
- Markson, R. Geophysical influences on Biological Cycles. J. Interdiscip. Cycle Res. 1972, 3, 134. [Google Scholar]
- Chizhevsky, A.L. Earth Echo of Solar Storms; Mysl.: Moscow, Russia, 1973; 349p. (In Russian) [Google Scholar]
- Chernishev, V.B. Solar activity and insects. Probl. Space Biol. 1989, 65, 92–99. (In Russian) [Google Scholar]
- Sinclair, A.R.E.; Gosline, J.M.; Holdsworth, G.; Krebs, C.J.; Boutin, S.; Smith, J.N.M.; Boonstra, R.; Dale, M. Can the solar cycle and climate synchronize the snowshoe hare cycle in Canada? Evidence from tree rings and ice cores. Am Nat. 1993, 141, 173–198. [Google Scholar] [CrossRef] [PubMed]
- Myers, J.H. Synchrony in outbreaks of forest Lepidoptera: A possible example of the Moran effect. Ecology 1998, 79, 1111–1117. [Google Scholar] [CrossRef]
- Puskás, J.; Hill, L.; Kiss, M.; Nowinszky, L. Influence of Solar Activity and Geomagnetism on Moth Species Collected by Pheromone Traps in North Carolina. Biomed. J. Sci. Tech. Res. 2023, 51. [Google Scholar] [CrossRef]
- Hamming, R.W. Digital Filters; Duver Publications Inc.: Mineola, NY, USA, 1989; 284p. [Google Scholar]
- Wei, W.S. Time Series Analysis: Unvariative and Multivariative Methods; Addison Wesley: Boston, MA, USA, 2006; 614p. [Google Scholar]
- Kovalev, A.; Soukhovolsky, V. Analysis of Forest Stand Resistance to Insect Attack According to Remote Sensing Data. Forests 2021, 12, 1188. [Google Scholar] [CrossRef]
Variables in Model (5) | Coefficients in Model (5) | Std. Err. | t-Test | p-Value |
---|---|---|---|---|
Silk moth, Lower Yenisei | ||||
a0 | 0.707 | 0.258 | 2.745 | 0.021 |
L(i − 2) | −0.869 | 0.114 | −7.606 | 0.000 |
L(i − 1) | 1.586 | 0.112 | 14.138 | 0.000 |
Radj2 | 0.96 | |||
F | 138.5 | |||
Silk moth, Far East | ||||
a0 | −0.730 | 0.300 | −2.432 | 0.026 |
L(i − 2) | −0.782 | 0.147 | −5.333 | 0.000 |
L(i − 1) | 1.426 | 0.158 | 9.022 | 0.000 |
adjR2 | 0.830 | |||
F | 46.60 | |||
Pine looper, Thuringia | ||||
a0 | −0.298 | 0.170 | −1.748 | 0.086 |
L(i − 3) | 0.507 | 0.125 | 4.061 | 0.000 |
L(i − 2) | −1.471 | 0.196 | −7.496 | 0.000 |
L(i − 1) | 1.811 | 0.124 | 14.563 | 0.000 |
adjR2 | 0.885 | |||
F | 139.900 |
Species, Habitat | ln x1 | ln x2 | ln xc | ln x1c: Semi-Critical Density | Type of Potential (Soft/Hard) |
---|---|---|---|---|---|
Siberian silkmoth, Lower Yenisei | −1 | 7.6 | 3 | 2.3 | 7.3, hard |
Siberian silkmoth, Far East | −2 | 4.0 | 3 | 2.5 | 4.95, hard |
Pine looper, Thuringia | −1 | 6 | 2 | 1.5 | 1.67, soft |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soukhovolsky, V.; Kovalev, A.; Ivanova, Y.; Tarasova, O. Autoregression, First Order Phase Transition, and Stochastic Resonance: A Comparison of Three Models for Forest Insect Outbreaks. Mathematics 2023, 11, 4212. https://doi.org/10.3390/math11194212
Soukhovolsky V, Kovalev A, Ivanova Y, Tarasova O. Autoregression, First Order Phase Transition, and Stochastic Resonance: A Comparison of Three Models for Forest Insect Outbreaks. Mathematics. 2023; 11(19):4212. https://doi.org/10.3390/math11194212
Chicago/Turabian StyleSoukhovolsky, Vladislav, Anton Kovalev, Yulia Ivanova, and Olga Tarasova. 2023. "Autoregression, First Order Phase Transition, and Stochastic Resonance: A Comparison of Three Models for Forest Insect Outbreaks" Mathematics 11, no. 19: 4212. https://doi.org/10.3390/math11194212
APA StyleSoukhovolsky, V., Kovalev, A., Ivanova, Y., & Tarasova, O. (2023). Autoregression, First Order Phase Transition, and Stochastic Resonance: A Comparison of Three Models for Forest Insect Outbreaks. Mathematics, 11(19), 4212. https://doi.org/10.3390/math11194212