Local Sensitivity of Failure Probability through Polynomial Regression and Importance Sampling
Abstract
:1. Introduction
2. Local RSA with Respect to Deterministic Inputs
2.1. Integral Expression of the Local RSA
2.2. Weak Approach: Approximation of the Indicator Function
3. Sensitivity with Respect to Deterministic Inputs through Taylor Series Expansion
3.1. Approximation of the Failure Indicator Function
3.2. Change of Variable
3.3. Taylor Series Expansion
3.4. Combining Sampling Methods and Polynomial Regression to Derive the Failure Probability Sensitivity
4. Heteroscedastic Polynomial Regression
4.1. Linear Least Squares Method in Our Specific Context
4.2. Settings of the Regression Parameters
4.2.1. Scaling of the Limit State Function
4.2.2. Choice of the Regression Interval and the Polynomial Degree
5. Numerical Investigation
5.1. Cantilever Beam
5.1.1. Presentation of the Application
5.1.2. Sensitivity Analysis for the First Failure of the System
5.1.3. Sensitivity Analysis for the Second Failure of the System
5.2. Roof Truss
5.2.1. Presentation of the Application
5.2.2. Sensitivity Analysis of the System
5.2.3. Focus on the Derivatives with Respect to and
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chabridon, V. Reliability-Oriented Sensitivity Analysis under Probabilistic Model Uncertainty–Application to Aerospace Systems. Ph.D. Thesis, Université Clermont Auvergne, Clermont-Ferrand, France, 2018. [Google Scholar]
- Millwater, H.R.; Wieland, D.H. Probabilistic sensitivity-based ranking of damage tolerance analysis elements. J. Aircr. 2010, 47, 161–171. [Google Scholar] [CrossRef]
- Moustapha, M.; Sudret, B. Surrogate-assisted reliability-based design optimization: A survey and a unified modular framework. Struct. Multidiscip. Optim. 2019, 60, 2157–2176. [Google Scholar] [CrossRef]
- Papaioannou, I.; Breitung, K.; Straub, D. Reliability sensitivity estimation with sequential importance sampling. Struct. Saf. 2018, 75, 24–34. [Google Scholar] [CrossRef]
- Torii, A.J.; Novotny, A.A. A priori error estimates for local reliability-based sensitivity analysis with Monte Carlo Simulation. Reliab. Eng. Syst. Saf. 2021, 213, 107749. [Google Scholar] [CrossRef]
- Morio, J.; Balesdent, M. Estimation of Rare Event Probabilities in Complex Aerospace and Other Systems: A Practical Approach; Woodhead Publishing: Sawston, UK, 2015. [Google Scholar]
- Bucklew, J.A. Introduction to Rare Event Simulation; Springer: Berlin/Heidelberg, Germany, 2004; Volume 5. [Google Scholar]
- Torii, A.J. On sampling-based schemes for probability of failure sensitivity analysis. Probabilistic Eng. Mech. 2020, 62, 103099. [Google Scholar] [CrossRef]
- Robert, C.P.; Casella, G. Monte Carlo Statistical Methods; Springer: Berlin/Heidelberg, Germany, 1999; Volume 2. [Google Scholar]
- Breitung, K.W. Asymptotic Approximations for Probability Integrals; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Papaioannou, I.; Breitung, K.; Straub, D. Reliability sensitivity analysis with Monte Carlo methods. In Proceedings of the ICOSSAR 2013, New York, NY, USA, 16–20 June 2013. [Google Scholar]
- Lacaze, S.; Brevault, L.; Missoum, S.; Balesdent, M. Probability of failure sensitivity with respect to decision variables. Struct. Multidiscip. Optim. 2015, 52, 375–381. [Google Scholar] [CrossRef]
- Ang, A.H.S.; Tang, W.H. Probability Concepts in Engineering Planning and Design: Emphasis on Application to Civil and Environmental Engineering; Wiley: Hoboken, NJ, USA, 2007. [Google Scholar]
- Khan, R.A. Approximation for the expectation of a function of the sample mean. Statistics 2004, 38, 117–122. [Google Scholar] [CrossRef]
- Biau, G.; Mason, D.M. High-dimensional p-norms. In Mathematical Statistics and Limit Theorems: Festschrift in Honour of Paul Deheuvels; Springer: Cham, Switzerland, 2015; pp. 21–40. [Google Scholar]
- Apostol, T. Calculus; John WiJey & Sons, Inc.: Hoboken, NJ, USA, 1967. [Google Scholar]
- Watson, G.S. Linear least squares regression. Ann. Math. Stat. 1967, 38, 1679–1699. [Google Scholar] [CrossRef]
- Lai, T.L.; Robbins, H.; Wei, C.Z. Strong consistency of least squares estimates in multiple regression II. J. Multivar. Anal. 1979, 9, 343–361. [Google Scholar] [CrossRef]
- Taboga, M. Generalized least squares. In Lectures on Probability Theory and Mathematical Statistics; John Wiley & Sons: Hoboken, NJ, USA, 2021. [Google Scholar]
- Horowitz, J.L. The bootstrap. In Handbook of Econometrics; Elsevier: Amsterdam, The Netherlands, 2001; Volume 5, pp. 3159–3228. [Google Scholar]
- Stoica, P.; Selen, Y. Model-order selection: A review of information criterion rules. IEEE Signal Process. Mag. 2004, 21, 36–47. [Google Scholar] [CrossRef]
- Proppe, C. Local reliability based sensitivity analysis with the moving particles method. Reliab. Eng. Syst. Saf. 2021, 207, 107269. [Google Scholar] [CrossRef]
- Song, S.; Lu, Z.; Qiao, H. Subset simulation for structural reliability sensitivity analysis. Reliab. Eng. Syst. Saf. 2009, 94, 658–665. [Google Scholar] [CrossRef]
- Morio, J. Extreme quantile estimation with nonparametric adaptive importance sampling. Simul. Model. Pract. Theory 2012, 27, 76–89. [Google Scholar] [CrossRef]
- Papaioannou, I.; Geyer, S.; Straub, D. Improved cross entropy-based importance sampling with a flexible mixture model. Reliab. Eng. Syst. Saf. 2019, 191, 106564. [Google Scholar] [CrossRef]
- Yang, R.; Gu, L. Experience with approximate reliability-based optimization methods. Struct. Multidiscip. Optim. 2004, 26, 152–159. [Google Scholar] [CrossRef]
- Madsen, H.O.; Krenk, S.; Lind, N.C. Methods of Structural Safety; Courier Corporation: Chelmsford, MA, USA, 2006. [Google Scholar]
- Rubinstein, R.Y. The score function approach for sensitivity analysis of computer simulation models. Math. Comput. Simul. 1986, 28, 351–379. [Google Scholar] [CrossRef]
Cantilever Beam 1 | ||||||||
---|---|---|---|---|---|---|---|---|
Regression | Regression | Regression | Weak Approach | |||||
CV | CV | CV | CV | |||||
() | () | () | ||||||
CV | CV | CV | CV | |||||
() | () | () |
Cantilever Beam 2 | ||||||||
---|---|---|---|---|---|---|---|---|
Regression | Regression | Regression | Weak Approach | |||||
CV | CV | CV | CV | |||||
() | () | () | ||||||
CV | CV | CV | CV | |||||
() | () | () | ||||||
CV | CV | CV | CV | |||||
() | () | () |
Roof Truss, Part 1 | ||||||||
---|---|---|---|---|---|---|---|---|
Regression | Regression | Regression | Weak Approach | |||||
CV | CV | CV | CV | |||||
() | () | () | ||||||
CV | CV | CV | CV | |||||
() | () | () | ||||||
CV | CV | CV | CV | |||||
() | () | () | ||||||
CV | CV | CV | CV | |||||
() | () | () | ||||||
CV | CV | CV | CV | |||||
() | () | () | ||||||
CV | CV | CV | CV | |||||
() | () | () |
Roof Truss, Part 2 | ||||||||
---|---|---|---|---|---|---|---|---|
Regression | Regression | Regression | Weak approach | |||||
CV | CV | CV | CV | |||||
() | () | () | ||||||
CV | CV | CV | CV | |||||
() | () | () | ||||||
CV | CV | CV | CV | |||||
() | () | () | ||||||
CV | CV | CV | CV | |||||
() | () | () | ||||||
CV | CV | CV | CV | |||||
() | () | () | ||||||
CV | CV | CV | CV | |||||
() | () | () |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chiron, M.; Morio, J.; Dubreuil, S. Local Sensitivity of Failure Probability through Polynomial Regression and Importance Sampling. Mathematics 2023, 11, 4357. https://doi.org/10.3390/math11204357
Chiron M, Morio J, Dubreuil S. Local Sensitivity of Failure Probability through Polynomial Regression and Importance Sampling. Mathematics. 2023; 11(20):4357. https://doi.org/10.3390/math11204357
Chicago/Turabian StyleChiron, Marie, Jérôme Morio, and Sylvain Dubreuil. 2023. "Local Sensitivity of Failure Probability through Polynomial Regression and Importance Sampling" Mathematics 11, no. 20: 4357. https://doi.org/10.3390/math11204357
APA StyleChiron, M., Morio, J., & Dubreuil, S. (2023). Local Sensitivity of Failure Probability through Polynomial Regression and Importance Sampling. Mathematics, 11(20), 4357. https://doi.org/10.3390/math11204357