Robust DDoS Attack Detection Using Piecewise Harris Hawks Optimizer with Deep Learning for a Secure Internet of Things Environment
Abstract
:1. Introduction
2. Literature Survey
3. The Proposed Model
3.1. Design of the PHHO Algorithm
- Global search stage
- Transition stage
- Local development phase
3.2. Piecewise Chaotic Map
3.3. Structure of the ABiLSTM Model
3.4. Process Involved in GWO-Based Parameter Selection
4. Performance Evaluation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Emil Selvan, G.S.R.; Ganeshan, R.; Jingle, I.D.J.; Ananth, J.P. FACVO-DNFN: Deep learning-based feature fusion and Distributed Denial of Service attack detection in cloud computing. Knowl.-Based Syst. 2023, 261, 110132. [Google Scholar]
- Hong, L.; Wehbi, K.; Alsalah, T.H. Hybrid feature selection for efficient detection of DDoS attacks in IoT. In Proceedings of the 2022 6th International Conference on Deep Learning Technologies, Xi’an, China, 26–28 July 2022; pp. 120–127. [Google Scholar]
- Sanchez, O.R.; Repetto, M.; Carrega, A.; Bolla, R.; Pajo, J.F. Feature selection evaluation towards a lightweight deep learning DDoS detector. In Proceedings of the ICC 2021-IEEE International Conference on Communications, Montreal, QC, Canada, 14–23 June 2021; pp. 1–6. [Google Scholar]
- Wang, C.; Zhu, T. DDoS attack detection methods based on deep learning in healthcare. J. Mech. Med. Biol. 2023, 23, 2340008. [Google Scholar] [CrossRef]
- Akgun, D.; Hizal, S.; Cavusoglu, U. A new DDoS attacks intrusion detection model based on deep learning for cybersecurity. Comput. Secur. 2022, 118, 102748. [Google Scholar] [CrossRef]
- Malliga, S.; Nandhini, P.S.; Kogilavani, S.V. A comprehensive review of deep learning techniques for the detection of (distributed) denial of service attacks. Inf. Technol. Control 2022, 51, 180–215. [Google Scholar] [CrossRef]
- Savanović, N.; Toskovic, A.; Petrovic, A.; Zivkovic, M.; Damaševičius, R.; Jovanovic, L.; Bacanin, N.; Nikolic, B. Intrusion Detection in Healthcare 4.0 Internet of Things Systems via Metaheuristics Optimized Machine Learning. Sustainability 2023, 15, 12563. [Google Scholar] [CrossRef]
- Khempetch, T.; Wuttidittachotti, P. DDoS attack detection using deep learning. IAES Int. J. Artif. Intell. 2021, 10, 382. [Google Scholar] [CrossRef]
- Alaca, Y.; Çelik, Y. Cyber attack detection with QR code images using lightweight deep learning models. Comput. Secur. 2023, 126, 103065. [Google Scholar] [CrossRef]
- Saurabh, K.; Kumar, T.; Singh, U.; Vyas, O.P.; Khondoker, R. NFDLM: A Lightweight Network Flow-based Deep Learning Model for DDoS Attack Detection in IoT Domains. In Proceedings of the 2022 IEEE World AI IoT Congress (AIIoT), Seattle, WA, USA, 6–9 June 2022; pp. 736–742. [Google Scholar]
- Farukee, M.B.; Shabit, M.Z.; Haque, M.R.; Sattar, A.S. DDoS attack detection in IoT networks using deep learning models combined with the random forest as a feature selector. In Advances in Cyber Security: Second International Conference, ACeS 2020, Penang, Malaysia, December 8–9, 2020, Revised Selected Papers; Springer: Singapore, 2021; pp. 118–134. [Google Scholar]
- Cherian, M.; Varma, S.L. Secure SDN–IoT Framework for DDoS Attack Detection Using Deep Learning and Counter-Based Approach. J. Netw. Syst. Manag. 2023, 31, 54. [Google Scholar] [CrossRef]
- Sharifian, Z.; Barekatain, B.; Quintana, A.A.; Beheshti, Z.; Safi-Esfahani, F. Sin-Cos-bIAVOA: A new feature selection method based on an improved African vulture optimization algorithm and a novel transfer function to DDoS attack detection. Expert Syst. Appl. 2023, 228, 120404. [Google Scholar] [CrossRef]
- Dora, V.R.S.; Lakshmi, V.N. Optimal feature selection with CNN-feature learning for DDoS attack detection using meta-heuristic-based LSTM. Int. J. Intell. Robot. Appl. 2022, 6, 323–349. [Google Scholar] [CrossRef]
- Ma, L.; Chai, Y.; Cui, L.; Ma, D.; Fu, Y.; Xiao, A. A deep learning-based DDoS detection framework for the Internet of Things. In Proceedings of the ICC 2020—2020 IEEE International Conference on Communications (ICC), Dublin, Ireland, 7–11 June 2020; pp. 1–6. [Google Scholar]
- Matsa, L.S.; Zodi-Lusilao, G.-A.; Bhunu-Shava, F. Forward feature selection for DDoS detection on cross-plane of software-defined network using hybrid deep learning. In Proceedings of the 2021 3rd International Multidisciplinary Information Technology and Engineering Conference (IMITEC), Windhoek, Namibia, 23–25 November 2021; pp. 1–7. [Google Scholar]
- Rihan, S.D.A.; Anbar, M.; Alabsi, B.A. Approach for Detecting Attacks on IoT Networks Based on Ensemble Feature Selection and Deep Learning Models. Sensors 2023, 23, 7342. [Google Scholar] [CrossRef] [PubMed]
- Hariprasad, S.; Deepa, T.; Bharathiraja, N. Detection of DDoS Attack in IoT Networks Using Sample Selected RNN-ELM. Intell. Autom. Soft Comput. 2022, 34, 1425–1440. [Google Scholar] [CrossRef]
- Setitra, M.A.; Fan, M.; Bensalem, Z.E.A. An efficient approach to detect distributed denial of service attacks for software-defined internet of things combining autoencoder and extreme gradient boosting with feature selection and hyperparameter tuning optimization. Trans. Emerg. Telecommun. Technol. 2023, 34, e4827. [Google Scholar] [CrossRef]
- Yousuf, O.; Mir, R.N. DDoS attack detection in the Internet of Things using recurrent neural network. Comput. Electr. Eng. 2022, 101, 108034. [Google Scholar] [CrossRef]
- Padmashree, A.; Krishnamoorthi, M. Decision Tree with Pearson Correlation-based Recursive Feature Elimination Model for Attack Detection in IoT Environment. Inf. Technol. Control 2022, 51, 771–785. [Google Scholar] [CrossRef]
- Alzaqebah, A.; Aljarah, I.; Al-Kadi, O.; Damaševičius, R. A modified grey wolf optimization algorithm for an intrusion detection system. Mathematics 2022, 10, 999. [Google Scholar] [CrossRef]
- Toldinas, J.; Venčkauskas, A.; Damaševičius, R.; Grigaliūnas, Š.; Morkevičius, N.; Baranauskas, E. A novel approach for network intrusion detection using multistage deep learning image recognition. Electronics 2021, 10, 1854. [Google Scholar] [CrossRef]
- Shao, L.; Chen, W. Coal and Gas Outburst Prediction Model Based on Miceforest Filling and PHHO–KELM. Processes 2023, 11, 2722. [Google Scholar] [CrossRef]
- Shan, L.; Liu, Y.; Tang, M.; Yang, M.; Bai, X. CNN-BiLSTM hybrid neural networks with attention mechanism for well log prediction. J. Pet. Sci. Eng. 2021, 205, 108838. [Google Scholar] [CrossRef]
- Deng, S.; Pan, H.-Y.; Wang, H.-G.; Xu, S.-K.; Yan, X.-P.; Li, C.-W.; Peng, M.-G.; Peng, H.-P.; Shi, L.; Cui, M.; et al. A hybrid machine learning optimization algorithm for multivariable pore pressure prediction. Pet. Sci. 2023. [Google Scholar] [CrossRef]
- Koroniotis, N.; Moustafa, N.; Sitnikova, E.; Turnbull, B. Towards the development of realistic botnet dataset in the internet of things for network forensic analytics: Bot-iot dataset. Future Gener. Comput. Syst. 2019, 100, 779–796. [Google Scholar] [CrossRef]
- Katib, I.; Ragab, M. Blockchain-Assisted Hybrid Harris Hawks Optimization Based Deep DDoS Attack Detection in the IoT Environment. Mathematics 2023, 11, 1887. [Google Scholar] [CrossRef]
Binary Database | |
---|---|
Classes | No. of Samples |
Attack | 1579 |
Normal | 477 |
Total No. of Instances | 2056 |
Classes | |||||
---|---|---|---|---|---|
TR Phase (80%) | |||||
Attack | 98.51 | 99.05 | 98.51 | 98.78 | 97.64 |
Normal | 96.77 | 94.97 | 96.77 | 95.86 | 97.64 |
Average | 97.64 | 97.01 | 97.64 | 97.32 | 97.64 |
TS Phase (20%) | |||||
Attack | 99.35 | 99.67 | 99.35 | 99.51 | 99.20 |
Normal | 99.06 | 98.13 | 99.06 | 98.59 | 99.20 |
Average | 99.20 | 98.90 | 99.20 | 99.05 | 99.20 |
Multiclass Database | |
---|---|
Class | No. of Instances |
DDoS | 500 |
DoS | 500 |
Recon | 500 |
Theft | 79 |
Normal | 477 |
Total No. of Samples | 2056 |
Class | |||||
---|---|---|---|---|---|
TR Phase (80%) | |||||
DDoS | 98.48 | 97.69 | 95.97 | 96.82 | 97.62 |
DoS | 98.48 | 95.40 | 98.16 | 96.76 | 98.37 |
Recon | 99.21 | 98.30 | 98.54 | 98.42 | 98.98 |
Theft | 99.21 | 94.92 | 84.85 | 89.60 | 92.33 |
Normal | 99.03 | 97.71 | 98.21 | 97.96 | 98.75 |
Average | 98.88 | 96.80 | 95.14 | 95.91 | 97.21 |
TS Phase (20%) | |||||
DDoS | 99.51 | 99.03 | 99.03 | 99.03 | 99.35 |
DoS | 97.82 | 96.64 | 95.83 | 96.23 | 97.23 |
Recon | 99.51 | 97.83 | 100.00 | 98.90 | 99.69 |
Theft | 99.03 | 90.91 | 76.92 | 83.33 | 88.34 |
Normal | 98.30 | 95.40 | 96.51 | 95.95 | 97.64 |
Average | 98.83 | 95.96 | 93.66 | 94.69 | 96.45 |
Methods | ||||
---|---|---|---|---|
PHHO-ODLC | 99.20 | 98.90 | 99.20 | 99.05 |
H3SC-DLIDS | 99.05 | 96.65 | 95.67 | 96.14 |
AE-MLP | 98.19 | 95.91 | 93.31 | 95.13 |
IDS-IoT | 97.40 | 95.80 | 94.90 | 95.53 |
XGBoost | 97.09 | 94.28 | 92.13 | 95.05 |
RF | 97.00 | 94.98 | 93.69 | 94.57 |
DT | 95.21 | 92.43 | 92.51 | 93.26 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ragab, M.; M. Alshammari, S.; Maghrabi, L.A.; Alsalman, D.; Althaqafi, T.; AL-Ghamdi, A.A.-M. Robust DDoS Attack Detection Using Piecewise Harris Hawks Optimizer with Deep Learning for a Secure Internet of Things Environment. Mathematics 2023, 11, 4448. https://doi.org/10.3390/math11214448
Ragab M, M. Alshammari S, Maghrabi LA, Alsalman D, Althaqafi T, AL-Ghamdi AA-M. Robust DDoS Attack Detection Using Piecewise Harris Hawks Optimizer with Deep Learning for a Secure Internet of Things Environment. Mathematics. 2023; 11(21):4448. https://doi.org/10.3390/math11214448
Chicago/Turabian StyleRagab, Mahmoud, Sultanah M. Alshammari, Louai A. Maghrabi, Dheyaaldin Alsalman, Turki Althaqafi, and Abdullah AL-Malaise AL-Ghamdi. 2023. "Robust DDoS Attack Detection Using Piecewise Harris Hawks Optimizer with Deep Learning for a Secure Internet of Things Environment" Mathematics 11, no. 21: 4448. https://doi.org/10.3390/math11214448
APA StyleRagab, M., M. Alshammari, S., Maghrabi, L. A., Alsalman, D., Althaqafi, T., & AL-Ghamdi, A. A. -M. (2023). Robust DDoS Attack Detection Using Piecewise Harris Hawks Optimizer with Deep Learning for a Secure Internet of Things Environment. Mathematics, 11(21), 4448. https://doi.org/10.3390/math11214448